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Photon emission from quark-gluon plasma out of equilibrium

Sigtryggur Hauksson,* Sangyong Jeon, and Charles Gale
Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8, Canada

(Received 18 September 2017; published 10 January 2018)

The photon emission from a nonequilibrium quark-gluon plasma is analyzed. We derive an integral equation
that describes photon production through quark-antiquark annihilation and quark bremsstrahlung. It includes
coherence between different scattering sites, also known as the Landau-Pomeranchuk-Migdal effect. These
leading-order processes are studied for the first time together in an out-of-equilibrium field theoretical treatment
that enables the inclusion of viscous corrections to the calculation of electromagnetic emission rates. In the special
case of an isotropic, viscous, plasma the integral equation only depends on three constants, which capture the
nonequilibrium nature of the medium.
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I. INTRODUCTION

Relativistic collisions of large nuclei allow the study of
quantum chromodynamics (QCD): the theory of the nuclear
strong interaction matter at high temperatures. Experiments
performed at the Relativistic Heavy Ion Collider (RHIC) and
the Large Hadron Collider (LHC) have indeed shown that such
collisions create droplets of quark-gluon plasma (QGP) [1]. A
significant breakthrough in the relativistic heavy-ion program
has been the realization that this fluid and its evolution can be
characterized by relativistic hydrodynamics, which describes
long-wavelength excitations [2]. Therefore, those experiments
have the potential to give access to the transport coefficients of
QGP, such as shear and bulk viscosity. These coefficients are
fundamental properties of QCD.

There has been extensive work on extracting the viscosity
of QGP from soft hadronic observables [3]. In addition,
electromagnetic observables, i.e., photons and dileptons, can
play an important role in that endeavor [4,5]. They are emitted
throughout the evolution of the QGP and escape from the
medium unaffected by final-state interaction. This paper will
focus on the production of real photons.

In order to evaluate the effects of viscosity on photons
one must study their out-of-equilibrium emission. At leading
order in the strong coupling constant there are two channels
for photon production in QGP. First, there are two-to-two
scattering channels with a photon in the final state. They were
first calculated in Refs. [6,7] for thermal equilibrium. Since
then there have been a number of works on these processes in an
out-of-equilibrium QGP such as for finite fugacities [8–10], in
an anisotropic QGP [11], for shear viscous corrections [12,13],
and for bulk viscous corrections [14]. Note that consistent
calculations of the electromagnetic emissivity should include
non-equilibrium corrections to the thermal mass of the soft
mediators.

Second, there are inelastic channels with bremsstrahlung off
a quark and the pair annihilation of a quark and antiquark, see
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Fig. 1. These processes contribute as much to photon emission
as two-to-two scattering [15]. The photon is emitted almost
collinearly to the quark, which entails a large decoherence
time. This means that the quarks can exchange arbitrarily
many soft gluons with the medium during the formation of
the photon. This leading-order complication is known as the
Landau-Pomeranchuk-Migdal (LPM) effect [16–19]. It means
that in addition to the diagrams in Fig. 1 one must sum up
diagrams with an arbitrary number of gluon exchanges such
as in Fig. 4. The LPM effect was first treated consistently in
Refs. [20,21] for a medium in thermal equilibrium where it
was shown to reduce photon production because of coherence
between different emission sites.

This paper treats the photon production through inelastic
channels in a nonequilibrium QGP for the first time, using a
field theoretical derivation that includes the LPM effect without
relying on the Kubo-Martin-Schwinger (KMS) [22] relation
which describes detailed balance in thermal equilibrium. The
field-theoretical techniques used here differ from those em-
ployed in Ref. [23], where kinetic theory was used to analyze
inelastic scattering of quarks and gluons.

The paper is organized as follows. In Sec. II we review
the real-time formalism and derive expressions for resummed
propagators. In Sec. III we discuss the resummed rr propagator
for soft gluons and show that the LPM effect is leading order in
nonequilibrium systems. Section IV discusses the resummed
occupation number of hard quarks. In Sec. V we sum up the
different diagrams contributing to the LPM effect and derive
an integral equation describing the inelastic channels. Finally,
we conclude in Sec. VI and indicate future directions. We will
use the (+, − , − ,−) metric. If P μ is a four-vector we write
P μ = (p0,p) and define p = |p| and p̂ = p/p.

II. RESUMMED PROPAGATORS IN THE
REAL-TIME FORMALISM

Out-of-equilibrium quantum field theory is best described
in the real-time formalism where a closed time contour leads
to the doubling of degrees of freedom [24,25]. In this paper we
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FIG. 1. Photon production through quark bremsstrahlung and the
annihilation of a quark and an antiquark. For the first process, the
diagram with the photon emitted left of the vertex is included but not
shown, as is that with the gluon connecting to the antiquark in the
second process.

mostly work in the r/a basis [26], which is defined by

φr = 1
2 (φ1 + φ2), φa = φ1 − φ2. (1)

The propagators are

Dcd (x,y) = 〈φc(x)φ†
d (y)〉 = Tr[ρ0 TCφc(x)φ†

d (y)], (2)

where c and d are either r or a. The initial density matrix ρ0

determines the out-of-equilibrium evolution of the system. In
the r/a basis, vertices have an odd number of a indices, see
Fig. 2. This basis has numerous advantages: The aa propagator
vanishes identically and the bare ra and ar propagators
only include vacuum contributions. Furthermore it allows for
easier power counting. For concreteness we consider complex
scalar fields in this section but our arguments can easily be
generalized.

In this paper we study translationally invariant systems. In
other words, our calculation is for a homogeneous and static
brick of out-of-equilibrium QGP. This approximation is justi-
fied when the mean-free path of quasiparticles is much smaller
scale than the macroscopic scale at which hydrodynamical
quantities change appreciably. In a translationally invariant
system the propagators are

Drr (x) = 1
2 〈{φ(x),φ†(0)}〉

Dra(x) = θ (x0)〈[φ(x),φ†(0)]〉
Dar (x) = −θ (−x0)〈[φ(x),φ†(0)]〉
Daa(x) = 0.

(3)

r
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FIG. 2. Quark-gluon vertices in the r/a basis in the real-time
formalism.

We see that Dra = Dret and Dar = Dadv. Going to momentum
space with momentum P

Dret(P )∗ =
∫

d4x e−iP ·xθ (x0)〈[φ(0),φ†(x)]〉

=
∫

d4x eiP ·xθ (−x0)〈[φ(0),φ†(−x)]〉

=
∫

d4x eiP ·xθ (−x0)〈[φ(x),φ†(0)]〉

= −Dadv(P ), (4)

where we did a change of variables x → −x in the second
line and then used translational invariance. This shows that
the resummed propagators only have two independent com-
ponents. The bare retarded propagator can easily be evaluated
because the commutator of free bosonic fields is just a number
so summing over all states is trivial. It is the same as in vacuum,

D0
ret(P ) = i

P 2 + iεp0
. (5)

We have yet to find the rr propagator. In thermal equilibrium
the Kubo-Martin-Schwinger (KMS) relation stipulates that

Drr (P ) = (
1
2 + fB(p0)

)
[Dret(P ) − Dadv(P )] (6)

so there is only one independent propagator. Here fB(p0) is
the Bose-Einstein distribution [24]. This expression is valid
at every order in perturbation theory and thus offers great
simplification. Using Eq. (5) the bare rr propagator is

D0
rr (P ) = (

1
2 + fB(p)

)
2πδ(P 2). (7)

In nonequilibrium systems one cannot obtain a general
expression for the resummed rr propagator. In analogy with
the equilibrium case the bare propagator is

D0
rr (P ) = (

1
2 + θ (p0)f (p) + θ (−p0)f (−p)

)
2πδ(P 2), (8)

where the ansatz, f (p), is a general momentum distribution
characterizing the system. For mirror symmetric momentum
distributions, f (p) = f (−p), the bracket reduces to 1/2 +
f (p), see Ref. [27] for a discussion. Equation (8) can be
justified from first principles as in Refs. [28,29]. Assuming
an initial density matrix ρ0, one Legendre-transforms the path
integral from external sources to connected n-point functions.
This gives rise to an infinite tower of equations corresponding
to the BBGKY hierarchy in kinetic theory. Truncating the tower
at second order and assuming that propagators vary slowly
in space one gets Eq. (8) at lowest order in the coupling.
The function f can be shown to be real and positive and the
equations of motion reduce to a Boltzmann equation for f .
Therefore, at leading order in the coupling constant it should
be interpreted as a momentum distribution of particles. The δ
function shows that the quasiparticles are on shell to lowest
order. In this approach f is left unspecified and can be chosen
to match a hydrodynamical evolution of the QGP.

Demanding that propagators vary slowly in time sets con-
straints on how far from equilibrium one can go. In anisotropic
and translationally invariant systems the retarded gluon propa-
gator acquires a pole with Im ω > 0 [30]. This pole signals the
exponential growth of the occupation density of soft gluons
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[31], which can invalidate our assumption of translational
invariance. Specifically, the pole introduces divergences in
momentum integrals over Grr for soft gluons. Throughout our
analysis we will assume that the anisotropy is small enough
so that this divergence does not appear at leading order in the
coupling. As an example consider a momentum distribution of
the form [30]

f (p) = feq(
√

p2 + ξ (n · p)2), (9)

where feq is an equilibrium distribution and n is a unit vector
specifying the direction of the anisotropy ξ (in general −1 �
ξ < ∞). We will show below that we must demand |ξ | � g2

if the divergence is to be subleading. On the contrary, isotropic
systems can be much farther away from equilibrium without
our analysis breaking down. In summary, we study systems
with low anisotropy that are close enough to local thermal
equilibrium so that the equilibrium power counting scheme is
unaltered. This guarantees that the hard thermal loop (HTL)
scheme remains valid.

In this paper we will need resummed propagators in out-
of-equilibrium systems. For the convenience of the reader we
reproduce some known results for scalar field theory in the
real-time formalism, see Ref. [32]. The Dyson equation is[

Drr Dra

Dar Daa

]
=

[
D0

rr D0
ra

D0
ar D0

aa

]
+

[
D0

rr D0
ra

D0
ar D0

aa

]
(−i)

×
[

rr 
ra


ar 
aa

][
Drr Dra

Dar Daa

]
. (10)

where, say, 
aa is the self-energy sourced by two a fields.
Using Daa = D0

aa = 0 one finds that 
rr = 0. Defining 
ar =

ret one obtains

Dret = D0
ret + D0

ret(−i
ret)Dret, (11)

which gives

Dret = i

P 2 − 
ret
. (12)

This equation gives the dispersion relation for the quasiparti-
cles, i.e., their thermal mass and decay width. Similarly

Dadv = i

P 2 − 
adv
, (13)

where 
adv = 
ra = 
∗
ret in translationally invariant systems.

The Dyson equation for Drr is more complicated. Defining
D< = D12 and D> = D21 we can write

Drr = 1
2 (D> + D<) = D< + 1

2 (Dret − Dadv) (14)

since D> − D< = Dret − Dadv. We will analyze D< to obtain
equations with a clear physical interpretation. Using the rr
component of Eq. (10), Eq. (11), and the corresponding
equation for Dadv one gets

D< = D0
< + D0

ret(−i
ret)D< + D0
<(−i
adv)Dadv

+D0
ret(−i
<)Dadv, (15)

where


< = 
aa − 1
2
ret + 1

2
adv, (16)

In the original 12 basis 
< = −
12 in our convention. This
component of the self-energy describes the creation rate of
quasiparticles [24]. Solving for D< using Eq. (12) one gets

D< =
(−iD0

ret

)−1
D0

<

(−iD0
adv

)−1 + i
<[(−iD0
ret

)−1 − 
ret
][(−iD0

adv

)−1 − 
adv
] . (17)

For nonvanishing self-energy the first term is zero because

D0
<

(
D0

ret

)−1 ∝ P 2δ(P 2) = 0. (18)

This is true since our theory is defined in momentum space and
assumes translational invariance. Thus

D< = Dret(−i
<)Dadv (19)

and

Drr = 1
2 (Dret − Dadv) + Dret(−i
<)Dadv. (20)

In deriving this equation we never had to invert the order of
propagators. Thus it is equally valid for spinors and spin-1
bosons whose propagators are matrices in the space-time
indices.

For D> = D21 one similarly gets that

D> = Dret(−i
>)Dadv, (21)

where 
> = −
21 describes the annihilation of quasiparti-
cles. It is easy to see that


ret − 
adv = 
> − 
<, (22)

which reduces to

2iIm 
ret = 
> − 
< (23)

in translationally invariant systems. This last equation says
that the decay width of a quasiparticle is the difference of the
annihilation and creation rate.

For scalar particles we can go further and derive a more in-
tuitive expression for Drr . In translationally invariant systems
Eq. (12) and (13) give that

Dret − Dadv = 2(Im 
ret)DretDadv. (24)

Thus we see that

Drr =
[

1

2
+ 
<

2iIm 
ret

]
(Dret − Dadv). (25)

This equation has a striking resemblance with the rr propagator
in equilibrium, Eq. (6). Indeed 
</2iIm 
ret reduces to the
Bose-Einstein distribution by using the KMS relation for
self-energies. In nonequilibrium systems 
</2iIm 
ret is in
general not the same as the bare momentum distribution
f (p). It can be viewed as a resummed occupation density.
We emphasize that we have only derived Eq. (25) for scalar
particles since we needed to invert the order of propagators. In
the next two sections we will derive a similar relation for soft
gluons and hard quarks and evaluate the resummed occupation
density explicitly.
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K

P + K

P

Q

FIG. 3. Definition of momenta in the argument for
bremsstrahlung and pair annihilation contribution at leading
order.

III. r r PROPAGATOR OF SOFT GLUONS

The photon production rate is given by the 12 component
of the photon polarization tensor

k
dR

d3k
= i

2(2π )3

(



γ
12

)μ

μ
, (26)

where k is the photon momentum and 

γ
12 is one component

of the photon polarization tensor. This equation is valid in
nonequilibrium systems as has been shown in Ref. [33].

The diagram corresponding to bremsstrahlung and quark-
antiquark pair annihilation is in Fig. 3. Due to the LPM
effect the quarks can have arbitrarily many gluon exchanges,
see Fig. 4. We will now briefly explain why these diagrams
contribute at leading order for a medium in thermal equi-
librium, see Refs. [20,34] for further details. The quarks are
hard, P ∼ T , and nearly on shell, P 2 ∼ g2T 2, where T is the
temperature and g 	 1 is the strong coupling constant. The
photon is emitted with an angle θ ∼ g relative to the quark
momentum. Finally, the exchanged gluons are soft, Q ∼ gT ,
forcing us to use resummed propagators.

We analyze the diagram in Fig. 3. In thermal equilibrium
the rr propagator for soft gluons is

Grr (Q) =
(

1

2
+ fB(q0)

)
[Gret − Gadv] ∼ 1

g3T 2
, (27)

where fB(q0) ∼ T/q0 ∼ 1/g and the retarded gluon prop-
agator is Gret ∼ 1/g2T 2. Furthermore, each pair of quark
propagators gives pinching poles of order 1/g2. This can be
seen more easily for bare scalars for which∫

dp0 Dar (K + P )Dra(P )

=
∫

dp0 1

[(p0 + iε)2 − p2][(p0 + k − iε)2 − |p + k|2]

∼ 1

T 2
× 1

p + k − |p + k| ∼ 1

g2T 3
, (28)

where we did a contour integration and used that p̂ · k̂ = 1 −
O(g2). In real calculations one must use resummed fermion

FIG. 4. The diagrams for the LPM effect.

propagators since their self-energy is O(g2). Finally each gluon
vertex contributes a factor g and each photon vertex contributes
a factor e as well as a factor g because of kinematics [20].
Including a g3 phase space suppression because q is soft and a
g2 suppression because p is collinear with k one sees that the
diagram is of order g2e2. A similar analysis shows that Fig. 4
is also leading order.

The above argument relied mostly on kinematics and is
therefore equally valid in nonequilibrium systems.1 Neverthe-
less, it assumed thermal equilibrium in two crucial places. First,
the authors of Ref. [20] used a KMS condition for four-point
functions to show that only Sra and Sar contribute to the
pinching poles. We provide a more general argument in the
next two sections. Second, Eq. (27) for the rr propagator was
derived using the KMS condition.

In general the retarded self-energy for soft gluons is [23,35]



μν
ret (Q) = −2g2

∫
d3p

(2π )3

1

2p

(
∂ftot(p)

∂P ω

)
×

[
−P μgων + QωP μP ν

P · Q + iε

]
, (29)

where

ftot = Nf fq + Nf fq̄ + 2Ncfg (30)

with fq , fq̄ , fg the distribution for quarks, antiquarks, and
gluons respectively. We should interpret ∂ftot(p)/∂p0 = 0. The
12 component, 
<(Q), has also been evaluated for spacelike
gluons [23]. It is


μν
< (Q) = − ig2

∫
d3p

(2π )3

P μP ν

p
2πδ(P · Q)

∣∣∣∣
p0=p

× [Nf fq(p)[1 − fq(p)] + Nf fq̄(p)[1 − fq̄(p)]

+ 2Ncfg(p)[1 + fg(p)]]. (31)

In both expressions we have used that P 
 Q. Equation (31)
has an intuitive interpretation. The soft gluons are sourced
by hard quarks and gluons with momentum P . The factor
fq(p)[1 − fq(p)] is the density of the incoming and outgoing
hard quark including Pauli blocking. Similarly fg(p)[1 +
fg(p)] describes the hard gluon. These expressions are true
as long as the hard thermal loop (HTL) scheme is valid. This
puts some mild constraints on the momentum distribution [23],
such as that the density of soft gluons cannot be exceedingly
high.

We can now see that Grr ∼ g−3 for soft gluons in nonequi-
librium systems. Clearly 
ret ∼ g2T 2 so Gret ∼ g−2 while

< ∼ gT 2 because of the δ function in Eq. (31). Thus, using
Eq. (20),

Grr ≈ Gret(−i
<)Gadv ∼ 1

g3
, (32)

which ensures that the LPM effect matters at leading order.

1In systems that are far away from thermal equilibrium there is no
well-defined temperature. Then the scale T should be replaced by the
hard scale, which contributes to the greatest number of particles, see
Ref. [23] for further details.
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FIG. 5. One of the diagrams contributing to 
ret = 
ar .

At first sight it might be surprising that 
< and 
ret differ
by a power of g since they come from the same Feynman
diagrams. The reason for the difference is the following:
The vertices give factors P μP ν , which are O(1) and factors
P μQν + QμP ν and P · Qgμν , which are O(g). For the
retarded self-energy all terms with P μP ν cancel giving a
suppression in g. As an example we can look at Fig. 5. The
diagram goes like∫

d4P
P μP νδ(P 2)

(Q + P )2 + iε(q0 + p0)

∼
∫

d3p
P μP ν

2q0p0 − 2p · q + iεp0

∣∣∣∣
p0=p

+
∫

d3p
P μP ν

2q0p0 − 2p · q + iεp0

∣∣∣∣
p0=−p

(33)

at leading order. The two terms cancel as can be seen by doing
p → −p in the last integral. Such a cancellation does not take
place when the vertex factor is P μQν + QμP ν or P · Qgμν .

The gluon rr propagator is more complicated in a nonequi-
librium plasma than in equilibrium. In particular it has an
imaginary part. Using the definition

Gμν
rr (P ) = 1

2

∫
d4x eiP ·x〈{Aμ(x),Aν(0)}〉 (34)

we get that G
μν
rr (P )∗ = G

μν
rr (−P ). In translationally invariant

systems we furthermore get that

Gμν
rr (P ) = 1

2

∫
d4x e−iP ·x〈{Aμ(−x),Aν(0)}〉

= 1

2

∫
d4x e−iP ·x〈{Aν(x),Aμ(0)}〉

= Gνμ
rr (−P ),

(35)

where we did a change of variables x → −x in the first line
and translated the propagator in the second line. These results
are clearer when writing

Gμν
rr (P ) = Re Gμν

rr (P ) + i Im Gμν
rr (P ). (36)

Then Re G
μν
rr (−P ) = Re G

μν
rr (P ) and Im G

μν
rr (−P ) =

−Im G
μν
rr (P ). Furthermore, Eq.(35) shows that Re Grr is

symmetric and Im Grr is antisymmetric under the interchange
of the space-time indices. Evaluation of Grr explicitly given
some momentum distribution function f is a subject for future
research. The 00 component has been evaluated using an
anisotropic momentum distribution as it has applications to
the heavy-quark potential in QGP [36].

a r

r

a r

r

Q

P

(a)

a r

r

r r

a

Q

P

(b)

FIG. 6. Diagrams contributing to �ret at leading order in g.

The imaginary part of Grr might seem surprising. It is
helpful to consider how it comes about. We can always write

Grr = Gret
−i(
> + 
<)

2
Gadv, (37)

where [
1 − G0

ret(−i
ret)
]
Gret = G0

ret (38)

and similarly for Gadv. The bare propagator and the HTL self-
energy is symmetric in the space-time indices so the same goes
for Gret and Gadv. Thus Grr is the product of three symmetric
matrices. In general

GT
rr = Gadv

−i(
> + 
<)

2
Gret (39)

will be different from Grr because these matrices do not
commute. In equilibrium (and for any isotropic momentum
distribution) the only available tensors are gμν , the external
momentum P μ, and the plasma four-velocity, uμ. Therefore
all matrices are spanned by gμν , P μP ν , and the projection
operators PT and PL [37]. These four matrices commute so
GT

rr = Grr and Grr is real. In an anisotropic plasma there are
additional tensors describing the anisotropy and therefore more
matrices. They will not all commute in general giving Grr an
imaginary part.

IV. OCCUPATION DENSITY OF HARD QUARKS

To evaluate the LPM effect we need the rr propagator for
hard and nearly on-shell quarks, i.e., Srr (P ) with P ∼ T and
P 2 ∼ g2T 2. We will show that at leading order

Srr = [
1
2 − F

]
(Sret − Sadv), (40)

just as for scalars. Here F (P ) := −P · �</2iP · Im �ret is a
resummed occupation density.

We begin by evaluating �ret. The contributing diagrams
can be seen in Fig. 6. For an internal particle with soft
momentum, O(gT ), we must use a HTL resummed propagator,
while for hard particles we use bare propagators. There are a
few different momentum regimes. When the loop momentum
is hard, Q ∼ T , the two diagrams give rise to the thermal
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mass

m2
∞ = 2P · Re �ret(P )

= 2g2CF

∫
d3p

(2π )3

2fg(p) + fq(p) + fq̄(p)

2p
. (41)

The contribution of this momentum regime to Im �ret is phase
space suppressed because both G0

rr and Im S0
ret contain a δ

function forcing the internal particles to be on shell.2

We now focus on the top diagram in Fig. 6, which is
given by

�ret(P )|(a) = −ig2CF

∫
d4Q

(2π )4
Gμν

rr (Q) γμSret(P − Q)γν.

(42)

When the gluon is soft and the quark is hard the leading-order
contribution is

�ret(P )|soft = g2CF

∫
d4Q

(2π )4
γμ /Pγν Gμν

rr (Q)

×
[
−iπ sgn(p0) δ(2P · Q) + 1

−2P · Q

]
,

(43)

where we have substituted the bare quark propagator. We
have used that the quark is on-shell, P 2 ∼ g2T 2. Using the
properties of G

μν
rr (Q) under the interchange of the space-time

indices and under Q → −Q we can write

�ret(P )|soft = Re �p
μ γ 5γ μ + i Im �μ γ μ, (44)

where

Im �ω = −g2CF

∫ gT d4Q

(2π )4
(Pμgνω + Pνgμω − gμνPω)

×πsgn(p0) δ(2P · Q) Re Gμν
rr (45)

and we have a pseudovector component

Re �p
ω = g2CF εωρμνP

ρ

∫ gT d4Q

(2π )4

Im G
μν
rr

2P · Q
. (46)

Here we used the identity [38]

γμγργν = gμργν + gρνγμ − gμνγρ + iεσμρνγ
σ γ 5 (47)

to separate the symmetrical and antisymmetrical part of Grr .
The expression in Eq. (44) is clearly leading order because
Grr ∼ g−3T 2 and Q ∼ gT . The vector term with Im �μ is
both present in equilibrium and nonequilibrium plasma. It
determines the decay width of hard quarks, �, through

−1

2
p0� = P · Im �ret

= −2πg2CF sgn(p0)

× PμPν

∫ gT d4Q

(2π )4
Re Gμν

rr (Q) δ(2P · Q).

(48)

2In our notation �ret can denote both a spinor matrix and a four-
vector, i.e., �ret = �

μ
retγμ.

The pseudovector term with Re �
p
μ is only present in

anisotropic systems because it includes the imaginary part
of Grr .

There are no further leading-order contributions to �ret.
The case of a soft internal quark, P − Q ∼ gT , in Fig. 6(a) is
subleading because there is no enhancement from soft gluons.
Similarly, Fig. 6(b) is subleading when either particle is soft
because the g−3 contribution from Grr is missing.

We can now derive the retarded quark propagator. We have
shown that the full self-energy is

�ret = �μ γ μ + Re �p
μ γ 5γ μ, (49)

where Re �μ gives the thermal mass in Eq. (41) and Im �μ

and Re �
p
μ are as before. The retarded propagator in the Dirac

representation is then

Sret =
[

0 i(P−�+Re �p)·σ
(P−�+Re �p)2

i(P−�−Re �p)·σ̄
(P−�−Re �p)2 0

]
. (50)

Because of the γ 5 matrix the pseudovector part of the self-
energy, Re �p, has different signs for positive and negative
helicities. However, both helicities have the same thermal mass
since P · Re �

p
ret vanishes because of the Levi-Civita tensor.

The imaginary part of the self energy still has the same sign
for both helicities. Thus we can write

Sret = i /P

P 2 − m2∞ + i�p0
(51)

at leading order where m2
∞ is given by Eq. (41). We have used

that (P − �)2 ≈ P 2 − 2P · �. We see that the pseudovector
component, and therefore Im Grr , does not contribute when
considering on-shell particles, which simplifies the calcula-
tions considerably.

We can finally derive Srr in Eq. (40). A similar argument as
for �ret shows that

P · �<(P ) = 4πig2CF [fq(p)θ (p0) + (fq̄(−p) − 1)θ (−p0)]

× PμPν

∫ gT d4Q

(2π )4
Re Gμν

rr (Q) δ(2P · Q).

(52)

n l
x1

x2

y2

y1

(a)

m k

1 2

1 2
P

K + P

P

K + P

(b)

FIG. 7. Definition of the four-point function Snmkl(x1,x2; y1,y2) in
position space. n, m, k, l are either 1 or 2. Also shown is the diagram
we need to evaluate, i.e., S1122 in momentum space.
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a
r r

r
=

a r a r a r

r
r r

a
=

r a r a

a
r r

a
= 0

r
r r

r
=

r
r r

a r r a r
++

r
r r

r a r a r r

r r

r r
a r

r r
a r a r r

FIG. 8. Analysis of quark rails in the r/a basis.

The quark momentum distribution comes from S0
12 and we have

used that G12 ≈ Grr for soft gluons. Since

/P /�< /P = −P 2 /�< + 2P · �< /P ≈ 2P · �< /P (53)

one can easily show that at leading order

Srr (P ) = 1
2 (Sret − Sadv) + Sret(−i�<)Sadv

≈ (
1
2 − F (P )

)
(Sret − Sadv), (54)

where

F (P ) := − P · �<

2iP · Im �ret

= fq(p) θ (p0) + (1 − fq̄(−p)) θ (−p0). (55)

All dependence on Grr cancels out in F .
Comparing with the expression for Srr in equilibrium we see

that F should be interpreted as a resummed occupation density.
Its form makes perfect sense. In the Boltzmann equation
incoming particles have p0 > 0 and outgoing particles have
p0 < 0. Thus F is just the bare momentum distribution with
Pauli blocking for outgoing quarks. This function reduces to
the Fermi-Dirac distribution fF (p0) in equilibrium as can be
seen by using 1 − fF (−x) = fF (x) and noting that when going
from equilibrium to nonequilibrium systems one makes the
identification fF (|p0|) ↔ fq(p).

V. LPM EFFECT IN A NONEQUILIBRIUM PLASMA

We now have all the ingredients to evaluate the LPM effect
in an out-of-equilibrium quark-gluon plasma, and to compute
the photon production rate in Eq. (26). The photon sources are

r a
r

a r
r

FIG. 9. Vertices that contribute at leading order.

connected to a quark and an antiquark so we need to evaluate
the four-point function

S1122(x1,x2; y1,y2) = 〈TC{ψ1(x1)ψ1(x2)ψ2(y1)ψ2(y2)}〉.
(56)

See Fig. 7, top diagram, for the corresponding contribution.
When going to momentum space we can approximate the
momentum in the quark or the antiquark rail as constant
because it only changes through the exchange of soft gluons.
The relevant diagram is the bottom one in Fig. 7 where K is
the photon momentum and P is the loop momentum.

A. Summing four-point functions without the KMS condition

Up until now our analysis has been in the r/a basis, which
enables power counting of the complicated diagrams. We must
evaluate S1122 using the expression

S1122 = Srrrr + 1
2 (Sarrr + Srarr − Srrar − Srrra)

+ 1
4 (Saarr − Sarar − Sarra − Sraar − Srara + Srraa)

+ 1
8

(
Sraaa + Saraa − Saara − Saaar + 1

2Saaaa

)
. (57)

This task might look overwhelming. Each four-point function
on the right-hand side is a sum of infinitely many diagrams
with a different number of gluon rungs. They need not have
any clear pattern in their r/a indices.

In thermal equilibrium the four-point functions have been
related using the KMS condition [39]. Specifically,

S1122 = α1Saarr + α2Saaar + α3Saara + α4Saraa

+ α5Sraaa + α6Sarra + α7Sarar + c.c., (58)

where the coefficients depend on the Fermi-Dirac distribution.
As an example α1 = fF (p0 + k0)[1 − fF (p0)]. One can also
show that Saarr is the only one of these four-point functions
that contributes at leading order. Therefore

S1122 = 2fF (p0 + k0)[1 − fF (p0)]Re Saarr (59)
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P+K

P

a

a

r

r

P+K

P

r

r

a

a

FIG. 10. The pairs of propagators that give pinching poles.

in thermal equilibrium.
We will now evaluate S1122 generally without using the

KMS condition. Our derivation is thus also valid in nonequi-
librium systems. It only relies on the power counting scheme.
We know that all gluon rungs must be rr propagators to get the
1/g enhancement from the density of soft gluons. Each vertex
contains an odd number of a indices so one quark propagator
ends with a and one with r at each vertex, see Fig. 9. Finally
aa propagators vanish.

We first consider quark rails as in Fig. 8. For the convenience
of the reader we draw Sar with red, dashed lines, Sra with blue,
dotted lines and Srr with black lines. The first propagator in a
quark rail that starts with a must be Sar . The next propagator
must then start with a and so on. Thus all propagators are Sar at
leading order. Similarly all propagators in a quark rail that starts
with r and ends with a are Sra . Finally, quark rails that start
and end with a vanish. This means that we can ignore Saraa ,
Saara , Sarra , Sraar , Saaar , Sraaa , and Saaaa at leading order. (In
fact, Saaaa vanishes at all orders [39]).

There are more possibilities for quark rails that start and
end with r . It is easy to see that they consist of arbitrarily
many Sra , then one Srr , and finally arbitrarily many Sar . Thus
there are n possibilities for a quark rail with n propagators,
which differ in the placement of Srr . See Fig. 8 for the case of
three propagators.

The remaining four-point functions can only contribute
at leading order if we get pinching poles from each pair of
propagators between adjacent gluon rungs. Just like in Eq. (28)
that means that one propagator is Sra and the other one Sar , see
Fig. 10. This immediately tells us that Srara and Sarar can be
discarded because they have no pinching poles, see Fig. 11.

We can now express the remaining seven four-point func-
tions in terms of Saarr and Srraa . They all include an rr
propagator the pole structure of which can be seen from

Srr = [
1
2 − F (P )

]
(Sra − Sar ). (60)

a r a r

r a r a

r a r a

a r a r

a r

r a

r a

a r

FIG. 11. Srara and Sarar . These diagrams do not contribute at
leading order because there are no pinching poles.

a r a r

r r a r

a r

a r

r

r

r

r

P+K

P

FIG. 12. The only way of placing r/a indices in Srarr at leading
order. In a general diagram with arbitrarily many gluon rungs Srr must
still be on the far left.

It has poles on both sides of the real axis. At leading order we
can drop the term that does not give a pinching pole. As an
example we must place the indices in Srarr as in Fig. 12 to get
pinching poles from all pairs. Then Srr is on the far left and
only the term with Sra contributes. Thus

Srarr = ( 1
2 − F (P )

)
Saarr , (61)

where the leading-order diagram for Saarr is in Fig. 13.
Similarly, one sees that

Srrar = − (
1
2 − F (P )

)
Srraa (62)

Sarrr = − (
1
2 − F (P + K)

)
Saarr (63)

Srrra =(
1
2 − F (P + K)

)
Srraa. (64)

To finish our derivation, we analyze Srrrr , which is more
complicated. Each quark rail has one rr propagator. The two
Srr must be on top of each other or immediately diagonal to
each other since otherwise we will miss a pinching pole pair,
see Fig. 14. Let us consider the case of two gluon rungs. In
Fig. 15 we analyze the three possibilities of having the rr on
top of each other. The remaining possibilities are analyzed in
Fig. 16. When these contributions are summed over, all terms
cancel except for those corresponding to Saarr and Srraa , see
Fig. 17. A similar cancellation takes place for any number
of gluon rungs. Specifically, four-point functions with Srr

immediately diagonal to each other cancel out with four-point
functions with Srr on top of each other. We are then left with

Srrrr = − (
1
2 − F (P )

)(
1
2 − F (P + K)

)
[Srraa + Saarr ].

(65)

We have evaluated all terms in Eq. (57) at leading order.
Summing up Eqs. (61)–(65) we get that

S1122 = F (P + K)[1 − F (P )][Srraa + Saarr ]. (66)

This can be rewritten using Srraa = S∗
aarr , which can be seen

from the definition of the four-point functions or from S∗
ra =

−Sar . We have thus shown that

S1122 = 2F (P + K)[1 − F (P )]Re Saarr (67)

a r a r

a r a r

a r

a r

r

r

r

r

P+K

P

FIG. 13. The only way of placing r/a indices in Saarr at leading
order.
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r r a r

r a r a

a r

r r

r

r

r

r

FIG. 14. An example of a diagram that does not contribute to
Srrrr at leading order because the propagators in the middle do not
give pinching poles.

without using the KMS condition. This expression is conve-
nient because Saarr has a very simple structure, see Fig. 18. In
thermal equilibrium F from Eq. (55) reduces to the Fermi-
Dirac distribution and we retrieve the equilibrium result,
Eq. (59).

The factors of F in Eq. (67) give the momentum distribution
of incoming and outgoing quarks including Pauli blocking.
Our analysis is valid for on-shell photons, k0 ≈ k. The
momentum regime where p0 > 0 represents bremsstrahlung
off a quark with initial momentum k + p. The distribution
functions are fq(k + p)[1 − fq(p)] as expected because there
is one incoming and one outgoing quark. Bremsstrahlung off
an antiquark is given by p0 < −k. The antiquark’s initial
momentum in the photon’s direction is −p0 and the final
momentum is −(k + p0). The distribution functions are then
[1 − fq̄(−k − p)]fq̄(−p). The antiquark distributions are eval-
uated at negative momentum because we defined the momen-

tum to flow in the direction of quarks. Finally the momentum
regime −k < p0 < 0 corresponds to the pair annihilation of a
quark with momentum k + p0 and an antiquark with momen-
tum −p0. The distribution functions are fq(k + p)fq̄(−p).

B. Summing ladder diagrams

The only remaining task is to sum up the ladder diagrams
contributing to Saarr . This gives an integral equation, which
describes the LPM effect. We will outline the derivation briefly
as it is quite similar to the one in thermal equilibrium, see
Refs. [20,40] for further details. The notation follows that of
Ref. [41]. The contributing diagrams are shown in Fig. 19 and
the procedure for summing them up is in Figs. 20 and 21. One
gets an integral equation for the resummed vertex D(P,P +
K), which can be written schematically as

Dμ = Iμ +
∫

d4Q

(2π )4 MFDμ. (68)

Here Iμ is the bare vertex,F(P,P + K) are quark propagators
that give pinching poles and M(P,P + K) is the contribution
from a gluon ladder. The gluon momentum Q is soft, K is the
photon momentum and P is the momentum in one of the quark
rails. We need to evaluate F and M.

We let the photon propagate in the z direction. The collinear
momentum of the quark momentum is hard, pz ∼ T , but the
orthogonal components are soft, p⊥ ∼ gT . Furthermore the

r r a r a r

r r a r a r

= − 1
2 − F (P ) 1

2 − F (P + K)

×
r a a r a r

r a a r a r

+

a r a r

a r a r

r a r r a r

r a r r a r

= − 1
2 − F (P ) 1

2 − F (P + K)

×
r a r a a r

r a r a a r

+

r a a r

r a a r

r a r a r r

r a r a r r

= − 1
2 − F (P ) 1

2 − F (P + K)

×
r a r a a r

r a r a a r

+

r a r a

r a r a

a r

a r

a r

a r

r a

r a

FIG. 15. Leading-order contributions to Srrrr where the Srr propagators are on top of each other.
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r r a r a r

r a r r a r

= 1
2 − F (P ) 1

2 − F (P + K)

r a a r

r a a r a r

r a r r a r

r r a r a r

= 1
2 − F (P ) 1

2 − F (P + K)

r a a r

r a a r

r a r r a r

r a r a r r

= 1
2 − F (P ) 1

2 − F (P + K)

r a r a

r a r a

r a r a r r

r a r r a r

= 1
2 − F (P ) 1

2 − F (P + K)

r a r a

r a r a

a r

a r

a r

a r

a r

a r

a r

FIG. 16. Leading-order contributions to Srrrr where the Srr propagators are immediately diagonal to each other.

quark is nearly on shell, p0 = pz + O(g2T ). It is convenient
to decompose the quark propagator in Eq. (51) by helicity,

Sret =
[

0 SL
ret

SR
ret 0

]
. (69)

We will focus on the right-handed part. At leading-order one
can write it as

SR
ret(P ) = i

2p

[
vv†

p0 + Ep + i�/2
+ uu†

p0 − Ep + i�/2

]
,

(70)

where Ep = √
p2 + m2∞ is the quasiparticle energy. This

equation has the same form as in equilibrium but the thermal
mass m2

∞ and the decay width � are now out-of-equilibrium
constants. We have defined u(p) and v(p) to be the eigenvectors
of σ · p̂ with positive and negative eigenvalues. Their nor-
malization is v†v = u†u = 2p and they obey vv† = p − σ · p
and uu† = p + σ · p. The first term in Eq. (70), which has
Re p0 < 0 at the pole, describes a left-handed antiquark while
the second term describes a right-handed quark.

For simplicity we consider the case when p0 > 0 so only
the second term in Eq. (70) contributes. At each gluon vertex

we get a factor

u†(p) σμ u(p) = 2 (p,p) ≈ 2P μ, (71)

where the spin indices u come from the adjacent propagators.
The gluon rungs then give

M = − 4g2CF Pμ(Kν + Pν) Gμν
rr (Q)

≈ − 4g2CF pz(k + pz) K̂μK̂ν Re Gμν
rr (Q). (72)

The loop momentum P μ is nearly collinear with the photon
momentum Kμ so only the real and symmetric part of Grr

contributes. Here K̂μ = (1,0,0,1).
Using SR

adv = −SR ∗
ret the pinching pole contribution is easily

evaluated to be∫
dp0

2π
F(P ; K) =

∫
dp0

2π
SR

adv(K + P )SR
ret(P )

= 1

4pz(pz + k)[� + iδE]
, (73)

where

δE = k0 + Ep sgn(pz) − Ep+k sgn(pz + k) (74)

is of order g2. When p0 < 0 one gets similar expressions.

r r

r r

= − 1
2 − F (P ) 1

2 − F (P + K)

×
r a r a r a

r a r a r a

+

a r a r

a r a r

a r

a r

FIG. 17. All leading-order contributions to Srrrr after cancellation.
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a r

a r

=

a r

a r

+

a r a r

a r a r

+

a r a r a r

a r a r a r

+ . . .

FIG. 18. Leading-order diagrams contributing to Saarr .

We can now assemble all the pieces in Eq. (68). The quark
decay width, Eq. (48), can be written as

� =
∫

d2q⊥
(2π )2

C(q⊥) (75)

with

C(q⊥) = g2CF

∫
dq0dqz

(2π )2
2πδ(q0 − qz) Re Grr (Q)μνK̂μK̂ν.

(76)
This collision kernel also describes the gluon rungs. Defining

f̃ μ(p) = −4pz(pz + k)
∫

dp0

2π
FDμ, (77)

one gets that

σμ = iδEf̃ μ(p) +
∫

d2q⊥
(2π )2

C(q⊥)[f̃ μ(p) − f̃ μ(p + q⊥)].

(78)

The production rate of photons with momentum k is

k
dR

d3k
= 3Q2αEM

4π2

∫
d3p

(2π )3
F (P + K)[1 − F (P )]

× pz 2 + (pz + k)2

2pz 2(pz + k)2
p⊥ · Re f(p; k) (79)

as can be seen by using Eq. (67), Eq. (79), and evaluating
the trace of the quark loop. Here f is the transverse part of f̃
without the Pauli matrix. The new factors in pz and k come
from summing over the physical polarization of the photon
[20]. Furthermore Q is defined by

Q2e2 =
∑

flavour

q2, (80)

where we sum over the different flavors of light quarks. As
explained above, F is the momentum distribution of quarks
including Fermi suppression for outgoing quarks,

F (P ) = fq(p)θ (p0) + [1 − fq̄(−p)]θ (−p0). (81)

Finally p0 = ( − k0 + Ep sgn(pz) + Ep+k sgn(pz + k))/2.

+ + + . . .

=

FIG. 19. The LPM diagrams that contribute at leading order to
the photon polarization tensor 


γ
12. Red propagators are Sar and blue

propagators are Sra .

In this expression f satisfies a Boltzmann-like integral
equation

p⊥ = iδE f(p⊥) +
∫

d2q⊥
(2π )2

C(q⊥)[f(p⊥) − f(p⊥ + q⊥)].

(82)

Here f(p⊥; pz,k) is an analog of the density of hard quarks
with transverse momentum p⊥ that emit a photon with mo-
mentum k. The term iδE f works like a time derivative
in momentum space. The integral describes the change in
transverse momentum of the quarks through the exchange of
soft gluons with the medium. The gain term comes from the
gluon rungs while the loss term comes from the quark decay
width. Equations (26) and (82) agree with the Abelian limit of
the results of Ref. [23] where a kinetic theory of quarks and
gluons was used to study the LPM effect in a perhaps more
heuristic way.

In an isotropic plasma, f (p) = f (p), one gets a simple
expression for the collision kernel C(q⊥) by using a sum rule
[23,42]. This special case is relevant for the bulk viscous
correction to photon production. Specifically,

C(q⊥) = g2CF �

[
1

q2
⊥

− 1

q2
⊥ + m2

D

]
. (83)

Here

� =
∫ ∞

0 dp p2 [2Nf fq(1 − fq) + 2Ncfg(1 + fg)]

− ∫ ∞
0 dp p2 d

dp
[2Nf fq + 2Ncfg]

(84)

characterizes the occupation density of soft gluons. Further-
more,

m2
D = g2

π2

∫ ∞

0
dp p[2Nf fq(p) + 2Ncfg(p)] (85)

is a nonequilibrium Debye mass. In the isotropic case the LPM
effect only depends on �, m2

D , and m2
∞, the nonequilibrium

mass of hard quarks, along with the momentum distribution F
from Eq. (81).

In an anisotropic plasma the collision kernel in Eq. (76) and
the quark decay width in Eq. (75) are divergent, because of the
gauge field instabilities discussed previously. For the moment,
the simplest solution is to impose that the anisotropy is small
enough for the divergences to be subleading in the coupling.
At leading order only g2T � Q � gT contributes to the kernel

= +

FIG. 20. Procedure for summing up the diagrams in Fig. 19.
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D =

I =

M =

F =

FIG. 21. Definition of the quantities in Eq. (68).

so one demands that the divergence takes place at the ultrasoft
scale of Q � g2T . For the momentum distribution in Eq. (9)
this leads to |ξ | � g2. We illustrate this with the α collective
mode of Ref. [30]. In that case, the divergence in the quark
decay width comes from terms such as∫ gT

g2T

d4Q GretGadv ∼
∫ gT

g2T

d4Q(
q2 + m2

α

)2 + (
πq0

4q
m2

D

)2 , (86)

where Gadv = G∗
ret and we have taken the limit q0 → 0 where

possible. At leading order in ξ , the static limit of the α self-
energy component is [30]

m2
α = −ξ

6
(1 + cos 2θn)m2

D. (87)

It depends on the angle between the gluon momentum and the
direction of the anisotropy, θn. For ξ > 0, m2

α is negative, which

leads to divergences. Clearly, the divergence is at q � g2T if
ξ � g2.

VI. CONCLUSION

The quark-gluon plasma created in heavy-ion collisions
deviates from local thermal equilibrium. To understand how
the plasma radiates photons one needs to include the effects of
these deviations. This means analyzing photon production in a
nonequilibrium plasma. Understanding the effect of viscosity
on photons could in turn be used to extract the transport
coefficients of QGP from photonic observables.

In this paper we have studied photon production through
bremsstrahlung and pair annihilation in a nonequilibrium QGP.
Using field theory, we derived integral equations describing
these channels and the LPM effect: Eqs. (82) and (76). Along
the way, we showed that the resummed rr propagator of
gluons in an anisotropic plasma has an imaginary part that
does not contribute at leading order but could be important at
higher order. We also derived a simple expression for the rr
propagator of hard, on-shell quarks. Finally, we presented a
way of summing up ladder diagrams without using the KMS
condition, which is only true in thermal equilibrium. Our
derivation of the integral equation is valid for low anisotropy.
In the special case of an isotropic plasma the integral equation
only depends on three nonequilibrium constants.

To solve the integral equation one needs to assume some
momentum distribution f (p). Work is ongoing on evaluating
the bulk and shear viscous corrections to photon production
using f (p) derived from kinetic theory. In the future, these
ideas could be used to analyze jets in a nonequilibrium plasma
and to extend this work to higher anisotropy. This might allow
for the extraction of transport coefficients of QGP from jet
observables.
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