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By applying a Bayesian model-to-data analysis, we estimate the temperature and momentum dependence
of the heavy quark diffusion coefficient in an improved Langevin framework. The posterior range of the
diffusion coefficient is obtained by performing a Markov chain Monte Carlo random walk and calibrating on
the experimental data of D-meson RAA and v2 in three different collision systems at the Relativistic Heavy-Ion
Collidaer (RHIC) and the Large Hadron Collider (LHC): Au-Au collisions at 200 GeV and Pb-Pb collisions at
2.76 and 5.02 TeV. The spatial diffusion coefficient is found to be consistent with lattice QCD calculations and
comparable with other models’ estimation. We demonstrate the capability of our improved Langevin model to
simultaneously describe the RAA and v2 at both RHIC and the LHC energies, as well as the higher order flow
coefficient such as D meson v3. We show that by applying a Bayesian analysis, we are able to quantitatively and
systematically study the heavy flavor dynamics in heavy-ion collisions.
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I. INTRODUCTION

The theory of the strong interaction force—quantum chro-
modynamics (QCD)—predicts that at sufficiently high temper-
ature and/or baryon density, nuclear matter undergoes a phase
transition from hadrons to a new state of the deconfined quarks
and gluons: the quark gluon plasma (QGP) [1–3]. Over the past
two decades, ultrarelativistic heavy-ion collision experiments
at the Relativistic Heavy-Ion Collider (RHIC) and the Large
Hadron Collider (LHC) have been searching and exploring
this new state of matter under extreme conditions. Compelling
discoveries, for instance, the strong suppression of hadrons at
large transverse momenta (jet quenching), reveal the creation
of the QGP medium at RHIC and LHC [4,5]. The observed
collective flow of low transverse momentum hadrons [6,7] has
provided insight into remarkable properties of the QGP such
as the strongly interacting, almost perfect fluid behavior with
a very small shear viscosity to entropy density ratio [8–10].

Since the QGP is not directly observable, the study of its
properties relies on the measurement of final-state observables,
theoretical modeling, and the comparison between those two.
For example, the relativistic viscous hydrodynamical model
[11–15]—one of the most successful models in heavy-ion
physics—has been utilized for the extraction of the temperature
dependence of the specific shear viscosity through a model-to-
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data comparison with elliptic and triangular flow data of soft
identified hadrons [16].

In contrast to the soft medium properties, the transport
coefficients related to the medium interaction of hard probes
(jets and heavy quarks), such as q̂, ê,Ds , are not yet understood
on a similarly quantitative level. This is in part due to the
experimental difficulty in measuring “rare processes,” but also
due to the complexity of modeling the dynamics of these
hard probes interacting with the QGP medium. Nevertheless,
significant progress has been made in recent years: A number
of transport models in the market are now able to describe a
selection of heavy quark observables and perform qualitative
estimates of the diffusion coefficient [17–30], which in turn
can be compared with lattice QCD calculations of the same
quantities [31–33]. In current studies of the open heavy flavor
diffusion coefficient, it is common that the diffusion coefficient
is directly or indirectly encoded in the model and one can
relate its physical properties to one or multiple parameters.
By comparing the heavy quark observables (such as the
nuclear modification factor RAA and elliptic flow v2) between
the theoretical calculation and the experimental data, these
parameters can be tuned until one finds a satisfactory fit.
However, the disadvantage of such an “eyeball” comparison
is that it gets exceedingly difficult to vary multiple parameters
simultaneously or to compare with a larger selection of exper-
imental measurements, as all parameters are interdependent
and affect multiple observables at once.

A more rigorous and complete approach to optimizing the
model and determining the parameters would be to perform
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a random walk in the parameter space and calibrate on the
experimental data by applying a modern Bayesian statistical
analysis [34–37]. In such an analysis, the computationally
expensive physics model is first evaluated for a small number
of points in parameter space. These calculations are used to
train Gaussian process emulators that act as fast surrogates to
interpolate between these points and provide model predictions
for arbitrary values of the input parameters. The emulators
thus act as substitution of the full model in order to be able
to perform a Markov chain Monte Carlo exploration of the
complete parameter space. The results of such an analysis
are the posterior distributions of the parameters, i.e., the
probability distributions of the parameter values that optimally
describe the experimental data.

This type of model-to-data analysis using Bayesian statis-
tics has been applied with great success in the soft sector
of heavy-ion physics over the past few years, e.g., for the
extraction of the temperature dependence of the specific shear
and bulk viscosities of the QGP [16,38,39], as well as for
constraining the equation of state of QCD matter purely from
experimental measurements [36,40]. In this study, we shall
extend this type of analysis to the quantitative study of heavy
flavor evolution in heavy-ion collisions. Our goal is to provide
a quantitative estimate of the temperature and momentum
dependence of the heavy flavor diffusion coefficient. The paper
is organized as follows: In Sec. II, we will describe our physics
model, the improved Langevin framework which simulates
the full space-time evolution of heavy quarks inside a QGP
medium; in Sec. III, the Bayesian analysis that we utilize is
introduced; the results of the calibration and the estimation of
the heavy quark diffusion coefficient are given in Sec. IV; and
a summary and outlook can be found in the final section.

II. MODELING HEAVY FLAVOR EVOLUTION IN
HEAVY-ION COLLISIONS

A. Full space-time evolution of heavy flavors and the
QGP medium

Our analysis utilizes the well-established framework devel-
oped by the Duke QCD group to simulate the full space-time
evolution of heavy quarks in heavy-ion collisions [22,41].

1. Initial production

Because of their large masses, heavy quarks are believed to
be primarily produced at the beginning of the collision via hard
scattering. Therefore, the initial momentum distribution can
be calculated using perturbative QCD (pQCD). In this work,
we adopt the fixed-order plus next-to-leading-log formula
(FONLL) [42,43] and EPS09 next to leading order (NLO)
nuclear parton distribution function (PDFs) [44] to calculate
the heavy quark initial momentum distribution, from which we
sample the momenta of heavy quarks in our calculation (using
Monte Carlo methods).

The initial distribution of heavy quarks in position space
is generated consistently with the initial condition for the
event-by-event hydrodynamical evolution by the parametric
initial condition model TRENTo [45]. At the soft medium ther-
malization time (τ0 = 0.6 fm/c), TRENTo maps the entropy

density s(x,y)|τ0 to the nucleon thickness functions TA,TB of
the two projectiles by asserting a generalized ansatz:

s(x,y)|τ=τ0 ∝
(

T
p
A + T

p
B

2

)1/p

, (1)

where p is a free parameter in TRENTo . In this study, we
utilize the calibration of the soft-matter properties performed
in Ref. [16] (Table III of the median value calibrated on charged
particle yields of Ref. [16]), including TRENTo initial-state
parameters (except for p, which is chosen to be 0), as well as
other parameters related to soft medium properties; therefore
the generalized function can be simplified as

s(x,y)|τ=τ0 =
√

TATB. (2)

The heavy quark initial production is based on the binary
collision scaling and is determined by the thickness function
T̂AB = TATB . In this way, we are able to relate the heavy quark
initial position to the soft medium initial production.

2. Heavy quark evolution inside a QGP medium

After their production, heavy quarks propagate through
the QGP medium. In the quasiparticle picture of the QGP
system, the space-time evolution of heavy quarks can generally
be described by the Boltzmann equation. Since heavy quark
masses are much larger than the typical medium temperature
(mQ � T ), their momentum change due to the scattering with
light partons in a thermally equilibrated medium is relatively
small. With this assumption, the Boltzmann equation can
be reduced to the Fokker-Planck equation, which is realized
stochastically by the Langevin equation (for a detailed deriva-
tion, see Refs. [46,47]). In this study, we use an improved
Langevin transport model to describe the dynamics of heavy
quarks propagating in a QGP medium, which includes not only
the heavy quark collisional energy loss but also the radiative
energy loss due to gluon radiation [22]:

d �p
dt

= −ηD(p) �p + �ξ + �fg. (3)

The first two terms on the right-hand side of the equation
are the drag and thermal random forces inherited from the
standard Langevin equation. They contribute to the colli-
sional energy loss from quasielastic scattering between heavy
quarks and light partons and are generalized to the scattering
between heavy quarks and the background medium. With
the requirement that the heavy quark distribution eventually
reaches equilibrium in a thermal medium, a simplified form
of the Einstein relation ηD(p) = κ/(2T E) is adopted, where κ
denotes the heavy quark mean squared momentum change per
unit time and is usually referred as momentum-space diffusion
coefficient. Here we assume that in a “minimal model” the
heavy quark momentum variance in the longitudinal direction
equals that in the transverse direction (even though the mi-
croscopic calculation of those two quantities are different):
κ|| = κ⊥ = κ . The validity of such an assumption needs to be
investigated in a future calculation. For this study, we follow
this assumption in order to simplify our parametrization, and
therefore the heavy quark transport coefficient is defined as
q̂ = 2κ⊥, which is the transverse momentum broadening.
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Assuming Gaussian-shaped white noise, the thermal ran-
dom force satisfies the relation 〈ξi(t)ξj (t ′)〉 = κδij δ(t − t ′),
which indicates no correlation between thermal forces at
different times.

In order to describe the heavy quark dynamics in the
intermediate- and high-pT region, the effective modeling of the
radiative component of the heavy quark energy loss becomes
necessary. A third force �fg = −d �pg/dt hence is introduced
to account for the recoil force that is experienced by the
heavy quarks when they emit bremsstrahlung gluons, with �pg

being the emitted gluon momentum. A higher twist calculation
for the medium-induced gluon radiation is adopted from
Refs. [48,49]:

dNg

dxdk2
⊥dt

= 2αsP (x)q̂g

πk4
⊥

sin2

(
t − ti

2τf

)(
k2
⊥

k2
⊥ + x2M2

)4

,

(4)

where x is the fractional energy carried by the emitted
gluon, k⊥ is the gluon transverse momentum, P (x) is the
splitting function, and τf is the gluon formation time. We
relate the gluon transport coefficient q̂g and heavy quark
transport coefficient q̂ via the color factors q̂g = CA/CF q̂
(CF = 3,CA = 4/3). Under this construction, the drag force,
the thermal random force, and the recoil force are dependent
on the heavy quark transport coefficient q̂, which characterizes
the interaction strength between heavy quarks and the medium.
In the literature, the spatial diffusion coefficient Ds = 4T 2/q̂
is more often used in the diffusion equation, and this will be
the physical property that we are trying to extract from our
analysis.

The evolution of the QGP medium is simulated by a (2+1)-
dimensional event-by-event viscous hydrodynamical model
VISHNEW [50–52], which has been updated to include both
the shear and bulk viscosities with the shear-bulk coupling.
The shear and bulk viscosities have been parametrized as
temperature dependent. In our current study, the parameters
related to properties of the soft medium as well as the initial
condition are calibrated through an independent Bayesian
analysis of light hadrons [16].

3. Hadronization

When the temperature of the QGP medium drops below the
critical temperature (Tc = 154 MeV), the medium undergoes
a transition from a deconfined fluid to a confined hadron
gas. The phenomenon of confinement involves nonperturbative
processes and is not well understood. One often utilizes an
instantaneous hadronization model to convert the fluid medium
into hadrons. On the transition hypersurface, an ensemble of
hadrons is generated by sampling the momentum distribution
from the Cooper-Frye formula [53,54]:

E
dNi

d3p
=

∫
	

fi(x,y)pμd3σμ. (5)

Heavy quarks hadronize into heavy mesons within a hybrid
model of instantaneous recombination and fragmentation. The
momentum spectra of the meson produced by recombination

is determined by the Wigner function [22,41]:

dNM

d3pM

=
∫

d3p1d
3p2

dNQ

d3pQ

dNq

d3pq

× f W
M ( �pQ, �pq)δ( �pM − �pQ − �pq), (6)

where �pQ and �pq are the momenta of the heavy quark and
light quark, respectively, that constitute the heavy meson;
f W

M ( �pQ, �pq) is the Wigner function in terms of the overlap
between the two initial partons and the final meson. A simple
quantum harmonic oscillator is used to approximate the wave
function. For heavy quarks that do not recombine with light
partons, a fragmentation process via PYTHIA takes place. It
is found that high-momentum heavy quarks tend to fragment
while lower momentum heavy quarks tend to recombine with
the thermal light partons and hadronize into hadrons [41].

4. Hadronic rescattering

After hadronization, the system continues expanding as an
interacting hadron gas. Subsequent interactions between heavy
mesons and light hadrons (e.g., scattering and decay) after
hadronization are modeled with the Ultrarelativistic Quan-
tum Molecular Dynamics model (UrQMD), which solves the
Boltzmann equation for all the particles in the system [55,56].
UrQMD continues to evolve the system until the hadron gas
is so dilute that all interactions have ceased and the system
reaches its kinematic freeze-out. The particle information is
then collected to calculate the final-state observables that can
be compared with experimental data.

In our study of D mesons, the two main observables are the
nuclear modification factor RAA, which quantifies the heavy
quark in-medium energy loss and is obtained by taking the ratio
of the heavy-meson pT spectra measured in nucleus-nucleus
collisions and the reference spectra in proton-proton collisions,
scaled by the binary collision number; and the harmonic
flow coefficients vn, which are the nth-order coefficients in
the azimuthal angle Fourier expansion of the emitted hadron
spectra. In our calculation, the second-order harmonic elliptic
flow v2 is calculated via both the event-plane method [57] and
the two-particle cumulant method [58], while the triangle flow
is calculated via the two-particle cumulant method [58].

B. Parameterization of the diffusion coefficient

One of the goal of the heavy-ion community for the next few
years is to quantitatively determine the heavy-quark diffusion
coefficient at sufficiently high precision. Since the diffusion
coefficient is not a quantity that can be directly measured, its
determination requires an interplay between both experiment
and theory, meaning the values of the parameters which
encode the heavy-quark diffusion coefficient are obtained from
a comparison between experimental measurement and the
corresponding theoretical calculations.

At high temperature and large momentum, the diffusion
coefficient can be calculated using perturbative QCD [59,60]:
The simplest possible diagram for heavy quarks interacting
with light partons is given by two 2 → 2 elastic scattering
processes (Qq → Qq, Qg → Qg), where the heavy-quark
transport coefficient equals [61]

q̂ = 〈( �pQ′)2 − (p̂Q · �pQ′)2〉, (7)
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FIG. 1. A leading order pQCD calculation of q̂ with respect to
temperature and momentum. For the calculation of q̂, a fixed coupling
αs = 0.3 is used, and a Debye screening mass according to m2

D =
4παsT

2. All s,u,t channel contributions for Qq → Qq,Qg → Qg

are included.

where �pQ( �pQ′) is the in-(out-)going momentum of the heavy
quark. 〈X〉 is defined as

〈X〉 = γ

2EQ

∫
d3pq

(2π )32Eq

d3pQ′

(2π )32EQ′

d3pq ′

(2π )32Eq ′
Xfq( �pq)

× (2π )4δ4( �pQ + �pq − �pQ′ − �pq ′)
∑

|M|2Qq→Q′q ′ ,

(8)

where �pq( �pq ′) is the in-(out-)going momentum of the light
parton (light quark or gluon), and M12→34 are the scattering
matrices between heavy quarks and light partons. The leading-
order pQCD calculation of diffusion coefficient with respect to
temperature and heavy quark momentum is plotted in Fig. 1.

It has been found in previous comparisons to data that
the perturbative calculations are not sufficient to explain the
experimental findings such as the single nonphotonic electron
suppression stemming from decay of the heavy flavor mesons
(“single electron puzzle”) [62] or fail to to simultaneously
describe both the heavy quark nuclear modification factor
RAA and elliptic flow v2 (“heavy quark RAA and v2 puzzle”)
[63]. Moreover, it has been argued that the convergence of
the perturbative terms is rather poor [25,64]. In order to
compensate for nonperturbative effects, one may introduce a
K factor to scale the scattering cross section by an ad hoc
parameter, which will be adjusted until the model is able to
describe the experimental data. In this study, we use a more
generalized parametrization of the diffusion coefficient, which
combines a linear temperature-dependent component and a
pQCD component:

Ds2πT (T , p) = 1

1 + (γ 2p)2
(Ds2πT )linear

+ (γ 2p)2

1 + (γ 2p)2
(Ds2πT )pQCD. (9)

The linear component (Ds2πT )linear = α[1 + β(T/Tc −
1)], which accounts for nonperturbative effects, is the diffusion
coefficient in the p = 0 GeV/c limit and can be compared to
lattice QCD calculation of the spatial diffusion coefficient at
zero momentum. The pQCD component is the contribution
from perturbative processes and is related to q̂pQCD, which

has been calculated above, by (Ds2πT )pQCD = 8π/(q̂/T 3). It
should be noted that the standard spatial diffusion coefficient
Ds is defined at the zero momentum p = 0 GeV/c limit.
However, in this work we use the notation Ds to refer to the
diffusion coefficient in the full momentum range.

The parameter α represents the spatial diffusion coefficient
at zero momentum near Tc; parameter β is the slope of
Ds2πT (p = 0) above Tc. The linear shape of the parametriza-
tion is inspired by the approximately linear temperature de-
pendence of the specific shear viscosity [38], as we assume an
underlying relationship between the transport properties of the
QGP medium [65]. The parameter γ controls the ratio between
the linear component and the pQCD component. For p < 1/γ 2

the linear component dominates, while for p > 1/γ 2 the
pQCD component is dominant. A small value of γ indicates
nonperturbative processes affect the heavy quark dynamics
into the very-high-momentum region, and a large value of γ
indicates a quick conversion to the pQCD-dominated region.
To better illustrate the dependence of the spatial diffusion
coefficient on γ , we plot Ds2πT as a function of temperature
(at fixed momentum) and momentum (at fixed temperature) for
different values of γ in Fig. 2. As shown in Fig. 2, the value of
γ changes from 0 to 1 while the color changes from violet to
red in the reverse rainbow color scheme. For a large value of γ
(red) the combined diffusion coefficient quickly converges to
the pQCD calculation, while for a small value of γ (violet) the
diffusion coefficient still follows the linear contribution even
for large momenta.
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FIG. 2. An example of the spatial diffusion coefficient
parametrization. The linear component uses (D2πT )linear = α[1 +
β(T/Tc − 1)] with (α,β) = (1.9,1.6) and is plotted as black dots. The
dashed black line is the pQCD component, while the rainbow lines
represent the diffusion coefficient Eq. (9) with parameter γ varying
from 0 to 1 while the color change from violet to red.
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III. PARAMETER CALIBRATION

In this section, we summarize the workflow of the Bayesian
analysis that allows us to determine the high likelihood pa-
rameter ranges of (α,β,γ ) that govern the diffusion coeffi-
cient. More details on the Bayesian analysis can be found in
Refs. [16,36,38,40].

We first evaluate the improved Langevin model for a
limited number of parameter values that are selected using
a Latin hypercube algorithm and calculate the heavy-quark
observables as outputs from the model for these values. The
mapping from inputs to outputs can then be used to train a set
of Gaussian process emulators, which act as a fast surrogate
model of our Langevin model and are able to predict the
output for any arbitrary input point in the parameter space.
A Markov chain Monte Carlo (MCMC) random walk through
the parameter space is then performed in order to calibrate the
model parameters on the experimental data. After the MCMC
equilibrates, we obtain the posterior distributions of the input
parameters and thus the posterior estimate of the parametrized
diffusion coefficient.

A. Training data preparation

Over the past few years, significant progress has been made
related to the measurement of heavy flavor observables, such
as yields and/or flow cumulants of heavy flavor mesons, single
electrons from heavy flavor hadron semileptonic decays, heavy
flavor tagged jets, quarkonium yields, spectra, elliptic flow, etc.
However, those data sets differ greatly regarding the statistical
and systematic uncertainties and it is therefore not feasible to
combine all of them for our current analysis. For this study, we
only focus on theD mesonRAA andv2, which are very sensitive
to the interaction mechanics between heavy quarks and the
medium. These have been measured in three different systems
at RHIC and the LHC: Au-Au collisions at

√
sNN = 200 GeV,

Pb-Pb collisions at
√

sNN = 2.76 TeV, and Pb-Pb collisions
at

√
sNN = 5.02 TeV. Table I summarizes the measurements

and kinematic-centrality cuts of the observables that have been
used.

To illustrate the degree to which the model’s calculation are
affected by the particular form of the temperature and momen-
tum dependence of the diffusion coefficient, we first sample
60 design points (X̃ = (x1, . . . ,x60)T ,xi = (α,β,γ )T ) in the
parameter space (the tilde symbol in x̃,ỹ represents the training

TABLE II. Prior range and description for the parameters that
determine the diffusion coefficients.

Parameter Description Range

α Ds2πT at Tc 0.1–7.0
β Slope of (Ds2πT )linearabove Tc 0–5.0
γ Ratio between Dlinear

s andDpQCD
s 0.0–0.6

datasets, whose outputs are calculated from the physical model;
it is used to distinguish the predicted datasets, which are later
obtained from emulators and labeled with the star symbol in
x∗,y∗). Those design points are semirandomly sampled in the
three-dimensional parameter space using a Latin hypercube
algorithm, which aims at spreading the samples evenly across
all possible values [66], and therefore, a small amount of
samples O(10p) is sufficient to train the Gaussian process
emulators to interpolate the p-dimensional parameter space.
The parameter space is deliberately chosen to be wide enough
in order to cover the full range of likely values and is listed in
Table II. Figure 3 visualizes the uniform distribution the initial
design points, projected in the (α,β) plane.

For each collision system at each collision energy, we
generate 5000 minimum bias hydro events, and for each hydro
event, heavy quarks are oversampled to reduce the theoretical
statistical uncertainty at each design points. The heavy meson
observables are then calculated as the following: The events
are first binned into different centrality classes according to the
final-state charged hadron multiplicity Nch at midrapidity. The
D-meson selection is based on the corresponding experimental
kinematic cuts. In order to calculate the nuclear modification
factor RAA, a proton-proton collision reference is needed. It is
calculated using a heavy quark FONLL distribution followed
by a fragmentation process performed by PYTHIA, and the D-
meson yields in the proton-proton reference are compared with
experimental data in Fig. 4. For the calculation of D-meson
elliptic flow, we try to match the experimental methods as
far as possible; therefore for the Au-Au collision and Pb-Pb
collision at 2.76 TeV, an event-plane (approximated by the
initial participant plane) method is used, while for the Pb-Pb
collision at 5.02 TeV, the two-particle cumulant method is used,
though little difference has been noticed for the two different
methods [68,70]. In total, there are 69 experimental data points
to calibrate against.

TABLE I. D-meson variables to be compared between model calculation and experimental measurements.

Experiment Variables Kinematic cut Centrality Ref.

AuAu@200 GeV RAA(pT) 6 pT bins from 2 to 8 GeV/c, |y| < 1 0–10 STAR [67]
v2(EP)(pT) 8 pT bins from 1 to 7 GeV/c,|y| < 1 0–80 STAR [68]
v2(EP)(pT) 8 pT bins from 1 to 7 GeV/c,|y| < 1 10–40

PbPb@2.76 TeV RAA(npart) 6 centrality bins, 5 < pT < 8 GeV/c, |y| < 0.5 0–10, 10–20,..., 40–50, 50–80 ALICE [69]
RAA(npart) 6 centrality bins, 8 < pT < 16 GeV/c, |y| < 0.5 0–10, 10–20,..., 40–50, 50–80
v2(EP)(pT) 6 pT bins from 2 to 16 GeV/c, |y| < 0.8 30–50 ALICE [71]

PbPb@5.02 TeV RAA(pT) 10 pT bins from 3 to 36 GeV/c, |y| < 0.5 30–50 ALICE [70]
v2{2}(pT) 11 pT bins from 1 to 40 GeV/c, |y| < 1 10–30 CMS [72]
v2{2}(pT) 8 pT bins from 1 to 40 GeV/c, |y| < 1 30–50
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FIG. 3. The 60 design points X̃ generated by the Latin hypercube
algorithm, projected in the (α,β) dimensions. The flat histograms on
the edge show an uniform prior distribution of the parameters.

Figure 5 compares the 60 sets of model calculation with
the experimental data (black dots with error bars). We can see
that the model’s outputs span a wide range in observable space
as the input parameters have been randomly distributed in the
parameter space. These input X̃n×p and output Ỹn×m matrices
(where n = 60 is the number of input parameter points, p =
3 is the dimension of input parameters, and m = 69 is the
dimension of output at each of the input point) will then be
used to train the Gaussian process emulators.

B. Gaussian process emulator

In order to calibrate our parameters, a random walk through-
out parameter space will be performed, where each step is
accepted or rejected according to the relative likelihood. Taking
a random walk throughout the three-dimensional parameter
space requires O(1000) steps and the number increases expo-
nentially if we try to include more parameters. At each step
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FIG. 4. Proton-proton reference spectrum calculated by
FONLL+PYTHIA, used as the reference spectra in order to calculate
D meson RAA. The experimental results denoted total D meson are
the sum of D0, D+, and D∗+ data from the ALICE Collaboration.

one needs to generate a sample of events and calculate the
model’s output for the observables in order to evaluate the
likelihood and take action for the next step. Given the amount
of computational time required to evaluate the likelihood at
one point in parameter space, such a method is not feasible.
To overcome this difficulty, a set of emulators is used to
function as a fast surrogate model that can predict the physical
model’s output at any arbitrary point in the parameter space. In
this study, we construct the Gaussian process (GP) emulator,
which is an mapping from an n-dimensional input space to a
normal distributed output. It not only interpolates and predicts
the model output after being trained, but also provides the
uncertainties of its prediction. More details of the GP emulator
can be found in Ref. [73]. Here we will briefly summarize the
basic idea of GP emulator.

Consider a physical model (e.g., our improved Langevin
framework), whose output of a physical process is determined
by a set of input parameters y = f (x). We suppose that the
physical model has been evaluated at n input points in the p-
dimensional parameter space (the input parameter matrix X̃ =
(x1, . . . ,xn)T ). At each input point, the model has one output
yi = f (xi) and yields to an n-dimensional output vector ỹ:

X̃ =
⎛
⎝x11 ... x1p

... ...
xn1 ... xnp

⎞
⎠ ⇒ ỹ =

⎛
⎝ y1

...
yn

⎞
⎠. (10)

The output ỹ can be viewed as a conditioned Gaussian
process which is a collection of normal distributions:

ỹ = GP(X̃) ∼ N [μ(X̃),KX̃,X̃], (11)

where μ(X̃) is the mean vector of each input, and

KX̃,X̃ =

⎛
⎜⎝

σ (x1,x1) · · · σ (x1,xn)
...

. . .
...

σ (xn,x1) · · · σ (xn,xn)

⎞
⎟⎠ (12)

is the covariance matrix. It is constructed by the covariance
function σ (x,x′) and characterizes the correlation between
different inputs.

In order to predict the model output y∗ at any other input
x∗ (the star symbols are used to represent the datasets whose
outputs are predicted from the emulators), one can write the
joint multivariate normal distribution:(

y∗
ỹ

)
∼ N

[(
μ(x∗)
μ(X̃)

)
,

(
K∗,∗ K∗,X̃

KX̃,∗ KX̃,X̃

)]
. (13)

K∗,∗, K∗,X̃, and K∗,X̃ have the same form as Eq. (12) but with
different x. The distribution of a predictive output y∗ can be
solved by

y∗ ∼ N (μ,K), (14)

μ = μ(x∗) + K∗,X̃K−1
X̃,X̃

[ỹ − μ(X̃)], (15)

K = K∗,∗ − K∗,X̃K−1
X̃,X̃

KX̃,∗. (16)

With the knowledge of a training dataset containing a set of
inputs (X̃) and outputs (ỹ), and the covariance matrix (K), one
is able to solve the equations and calculate the distribution for
any other input x∗.
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FIG. 5. Improved Langevin model calculation of D-meson observables, compared to experimental data spanning the full range of the
explored parameter space (i.e., the “prior”). Each frame contains 60 lines, corresponding to the 60 design points of the analysis. From top to
bottom: (top) Au-Au collisions at 200 GeV: D meson RAA(pT) in the 0–10% centrality bin and v2(pT) in the 0–80%, 10–40% centrality bins;
(middle) Pb-Pb collisions at 2.76 TeV: D meson RAA as function of centrality at high momentum range 5 < pT < 8 GeV/c and 8 < pT <

16 GeV/c, v2 as function of pT in 30–50% centrality bin; and (bottom) Pb-Pb collisions at 5.02 TeV: D meson RAA(pT) in 30–50% centrality
bin and v2(pT) in 30–50% and 10–30% centrality bins. Experimental data are measured by STAR [67,68], ALICE [69–71], and CMS [72].

The inference of the Gaussian process is determined by
the covariance function σ (x,x′). Variance choice can be made
for the covariance function, based on our knowledge and
assumption of the input parameters. In this study, we use a
popular squared-exponential function with a noise term:

σ (x,x′) = σ 2
G exp

[
−

m∑
k=1

(xk − x ′
k)2

2l2
k

]
+ σ 2

n δx,x′ . (17)

The squared-exponential covariance function confirms our
intuition that the inputs in the parameter space that are close
to each other are highly correlated, while those far away are
uncorrelated, and the correlation strength between pairs of
inputs is controlled by the hyperparameter (σG,lk). With this
covariance function, the Gaussian process is very smooth as
the covariance is infinitely differentiable. In this study, the

hyperparameters (σG,lk,σn) are determined in a manner of
“best-fit parameters” which maximizes the parameter likeli-
hood function [74].

C. Principle component analysis

A Gaussian process is essentially a mapping from an input
vector to a scalar output. The output from our Langevin mode
is an m-dimensional vector (m = 69):

X̃ =
⎛
⎝x11 ... x1p

... ...
xn1 ... xnp

⎞
⎠ ⇒ Ỹ =

⎛
⎝y11 ... y1m

...
yn1 ... ynm

⎞
⎠. (18)

One can construct a GP emulator for each of the observables.
However, as the elements in the output are highly correlated,
it is useful to reduce a high-dimensional and correlated output
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FIG. 6. Cumulative variance explained by the first m′ principal
components. The first few PCs are able to explain most of the total
variance.

to lower dimensional and orthogonal principal components
(PCs), which are the linear combinations of the output ob-
servables and provide information on the most important
components of the data set.

In practice, the training output Ỹ is standardized (by
subtracting the mean and divided by the standard deviation
for each observable) and decomposed via the singular value
decomposition (SVD):

Ym×n = Um×nSn×nV
T
n×n. (19)

The columns of U (V T ) are the left (right) singular vector of
Y , which are sets of orthogonal eigenvectors of YY T (Y T Y ).
The output matrix Y can then be transformed into principal
component space:

Z = √
nYV. (20)

S is the diagonal matrix whose diagonal elements λi,(i=1,··· ,n)

are the squared roots of the eigenvalues of Y T Y . The eigen-
values λi are proportional to the variance that contributed the
ith PC and are sorted into descending order. The cumulative
variance explained by the first m′th PCs (m′ � m) then equals

CV (m′) =
∑m′

i=1 λi∑m
i=1 λi

. (21)

As shown in Fig. 6, the first few PCs are sufficient to explain
most of the variance of the model outputs. In this study, we
use eight PCs and for each PC a GP emulator is constructed,
which is a significant reduction from the original 69 GPs
that mapped directly onto the number of data points in the
calibration dataset.

Once the principal component z has been determined, we
obtain the outputs in the physical observable space by the
inverse transformation:

y = 1√
n

zV. (22)

In order to test the emulators’ ability to predict the models’
output, we generate another 15 sets of test inputs and perform
the full Langevin model calculation at each of these test inputs.
Meanwhile, the trained GP emulators also predict the output
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FIG. 7. Validation of the Gaussian emulators for Pb-Pb collisions
at 2.76 TeV. Each point represents the emulator’s predicted value
with respect to the model calculated (true) value. (Left) Prediction
for high-momentum D meson RAA at different centrality bins; (right)
prediction for D meson v2 at 30–50%.

for each of these input parameters. Figure 7 compares the
prediction from the emulators to the calculation from the
improved Langevin model for Pb-Pb collisions at 2.76 TeV.
For each test input point, 18 observation of RAA and v2 are
calculated at different centralities and pT bins. The black
lines are the y = x reference, and each dot represents the
emulators’ prediction with respect to the models’ calculation.
As visualized in Fig. 7, the GP emulators in general work very
well. We should note that the emulators provide the uncertainty
for each prediction; therefore the error bars shown in the figure
correctly capture the uncertainties underlying in the emulation.

D. MCMC calibration

According to the Bayes theorem, the probability for the
true parameter x given the experimental data yexp and observed
(X̃,Ỹ ) is proportional to the likelihood of the parameter x and
its prior distribution:

P (x|X̃,Ỹ ,yexp) ∝ P (X̃,Ỹ ,yexp|x)P (x), (23)

where P (x|X̃,Ỹ ,yexp) is the posterior distribution of parame-
ters x given the observation of (X̃,Ỹ ,yexp), which is our main
results from this analysis; P (X̃,Ỹ ,yexp|x) is the likelihood of
observing (X̃,Ỹ ,yexp) given the parameter x; and P (x) is the
prior distribution of parameter x.

Our goal here is to find the posterior probability distribution
of the parameters P (x|X̃,Ỹ ,yexp), which would optimally
reproduce the experimental data using our improved Langevin
model. In order to determine the posterior distribution we
perform a MCMC random walk in parameter space following
the Metropolis-Hasting algorithm [75]. During the random
walk, each step is accepted or rejected according to the
relative likelihood. Assuming a Gaussian structure for the
uncertainties, the log likelihood function has the following
form as a function of the output y:

log P (X̃,Ỹ ,yexp|x) = −1

2
(y − yexp)T 	−1(y − yexp)

− 1

2
log |	| − m

2
log 2π. (24)
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FIG. 8. Emulator predictions for 200 random input parameters sampled from the posterior distributions. This figure is similar to Fig. 5 but
with the input parameters chosen from the posterior distribution, and the outputs are predictions from the GP emulators.

	 is the covariance matrix which accounts for all quan-
tifiable uncertainties. There are various contributions to these
uncertainties, such as the emulator prediction uncertainty, the
experimental statistic and systematic uncertainties, and the
physical model statistic and systematic uncertainties. Identi-
fying all these uncertainties can be very difficult, especially
for systematic uncertainties which in general may have cor-
relations among each other. For the current analysis, we only
consider experimental statistical and uncorrelated systematic
uncertainties:

	 = diag
(
σ 2

stat

) + diag
(
σ 2

sys

) + diag
(
σ 2

GP

)
, (25)

where σstat is the experimental statistical error, σsys is the ex-
perimental systematic error (uncorrelated) for each observable,
and σGP is the theoretical uncertainty from Gaussian process
emulator predictions. At the current stage, all the uncertainties
are assumed to be uncorrelated for the purpose of simplicity
as well as maximizing the overall constraint.

IV. RESULTS

A. Posterior distributions

To evaluate the success of the calibration, 200 points
in parameter space are randomly chosen from the equili-
brated MCMC trace and evaluated by the Gaussian emulators.
Figure 8 visualizes the corresponding observables and com-
pares them with the experimental data. The presentation is
similar to Fig. 5 but with calibrated parameters. For each plot,
two posterior outputs are presented, each one corresponding to
an independent Bayesian analysis but calibrated on different
experimental datasets. The red lines correspond to the Bayesian
analysis calibrated on all the output observables listed in
Table I, whereas the yellow, green, and blue lines correspond
to calibrations on data of a single beam energy. We find that
after calibration, our improved Langevin approach is capable
of describing the experimental data reasonably well. The
biggest deviations are found for a few RAA points at very
peripheral centrality and low pT: Peripheral collisions are not
well described by our hydrodynamical background. Also, the
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FIG. 9. Posterior distributions of the diffusion coefficient param-
eters (α,β,γ ) for each individual collision system. The diagonal
plots are the histogram of the MCMC samples with other parameters
integrated out. The off-diagonal plots display the joint distributions
between pairs of parameters. The three different colors refer to the
three different analyses that calibrate on three different sets of data.

modeling of hadronization in the low-pT region is challenging
due to significant nonperturbative effects.

The main results of a Bayesian analysis are the posterior
probability distributions of the input parameters (α,β,γ ). The
posterior distributions are given in Figs. 9 and 10, where the
results of five independent Bayesian analyses are presented
as histograms. Each analysis follows the same procedure
described in the previous few sections but calibrates on dif-
ferent sets of experimental data and is shown using different
colors. For example, in Fig. 9 the blue histograms represent
the distributions calibrated on the 5.02-TeV Pb-Pb collision
data, the green ones represent the calibration on the 2.76-TeV
Pb-Pb data, and the yellows ones represent the calibration on
the 200-GeV Au-Au data. In Fig. 10, the magenta histogram
corresponds to the analysis using the data from two collision
energies at the LHC simultaneously, while the red ones denote
the analysis using all the observables across three different
systems listed in Table I. In each figure, the histograms along
the diagonal are the marginal posterior probability distributions
of each parameter (α,β,γ ), with all the other parameters
integrated out. The off-diagonal contour plots are the joint
distributions which show the correlations among pairs of the
parameters.

Figures 9 and 10 indicate that parameter α is well con-
strained, peaking around 1.5–2.0 for all analyses. This parame-
ter determines the diffusion coefficient Ds2πT at 0 momentum
near Tc. The slope parameter β is poorly constrained, although
a negative correlation between α and β is observed. Parameter
γ controls the ratio between the linear component and the
pQCD component. As shown in Fig. 9, the distribution for γ
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FIG. 10. Posterior distributions of the diffusion coefficient param-
eters (α,β,γ ) for the analysis combining all three collision systems.
The red color refers to the result that combines only the LHC energies,
PbPb collisions at 2.76 and 5.02 TeV; the magenta color refers to the
analysis combining all three energies at RHIC and LHC.

extracted from Au-Au collisions at 200 GeV favors a slightly
smaller value than that from the LHC energies, indicating a
stronger contribution from the linear component and a slower
convergent to the pQCD results in Au-Au collision. For the
combined analysis of the LHC energies and all three energies,
γ peaks around 0.25–0.3. We conclude that for momenta
range between 10 and 20 GeV/c, the linear component and
pQCD component of the diffusion coefficient are comparable
to each other and the pQCD contribution to the diffusion
coefficient will only dominate at momenta above 20 GeV. The
momentum range is approximated using 1/γ 2, as γ 2p = 1
is the momentum region where linear and pQCD component
contributes equally.

The width of the posterior distributions is affected by the
uncertainty we have applied in the analysis. As the uncertainty
is smaller, the constraint is stronger, and therefore the width
of the posterior distributions narrows. This may explain why
among the three different collision systems, the posterior
distributions from 5.02-TeV Pb-Pb collisions generally show
a smaller width and the combined calibration is mostly driven
by the higher precision data from Pb-Pb 5.02-TeV collisions.
Higher precision experimental data and a better understanding
of the theoretical uncertainties will yield a significantly better
constraint on the parameters.

B. Heavy quark diffusion coefficient

Having established the posterior distribution of the param-
eters α,β, and γ we can now utilize the parametrization of
the spatial diffusion coefficient Eq. (9) to extract the posterior
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FIG. 11. Posterior results of the spatial diffusion coefficient from the Bayesian analysis calibrated on the combined data set from three
different systems at RHIC and the LHC. (Top) The spatial diffusion coefficient Ds2πT as a function of temperature at fixed momentum (p = 0,
p = 10, and p = 50 GeV/c); (bottom) the spatial diffusion coefficient Ds2πT as a function of momentum at fixed temperature (T = 154,
T = 350, and T = 550 MeV). The gray area refers to the prior range before calibration, while the red region refers to the posterior range after
calibrating on experimental data. The black dashed line refers to the diffusion coefficient from a leading-order pQCD calculation; the red lines
are the parametrized diffusion coefficient using the median value of the posterior parameter distributions.

range of this quantity. Figure 11 displays the estimate of the
spatial diffusion coefficient, as a function of temperature and
momentum respectively. The gray area represents the prior
range before the calibration, while the red area is the posterior
estimate extracted from the combined analysis with 90%
credibility. Here we use the result of the combined analysis
that calibrates on all the three systems. We note, however,
the posterior ranges of Ds2πT do not differ much between
different analysis, even though the posterior distributions of
the parameters (α,β,γ ) show some deviation. The dashed
black lines represent the diffusion coefficient calculated in
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FIG. 12. Comparison of the heavy quark diffusion coefficients
across multiple approaches available in the literature. (Left) Spatial
diffusion coefficient at zero momentum Ds2πT (p = 0). (Right)
Momentum diffusion coefficient q̂/T 3 at p = 10 GeV.

leading-order pQCD. The solid red lines depict the diffusion
coefficient using the median value of the parameters from the
posterior distributions.

On the upper panel of Fig. 11, the diffusion coefficient is
plotted as function of temperature for three different values of
the heavy quark momentum (p = 0 GeV/c, p = 15 GeV/c,
and p = 50 GeV/c): For p = 0 GeV/c, the diffusion coef-
ficient is solely determined by the linear component, with
the Ds2πT (p = 0) ∼ 1–3 around Tc, (which is the range
of parameter α for 5–95% percentiles). The temperature
dependence of Ds2πT is not very remote from a simple linear
relationship with positive slope. In addition, we notice that
the 90% credibility range suffers the least uncertainties in a
temperature range aroundT ∼ 200–250 MeV, which we argue,
is approximately the average temperature that heavy quarks
experience during their propagation path. At higher temper-
ature, the posterior range of the spatial diffusion coefficient
broadens. A likely reason for this trend is due to the short
amount of time the bulk matter retains this high temperature
at the beginning of the system’s evolution. As the system
expands quickly, it rapidly cools, leaving only a short period
of time for the heavy quarks to interact with the medium at that
temperature, and therefore less information can be obtained at
high temperatures.

On the lower panel of Fig. 11, we explore the momentum
dependence of the diffusion coefficient for three different
temperatures (T = 150, 350, and 550 MeV). As the heavy
quark momentum increases, the uncertainties of the posterior
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FIG. 13. D meson v3 predicted by the improved Langevin model at Au-Au collisions at 200 GeV and Pb-Pb collisions at 5.02 TeV,
compared to experimental data measured by STAR [78] and CMS [72]. The input parameters (α,β,γ ) were set to the median value of the
posterior distribution for the Au-Au at 200-GeV dataset (AuAu200 median), Pb-Pb at 5.02-TeV dataset (PbPb5020 median), the combined
LHC energy dataset (LHC-median), and the combined data set for all three systems (all-median).

range decrease. At high momentum, the diffusion coefficient
reflects that of the pQCD calculation, which is obtained from
a 2 → 2 process. The only freedom left in the parametrization
is the prefactor (γ 2p)2

1+(γ 2p)2 , which varies only a little for high
momenta. In the low-momentum region, the parameterized
diffusion coefficient shows completely different behavior from
the pQCD calculation, which can be only the result of the non-
negligible contribution from nonperturbative effects, which are
clearly needed in order to obtained a realistic description of the
heavy quarks at low and intermediate momenta.

In Fig. 12, we compare our estimate of the diffusion
coefficient with the coefficient used or calculated by a number
of other models in the market [23,27–30,76] as well as with
lattice QCD calculations [31,32]. The left frame shows the
temperature dependence of the spatial diffusion coefficient at
0 momentum Ds2πT (p = 0). Our analysis is consistent with
lattice QCD calculations within the uncertainties currently
inherent in lattice QCD calculations. Although the diffusion
coefficients used in different models are rather different, they
all have a minimum near Tc with a value range of Ds2πT (p =
0) = 1–7.

In the right frame, we compare our charm quark transport
coefficient q̂ at p = 10 GeV/c with the results from the
LBT model and the JET Collaboration [30,76]. The transport
coefficient q̂ is roughly comparable with those two. A detailed
investigation on the causes of the differences in predicted or
calculated transport coefficients by the different approaches
is of great interest but beyond the scope of this work. We
should note that in order to make a valid apple-to-apple

comparison among different models, especially for those
transport approaches that depend on the surrounding matter,
it would be essential for the heavy quarks to propagate in
the same QGP medium evolution, which is not the case for
this particular comparison. For example, the PHSD group [23]
explores a nonequilibrium microscopic description of the bulk
evolution, the Catania group [27] describes the medium by
solving a relativistic Boltzmann equation for light partons,
while the others use a hydrodynamic description. Additionally,
the properties of the medium and the choice for the equation
of state will affect the extraction of the diffusion coefficients
as well.

C. Model validation: Triangular flow

The robustness and quality of our description of in-medium
heavy-quark dynamics and our extraction of the heavy-quark
diffusion coefficient can be tested by making predictions of
observables that have not been part of the calibration. Here,
we focus on measurements of higher order flow cumulants for
D mesons, in particular v3, which has been predicted as further
valuable HQ observables in Ref. [77]. First measurements of
the D meson v3 have recently become available by the CMS
and STAR collaborations [72,78]. We calculate the D meson
v3 in PbPb collisions at 5.02 TeV using the median values of
α,β, and γ as determined by our calibration and compare our
results to experimental measurements in Fig. 13. Each frame
contains three results from the improved Langevin model cal-
culation stemming from our different calibrations: utilizing the
200-GeV Au-Au data, utilizing the 5.02-TeV Pb-Pb data,
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utilizing both LHC data sets, and utilizing the combined
datasets from all three collision energies and systems. As
we have mentioned before, the posterior diffusion coefficients
using the median values do not differ much from each other
in the different analyses. The robustness of the analysis has
been confirmed in Fig. 13, where we show that the D meson
v3 in Au-Au collisions and in all three measured centrality bins
in Pb-Pb collisions as predicted by our calibration agrees very
well with the data, irrespective of the data set used to determine
the diffusion coefficient.

V. CONCLUSION

In summary, we have applied state-of-the-art Bayesian
methodology to systematically extract the heavy quark diffu-
sion coefficient from a model-to-data analysis of our improved
Langevin model for the in-medium heavy quark evolution. By
calibrating to the experimental data of D meson RAA and v2

measured in Au-Au collisions at 200 GeV and Pb-Pb collisions
at 2.76 and 5.02 TeV, we are able to extract a posterior range
of the diffusion coefficient. Our analysis is compatible with
lattice QCD calculations within uncertainties that are inherent
in the lattice calculations. With the extracted parameters, our
improved Langevin model has been shown to be able to
reproduce the experimental data of RAA and v2 at both RHIC
and the LHC simultaneously, and is able to describe well the
observables that are not included in the calibration, such as D
meson v3.

Our parametrization of the spatial diffusion coeffi-
cients combines a linear temperature-dependent component—
accounting for a nonperturbative contribution—and a pQCD
component—calculated from a leading-order pQCD approach
with a fixed coupling of αs = 0.3. It smoothly interpolates

between the linear component and the pQCD component and
converges to the pQCD calculation in the large momentum
limit. The spatial diffusion coefficient at zero momentum
Ds2πT (p = 0) varies between 1 and 3 near Tc and exhibits
a positive slope for its temperature dependence above Tc. Even
at momenta in the range of 10–20 GeV/c, the nonperturbative
contribution cannot be ignored.

In future work, we shall improve our treatment of the differ-
ent sources of uncertainty, both theoretical and experimental,
that can affect the outcome of our analysis. In addition, we plan
to improve our physics model by taking the pre-equilibrium
evolution of the heavy quarks explicitly into account [79] and
to apply the model-to-data framework to different dynamical
models of heavy quark in-medium evolution, for example,
a comparison between Langevin and Boltzmann dynamics.
Moreover, this study serves as the first application of a
Bayesian model-to-data analysis to the heavy flavor dynamics
in heavy-ion collisions and we intend to expand its application
to the study of other rare probes as well.
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