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In ultrarelativistic heavy-ion experiments, one estimates the centrality of a collision by using a single observable,
say n, typically given by the transverse energy or the number of tracks observed in a dedicated detector. The
correlation between n and the impact parameter b of the collision is then inferred by fitting a specific model
of the collision dynamics, such as the Glauber model, to experimental data. The goal of this paper is to assess
precisely which information about b can be extracted from data without any specific model of the collision. Under
the sole assumption that the probability distribution of n for a fixed b is Gaussian, we show that the probability
distribution of the impact parameter in a narrow centrality bin can be accurately reconstructed up to 5% centrality.
We apply our methodology to data from the Relativistic Heavy Ion Collider and the Large Hadron Collider. We
propose a simple measure of the precision of the centrality determination, which can be used to compare different
experiments.
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I. INTRODUCTION

The impact parameter b of an ultrarelativistic nucleus-
nucleus collision is a crucial quantity. It determines the size
and transverse shape of the quark-gluon matter formed in the
collision. Central collisions, at small b, yield large and round
interaction regions, while peripheral collisions, characterized
by large values of impact parameter, yield smaller interaction
regions with a pronounced elliptical anisotropy. The centrality
dependence of various observables provides, then, insight
into their dependence on the global geometry. The energy
loss of high-momentum particles [1,2] or jets [3] is larger in
central collisions, because it increases with the length of the
path traversed by the particles inside the quark-gluon plasma.
By contrast, elliptic flow [4,5] originates from the elliptical
shape of the nuclear overlap region and is larger in peripheral
events [6].

The impact parameter of a single collision, even though it
is a perfectly well-defined quantity at ultrarelativistic energies
(in the sense that the quantum uncertainty is negligible), is
not directly measurable. In experiments, impact parameter
is estimated by using a single observable, which we denote
generically by n [7]. Depending on the experiment, n is either
the number of particles (multiplicity) in a given detector [8–11]
or the transverse energy deposited in a calorimeter [12,13]. The
idea is that collisions with a small impact parameter produce
on average larger values of n. However, the relation between
n and b is not one to one, and the variation of n with b is
not known a priori. This relation is usually inferred from a
microscopic model of the collision, such as HIJING [14], or
a two-component Glauber model [15] coupled with a simple
model of particle production. The parameters of these models
are tuned to reproduce the observed probability distribution
of n. While these models offer a convenient parametrization,

they may not describe the actual dynamics of a collision. This
is suggested by the fact that different sets of parameters must be
used for different colliding systems, and by the observation that
the two-component Glauber model is disfavored by analyses
of U + U collisions [16,17].

The goal of this article is to assess which information about
the actual values of impact parameter can be extracted from
the measured distributions of n, with as little theoretical bias as
possible. In particular, as we shall see in the following sections,
we do not need to introduce the concept of “participant
nucleon,” which is a key ingredient of many microscopic
models, but not a measurable quantity.

The term centrality originally refers to a classification
according to impact parameter. In experiments nowadays,
however, it refers to the classification of the collisions in
terms of the parameter n. To avoid confusion, we call b

centrality the centrality determined with respect to impact
parameter. The corresponding definitions are recalled in Sec. II.
In Sec. III, we show that a correspondence between n and b

can be drawn under the sole assumption that fluctuations of
n for a given impact parameter are Gaussian. This Gaussian
is characterized by a mean n̄ and a width σ , which both
depend on impact parameter. We test the validity of this
assumption in Sec. III by using model calculations. We argue
that data allow us to reconstruct unambiguously the full impact-
parameter dependence of the mean n̄, and the value of the
width σ for central collisions, and we explain how this can
be done in practice. In Sec. IV, we validate the proposed
procedure by using model calculations, where the impact
parameter is known. We show that the fluctuations of impact
parameter at a fixed centrality can be unambiguously recon-
structed, and we apply this method to experimental data in
Sec. V.
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FIG. 1. Histograms of the probability distribution of n measured
by different experiments. Dashed line is STAR data on Au + Au
collisions at

√
s = 130 GeV [16]. The other curves show LHC data on

Pb + Pb collisions at
√

s = 2.76 TeV. Circles are ALICE data [11].
Dot-dashed line is ATLAS data [13]. Solid line is CMS data, extracted
from Fig. 2 of Ref. [18]. The horizontal axis of each histogram has
been rescaled by the value of n at the knee (see text).

II. TWO DEFINITIONS OF CENTRALITY

Collisions can be classified according to their impact param-
eter b. We define the centrality as the cumulative probability
distribution of b:

cb ≡ 1

σinel

∫ b

0
Pinel(b

′)2πb′db′, (1)

where σinel is the inelastic nucleus-nucleus cross section and
Pinel(b) is the probability that an inelastic collision occurs
at impact parameter b. We name cb the b centrality of the
collision, to distinguish it from the usual centrality defined in
heavy-ion experiments, to be discussed below. The probability
distribution of cb is flat by construction: P (cb) = 1 for 0 <
cb < 1. Neither b nor cb can be measured experimentally. They
are known only in model calculations.1

In experiments, collisions are instead classified according
to a single observable n. The STAR Collaboration [16] defines
n as the number of tracks of charged particles detected
in the pseudorapidity window −0.5 < η < 0.5. The ALICE
Collaboration [11] uses the number of hits in two scintillators
covering the windows −3.7 < η < −1.7 and 2.8 < η < 5.1.
The ATLAS and CMS Collaborations use the energy deposited
in two forward calorimeters with symmetric acceptance win-
dows: 4.9 < |η| < 3.2 at ATLAS [13], and 3.0 < |η| < 5.2 at
CMS [18].

1The results in this paper use the variable cb, but one can easily
express them in terms of b by using the change of variables cb =
πb2/σinel. The value of σinel needs to be taken from either data or
some collision model.
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n

FIG. 2. Shaded areas correspond to histograms of the probability
distribution of n for fixed impact parameter in Pb + Pb collisions
at

√
s = 2.76 TeV in the TRENTo model [17]. The values b = 0, 5,

8, 12 fm were used, which correspond to cb = 0, 10%, 26%, 58%,
respectively. We generated 5 × 105 events for each value of b. Solid
lines are Gaussian fits. The quantity n is in arbitrary units.

Figure 1 displays the probability distribution of n, P (n),
measured by all these experiments.2 Since different detectors
have different acceptance and efficiency, and n can refer to
a multiplicity or an energy, we rescale the value of n by its
value at the knee, to be defined precisely in Sec. III. Once
rescaled, ALICE, ATLAS, and CMS data are almost identical.
STAR data differ in the tail, which is twice as broad.3 This
difference can be ascribed to larger statistical fluctuations of
multiplicity at RHIC. The pseudorapidity window used for
the determination of centrality by the LHC collaborations
is significantly larger than the window used by the STAR
Collaboration, and the multiplicity per unit pseudorapidity is
also smaller by a factor close to two at RHIC than at the LHC
[19]. Therefore, the STAR detector observes fewer particles
than the detectors at the LHC, which results in an increase of
the relative statistical fluctuations.

The cumulative distribution of n defines the experimental
measure of centrality, which we denote by c. It is defined by

c ≡
∫ ∞

n

P (n′)dn′. (2)

Note that the centrality classification is in ascending order
for b and in descending order for n, which explains the
different integration limits in Eqs. (1) and (2). The probability
distribution of c is also flat by construction: P (c) = 1 for
0 < c < 1.

2Data on P (n) collected by the PHENIX Collaboration can be found
in Ref. [10].

3We use uncalibrated 130 GeV STAR data [9] rather than calibrated
200 GeV data [16]. We have checked that, once rescaled, the two
distributions are very similar. The advantage of 130 GeV data is that
errors are provided, so that we are able to assess the quality of our
fits, as we shall see in Sec. V.
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FIG. 3. Circles show P (n) obtained from the TRENTo model of
initial conditions. Dashed line shows fit of P (n) using Eqs. (3) and
(6) in scenario (A). The vertical line indicates the position of the knee
(see Table I). The quantity n is in arbitrary units.

We have thus defined two measures of the centrality: cb and
c, depending on whether one sorts events according to b or to
n. If the relation between n and b is one to one, both measures
coincide, c = cb. In practice, one observes a range of values
of n at a given value of b. The joint distribution of n and b is
usually inferred from a specific model of the collision [14,15].

III. RELATING CENTRALITY TO b CENTRALITY

Here we simply assume that the probability of n for fixed b
is Gaussian [7]:

P (n|cb) = η(cb)

σ (cb)
√

2π
exp

(
− [n − n̄(cb)]2

2σ (cb)2

)
, (3)

where both the mean n̄ and the width σ depend on the impact
parameter or, equivalently, on cb, and

η(cb) = 2

[
1 + erf

(
n̄(cb)

σ (cb)
√

2

)]−1

(4)

TABLE I. Fit parameters obtained from fitting P (n) in the
TRENTo calculation (Fig. 3). The direct calculation (first column)
is the result obtained by binning the results in impact parameter
(symbols in Fig. 4), and fitting the resulting n̄(cb) using Eq. (7) (see
text).

Direct Fit (A) Fit (B)
σ (cb) ∝ √

n̄(cb) σ (cb) = const.

nknee 181.49±0.13 182.03 181.91
σ (0) 7.79±0.04 8.03 8.09
a1 4.36±0.02 4.41 4.48
a2 − 2.3±0.1 −2.4 −3.0
a3 4.8±0.1 4.9 6.5

normalizes the Gaussian to unity in the interval 0 < n <
+∞. Note that η(cb) is essentially equal to unity, except
for very peripheral collisions. We expect Eq. (3) to be a
good approximation in a large system because of the central
limit theorem: n is a multiplicity, or transverse energy, which
gets contributions from many collision processes which are
located at different points in the transverse plane and, therefore,
causally disconnected and independent.

It is useful to check this Gaussian approximation on a
model. The final-state observables used to define the collision
centrality (e.g., multiplicity or transverse energy) are, in the
hydrodynamic framework, proportional to the initial entropy
of the system. The initial entropy, then, corresponds to the
experimental n and is provided by models of initial conditions,
such as the TRENTo model of initial conditions, which we use
to simulate Pb + Pb collisions at

√
s = 2.76 TeV. The TRENTo

model is a parametric model in which the entropy deposition
is regulated by two parameters: p, which specifies the depen-
dence of entropy deposition on the thickness functions TA and
TB of the incoming nuclei, and a parameter k which governs the
width event-by-event fluctuations of the entropy produced by
each participant nucleon. For a given choice of p, the value of
k can be tuned to match the distribution of the multiplicity of a
given collision system [17]. We choose p = 0 (corresponding
to a total entropy proportional to

√
TATB in each event), and

k = 1.6. This setup allows us to capture accurately a wide range
of observables in Pb + Pb collisions at the LHC [20,21]. We
stress that our subsequent analysis of the experimental results
does not rely on whether this setup of TRENTo provides a good
description of data.

Figure 2 displays the distribution of total entropy in this
setup of TRENTo for different fixed values of impact parameter.
This plot shows that the Gaussian approximation is valid
in the model up to ∼60% b centrality. Around b = 12 fm,
the distribution of multiplicity extends down to the cutoff
n = 0, and small deviations from the Gaussian behavior start
to appear. For these reasons, we exclude the most-peripheral
collisions in the following analysis. This is also motivated by
the fact that fluctuations of n for large b are expected to be
large, and large fluctuations are in general non-Gaussian.

A crucial quantity which we will use throughout this work
is the position of the knee of the distribution of n. We define it
as the mean value of n at zero impact parameter:4

nknee ≡ n̄(0). (5)

The observed distribution of n, P (n), is eventually obtained by
integrating Eq. (3) over cb, i.e.,

P (n) =
∫ 1

0
P (n|cb)dcb. (6)

In this paper, we determine smooth functions n̄(cb) and σ (cb)
such that P (n) matches experimental data. This problem is

4An alternative definition [22] is to define nknee as the value of
n which minimizes the derivative dP (n)/dn; that is, the rightmost
inflection point of P (n) when plotted on a linear scale (as opposed to
the logarithmic scale of Fig. 1). Both definitions are equivalent in the
limit σ (cb) → 0.

014905-3



DAS, GIACALONE, MONARD, AND OLLITRAULT PHYSICAL REVIEW C 97, 014905 (2018)

0 1 2

170

180

190

cb [%]

n(
c b

)

direct calculation

− − reconstructed

n(c)

0 20 40 60 80 100
0

50

100

150

200

cb [%]

n(
c b

)

FIG. 4. Mean value of n versus b centrality. Circles show result
calculated directly by binning TRENTo results in cb. Dashed line
shows result reconstructed from the fit of P (n) alone. The inset shows
a zoom of the most-central collisions, where we compare n̄(cb) to n(c)
(dotted line).

underconstrained in the sense that one cannot determine two
unknown functions n̄(cb) and σ (cb) from a single function
P (n). We shall argue that one can only constrain the mean
n̄(cb) and the value of the width for central collisions σ (0).
Since the variation of σ with cb cannot be determined from
data alone, we test two different scenarios:

(A) σ (cb) = σ (0)
√

n̄(cb)/n̄(0);
(B) σ (cb) = σ (0).

The first scenario (A) assumes that the variance is propor-
tional to the mean, which would be true if n were the sum
of contributions from independent nucleon-nucleon collisions.
Scenario (B) is motivated by the observation that the width
of the histograms observed in Fig. 2 varies little between
b = 0 and b = 8 fm. We state that this is an artifact of the
Monte Carlo model, where particle production is essentially
determined by the participant nucleons. Since the number
of participant nucleons is bounded by the total number of
nucleons, fluctuations of n are consequently reduced by the
presence of this upper cutoff. There is, however, no deep
theoretical reason to believe that this particular feature of the
Monte Carlo models is realistic.

For each scenario, (A) or (B), we need a smooth function
n̄(cb) and a constant σ (0) such that P (n) defined by Eqs. (3)
and (6) fits experimental data. We use the following functional
form of n̄(cb), which guarantees positivity:

n̄(cb) = nknee exp
( − a1cb − a2c

2
b − a3c

3
b

)
. (7)

One could as well use other functional forms, requiring
the fitting function to be a smooth, positive, monotonically
decreasing function of cb, with no singularities in the interval
0 � cb < 1. We carry out a five-parameter fit to P (n) using

FIG. 5. Probability distribution of b centrality in a very narrow
centrality bin. Histograms correspond to direct calculation using
TRENTo. Lines show probability distributions of cb reconstructed
through Bayes’ theorem, Eq. (9). Solid and dashed lines correspond
to scenarios (A) and (B), respectively. The second panel corresponds
to n = nknee. Note that, for n � nknee (two uppermost panels), the most
probable value of cb is cb = 0%. Left of the knee, on the other hand,
the most probable value of cb is c [7], as is clearly visible in the two
lowermost panels. All the curves displayed in this figure have area
normalized to unity.
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Eqs. (3) and (6), with parameters given by nknee, a1, a2, a3,
and σ (0). To eliminate peripheral collisions from the fit, we
only use values of n above a cutoff nmin, which we specify in
each case.

IV. VALIDATION OF THE METHOD

We now validate this procedure of relating n to cb using
Monte Carlo simulations, where both b and n are known in
each event. We simulate Pb + Pb collisions at

√
s = 2.76 TeV

using the same setup of TRENTo as in Fig. 2, and again we
use the entropy of each event to construct the probability
distribution P (n). We generate 107 events. We determine cb

of each event by sorting events according to b, and c by sorting
them according to n. Symbols in Fig. 3 correspond to the
distribution P (n) from this Monte Carlo calculation.

We now apply the fitting procedure described in the previous
section to P (n). For scenario (A), we vary the lower cutoff
from nmin = 1.8 to nmin = 9.1, corresponding to centralities
c = 80% and c = 62%, and we find that the results of the fit are
stable. The dashed line in Fig. 3 displays the fit corresponding
to the larger value of nmin. The fit provides an excellent
description of P (n) in the model. For case (B), fluctuations
are larger and we use a larger cutoff, nmin = 36. Above the
cutoff, the two fits are indistinguishable in Fig. 3. It may seem
surprising, at first sight, that two different parametrizations
yield identical fits. However, the only difference between
(A) and (B) is the width of fluctuations away from central
collisions. The effect of the fluctuations is to smear P (n)
around a central value, and this smearing has a small effect.

The fit parameters are listed in Table I, for both scenarios.
The error on the knee (defined as the relative difference with
the direct calculation, see below), nknee, returned by the fit is
only 0.3%, while the error on the width σ (0) is about 3%.
Interestingly, the two fitting procedures (A) and (B) return
essentially the same values of these two quantities.5

In Fig. 4, we show n̄(cb) returned by the fit, i.e., we calculate
Eq. (7) by using the parameters of Table I for scenario (A). We
display the comparison between this analytical estimate and
the results directly obtained by binning TRENTo results in cb,
and computing the mean value of n in each bin. Agreement is
within 0.5%, all the way up to cb = 70%, which corresponds
to a value of n smaller than the lower cutoff applied to P (n).
We also calculate σ (0) directly by generating 105 collisions
with b = 0 and computing the standard deviation of n.

It is useful to note that approximate values of σ (0) and n̄(cb)
can be read off directly from the shape of P (n). Specifically,
σ (0) can be inferred from the width of the tail of the distribution
on the right of the knee. n̄(cb) is instead related to the shape of
P (n) left of the knee. If σ (cb) is very small, the distribution of
n for fixed b is very narrow, so that c and cb tend to coincide. In
this limit, c(n) defined by Eq. (2) is equal to the inverse function
of n̄(cb) [7]. P (n) can thus be obtained by differentiating the

5The larger difference in a2 and a3 is due to the different lower
cutoff, nmin, used for (B).

FIG. 6. (a) Empty symbols show distribution of the VZERO am-
plitude (denoted by n), used by the ALICE collaboration to determine
the collision centrality [11]. Full symbols show the Glauber model
used by the ALICE collaboration to fit the measured distribution.
Line shows fit of data provided by Eq. (6). The inset is a zoom of
the central part of the histogram. The quantity n is in arbitrary units.
(b) Symbols show STAR data [9]. Line shows fit using Eq. (6). The
vertical line in both panels indicates the position of the knee.

centrality with respect to n, according to Eq. (2):

P (n = n̄(cb)) 	 −
(

dn̄(cb)

dcb

)−1

. (8)

In the inset of Fig. 4, we check the validity of this approx-
imation in our TRENTo calculation by direct comparison of
n̄(cb) to n(c). We find that n̄(cb) deviates from n(c) only above
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FIG. 7. Probability distributions of b centrality for selected values
of the centrality reconstructed from STAR (dashed lines) and ALICE
(solid lines) data by using Bayes’ theorem. All the curves shown in
this figure have area normalized to unity.

n 	 170, corresponding to 1.5% centrality. This means that
the effect of the finite width of the fluctuations on P (n) is
sizable only in the vicinity of the knee, i.e., in the most-central
collisions.

To complete our procedure, we show how one can recon-
struct the distribution of impact parameter for a given value of
n, i.e., at a given value of centrality. In the TRENTo model, this
can done directly by sorting events into very narrow centrality
bins, and then looking at the distribution of cb in each bin. We
show such histograms of cb for a few selected centrality bins in
Fig. 5. Each panel corresponds to a bin of width 0.1%, centered
around the displayed value of c (for instance, the panel with
c = 1% shows the distribution of cb for 0.95% < c < 1.05%).

In an experimental situation where the impact parameter is
not known, these distributions can be reconstructed from P (n)
by using Bayes’ theorem:

P (cb|c) = P (c|cb)

= P (n|cb)

P (n)
, (9)

where, in the first line, we have used the property that the
distribution of cb and c are uniform, i.e., P (cb) = P (c) = 1.
The distribution P (n|cb) is given by Eq. (3), where n̄(cb) and
σ (cb) can be obtained from the fitting procedure.

One first needs to determine the value of n corresponding
to a given centrality, c. This can be done straightforwardly by
using the fitting function, which offers a smooth interpolation
of P (n).6 Inserting Eq. (3) into Eq. (6), and Eq. (2) yields, after
exchanging the order of integrals,

c =
∫ 1

0

1

2
erfc

(
n − n̄(cb)√

2σ (cb)

)
dcb, (10)

where erfc(x) denotes the complementary error function.
Eventually, once n is determined, P (cb|c) is given by
application of Bayes’ theorem, Eq. (9), to P (n|cb) in Eq. (3).
The reconstructed distributions are shown as lines in Fig. 5.
Scenarios (A) and (B) are represented by solid and dashed
lines, respectively. Both are in perfect agreement with the
direct calculation up to 4% centrality. Discrepancies between
both scenarios and the direct calculation start to appear around
c = 8%, meaning that our approximated formulas for σ (cb)
starts to break down around c ∼ 10% in this model calculation.
In a sense, this is a consequence of the fact that the variation
of σ with cb cannot be inferred from the sole P (n).

V. APPLICATION TO DATA

Our method of relating c to cb being validated on model cal-
culations, we apply now the fitting procedure to experimental
data. We fit the experimental curves of P (n) shown in Fig. 1
using Eq. (6). The results shown in this section correspond to
scenario (A), with a lower centrality cutoff. We have checked
that results are stable if one varies the cutoff, or if one uses
scenario (B). The values of the fit parameters extracted from
experimental data are given in Table II, for all the analyzed
experiments. The values of nknee and σ (0) are in the same units
as n, which are usually arbitrary, and vary from one experiment
to the other. The other fit parameters are dimensionless.

6Experimental data typically present P (n) in a bin center and the
centrality c at the boundary between two bins.
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TABLE II. Values of fit parameters for several experiments.

STAR [9] ALICE [11] ATLAS [13] CMS [18]

nknee 296.8 20406 3.575 119.03
σ (0) 21.5 731 0.113 3.82
a1 3.55 4.11 4.05 4.09
a2 0.8 −1.9 −1.5 −1.8
a3 1.6 4.4 4.1 4.2

In Fig. 6(a) we display raw data for P (n) (empty symbols)
measured by the ALICE Collaboration, together with our fit
(line). The χ2 per degree of freedom of the fit is 1.2. Along with
data, we plot also the distribution of n provided by the Monte
Carlo Glauber model used by the ALICE Collaboration (full
symbols) to fit their P (n), and, consequently, to perform the
sorting of events into centrality bins. A remarkable outcome
of our fitting method is that it provides a description of
experimental data which is better than that provided by the
Glauber model tuned to ALICE data, as evident from the inset
of Fig. 6(a), where we zoom in the central body of the
histogram. Figure 6(b) displays the fit to STAR data, which
is as good as the fit to the ALICE data. The fits of ATLAS and
CMS data (not shown) are of the same quality.

A convenient measure of the accuracy of the centrality
determination is the fraction of events above the knee of the
distribution; that is, the centrality of the knee, which we denote
by cknee. It is obtained by replacing n with nknee in Eq. (11).
Its value for each of the considered experiments is given in
Table III. The recovered ordering of cknee among the different
collaborations is consistent with the curves shown in Fig. 1,
because cknee is proportional to the width of the tail of P (n). We
now derive a approximate expression of cknee which provides
a simple way to relate it to the fit parameters of Table II.

Ifn = nknee, only small values of cb contribute to the integral
in Eq. (6). Therefore, we can expand n(cb) to first order
in cb in Eq. (3), obtaining n(cb) − nknee 	 cb(dn̄/dcb)|cb=0.
Neglecting the variation of the width with cb, i.e., σ (cb) ≈
σ (0), and replacing n̄(cb) in Eq. (11), one obtains

cknee = − σ (0)
dn̄
dcb

∣∣∣
cb=0

√
2π

= σ (0)

nkneea1

√
2π

, (11)

where, in the last equality, we have used Eq. (7). We checked
that, by using this simple estimate, the values of cknee shown
in Table II are reproduced to a good accuracy, within 1%.

Ultimately, using Bayes’ theorem, we can use the fits
of experimental data to reconstruct the distribution of the
impact parameter for a fixed centrality. Figure 7 presents

TABLE III. Fraction of events above the knee
for various heavy-ion experiments.

Experiment cknee

STAR [9] 0.81% ± 0.10%
ALICE [11] 0.349% ± 0.023%
ATLAS [13] 0.313% ± 0.011%
CMS [18] 0.314% ± 0.040%
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FIG. 8. Probability distribution of cb/cknee extracted from STAR
(solid lines) and ALICE (dashed lines) data for three selected values
of c/cknee.

the distribution of cb for a few selected values of centrality
percentile. The distributions obtained by fitting data of the
LHC collaborations are very similar; therefore, we present only
a comparison between the curves derived from ALICE and
STAR data. We find that the distribution of cb extracted from
STAR data is much broader than the one extracted from ALICE
data. This is a direct consequence of the wider tail of P (n)
measured by the STAR Collaboration (see Fig. 1), which in turn
can be ascribed to the smaller multiplicity seen by the detector,
as explained in Sec. II. Note that, as expected, the distributions
extracted from STAR and ALICE data are almost identical if
one rescales both c and cb by cknee, as we show in Fig. 8.

VI. CONCLUSION

We have shown that, even though the impact parameter of a
nucleus-nucleus collision is not a measurable quantity, precise
information about impact parameter is contained in available
experimental data. We have delineated a procedure allowing us
to reconstruct accurately the probability distribution of impact
parameter at a given centrality (as defined experimentally by a
multiplicity or a transverse energy), up to 5%–10% centrality.
This reconstruction does not involve the concept of participant
nucleons, or any microscopic model of the collision. Moreover,
it is independent of the detector efficiency and other detector-
related effects (e.g., resolution, saturation due to multiple hits),
as long as the calibration of the centrality is correct and the
detector response is stable throughout the run. Its sole inputs
are the distribution P (n), where n is the observable used to
determine the collision centrality, along with the assumption
that the distribution of n for a fixed b is Gaussian. We stress that
this assumption is solidly rooted in the central limit theorem.

The fraction of events above the knee of P (n), cknee,
provides a simple measure of the precision of the centrality
determination. It is below 0.4% at LHC, and twice larger at
STAR. We have shown that impact parameter fluctuations in
the 0%–10% most-central collisions are essentially determined
by this quantity alone.

We have shown that the mean value of n at a fixed impact
parameter can be reconstructed accurately up to 70% b central-
ity. The standard deviation of n around the mean can instead
be reconstructed only for b = 0: Its centrality dependence
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cannot be inferred from P (n) alone. The mean and the standard
deviation of n at fixed b are more natural quantities from a
theory point of view than P (n), because they can be directly
obtained in a model by fixing the impact parameter. While
the standard deviation may depend on detector details (in
particular, purely statistical fluctuations are larger in relative
value if the acceptance is smaller), the mean n̄(cb) provides a
robust quantity for model comparisons.

It would be useful to extend this study to proton-nucleus
collisions. However, our assumption that n has Gaussian
fluctuations is not satisfied in model calculations, even for
central collisions. We have checked that the fit procedure is
less successful in describing p + Pb collision data at

√
s =

5.02 TeV [23]. In particular, the tail of the distribution of P (n)
is not as well reproduced, because it is exponential rather than
Gaussian. The origin of this exponential tail is well understood
theoretically [24]. This difference must be taken into account
in order to extend our study to smaller collision systems.
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