Global phenomenological optical model potential for the ⁷Li projectile nucleus

Yongli Xu,^{1,*} Yinlu Han,^{2,†} Jiaqi Hu,² Haiying Liang,² Zhendong Wu,² Hairui Guo,³ and Chonghai Cai⁴

¹College of Physics and Electronic Science, Shanxi Datong University, Datong 037009, China

²Key Laboratory of Nuclear Data, China Institute of Atomic Energy, P.O. Box (275-41), Beijing 102413, China

³Institute of Applied Physics and Computational Mathematics, Beijing 100094, China

⁴Department of Physics, Nankai University, Tianjin 300071, China

(Received 29 October 2017; published 26 January 2018)

A new global phenomenological optical model potential for the ⁷Li projectile is derived from the available experimental data of elastic-scattering angular distributions and reaction cross sections from ²⁷Al to ²⁰⁸Pb with incident energies below 200 MeV. It is based on a smooth, unique functional form for the energy dependence of the potential depths, and physically constrained geometry parameters. The elastic-scattering angular distributions and reaction cross sections for other targets are also predicted by the obtained ⁷Li global phenomenological optical model potential at different incident energies. These results are further compared with the corresponding experimental data. The performance shows that the ⁷Li global phenomenological optical model potential can give a satisfactory description for ⁷Li elastic scattering.

DOI: 10.1103/PhysRevC.97.014615

I. INTRODUCTION

The phenomenological optical model potential (OMP) successfully describing the nucleon-nucleus (NA) interaction in elastic scattering was widely used in the study of nuclear structures and nuclear astrophysics [1]. It can be obtained by assuming a form of the potential and a dependence by a number of adjustable parameters for the real and imaginary parts that vary with the projectile energy and the target mass number. In particular, the global phenomenological OMP specified for both a mass region and an energy region can reliably predict the elastic scattering observables in these regions where no measurements exist [2].

In the last few years, it has been concentrated on the study of nuclear collisions induced by stable weakly bound nuclei at energies around the Coulomb barrier [3,4]. As the weakly bound nuclei present strong cluster structures with small separation energies, the cluster structures may influence in various ways the mechanism of reactions in which they take part. Also, a large probability of breakup or transfer exists in the nuclear reactions induced by these weakly bound nuclei. Moreover, the nuclear reaction mechanisms with weakly bound stable heavy ions have been investigated and many nonconventional behaviors observed [5].

Among the reactions involving weakly bound nuclei, the lithium with its weakly bound isotopes has always interested both experimental and theoretical nuclear physicists, especially on these reactions involving the ⁷Li incidence or emission. For example, the abundance of ⁷Li from big bang nucleosynthesis (BBN) is one of puzzles in nuclear astrophysics [6,7]. On the other hand, the ⁷Li nucleus exhibits an obvious cluster structure, so it can be used for probing the cluster structure of the projectile ground state [8].

With the development of the study on these reactions induced by the ⁷Li nucleus for a range of targets, the global phenomenological OMP of ⁷Li plays an important role to understand the complicated reaction mechanism. Recently, a large number of measurements on differential cross sections of ⁷Li elastic scattering at different incident energies, have brought us an opportunity to investigate global OMP for it. For this purpose, we carry out systematic studies of the global OMP on ⁷Li projectiles, which can provide information relevant to structure properties and explore the features induced by the coupled-channel effects, the breakup, and its subsequent effects of weakly bound ⁷Li.

Up to now, the different phenomenological OMPs of ⁷Li projectile based on the form of the Woods-Saxon potential have been given in Ref. [9], which is for individual nucleus and single incident energy. Moreover, a set of global phenomenological OMP parameters of ⁷Li [10] has also been made for 25 sets of ⁷Li data covering the mass range 24–208 and an energy range 28–88 MeV. However, less elastic-scattering angular distribution data and the neglected reaction cross sections in the fitting may lead to a large uncertainty of the parameters.

In this paper, a global phenomenological OMP for the ⁷Li projectile is derived from the experimental data of the elastic-scattering angular distributions and reaction cross sections from ²⁷Al to ²⁰⁸Pb targets with incident energies below 200 MeV. Furthermore, the elastic-scattering angular distributions and reaction cross sections are predicted for those targets outside of the mass range.

This paper is organized as follows. The basic phenomenological OMP formulas are presented and a new set of ⁷Li global OMP parameters are given in Sec. II. The comparisons of calculated results with experimental data are shown in Sec. III. Finally, the conclusions are given in Sec. IV.

^{*}xuyongli776@126.com

[†]hanyl@ciae.ac.cn

II. THE OPTICAL MODEL POTENTIAL AND PARAMETERS

A. Form of the optical model potential

The standard phenomenological OMP is defined as

$$V(r,E) = V_R(r,E) + i[W_S(r,E) + W_V(r,E)] + V_C(r), \quad (1)$$

where the first term V_R represents the real part potential, the second term W_S , and W_V are the surface and volume absorption imaginary part potential, respectively. The third term $V_C(r)$ is the Coulomb potential.

The depth of real and imaginary parts of potentials are assumed to be the Woods-Saxon type. The real part of OMP is expressed as

$$V_R(r,E) = -\frac{V_R(E)}{1 + \exp[(r - R_R)/a_R]}.$$
 (2)

The imaginary part for surface absorption of OMP is

$$W_{S}(r,E) = -4W_{S}(E)\frac{\exp[(r-R_{S})/a_{S}]}{\{1 + \exp[(r-R_{S})/a_{S}]\}^{2}}.$$
 (3)

The imaginary part for volume absorption of OMP is

$$W_V(r,E) = -\frac{W_V(E)}{1 + \exp[(r - R_V)/a_V]}.$$
 (4)

The Coulomb potential V_C is taken from the electric field of a spherical homogeneous charge density nucleus with radius R_C ,

$$V_{C}(r) = \begin{cases} \frac{zZe^{2}}{2R_{C}} \left(3 - \frac{r^{2}}{R_{C}^{2}}\right) & r < R_{C}, \\ \frac{zZe^{2}}{r} & r \ge R_{C}, \end{cases}$$
(5)

where Z and z are the charge of the target and projectile, respectively.

The potential depth is assumed to be dependent of incident energies (E in MeV),

$$V_R(E) = V_0 + V_1 E + V_2 E^2,$$
 (6)

$$W_S(E) = \max\{0, W_0 + W_1E\},\tag{7}$$

$$W_V(E) = \max\{0, U_0 + U_1E + U_2E^2\}.$$
 (8)

The radii of these potentials are assumed to be dependent of target masses (A),

$$R_i = r_i A^{\frac{1}{3}}, \quad i = R, S, V, C,$$
 (9)

where r_R , r_S , r_V , and r_C are the radius parameters of real part, the imaginary part of surface absorption, the imaginary part of volume absorption, as well as the Coulomb potential. The a_R , a_S , and a_V are the corresponding diffuseness width. The parameters V_0 , V_1 , V_2 , W_0 , W_1 , U_0 , U_1 , U_2 , r_R , r_S , r_V , r_C , a_R , a_S , and a_V are adjusted.

B. Parametrization of the optical model potential

The experimental data of elastic-scattering angular distributions and reaction cross sections for the ⁷Li projectile are collected and analyzed, which include those targets for the mass $27 \le A \le 208$ with incident energies below 200 MeV. The complete experimental databases of the elastic-scattering

TABLE I.	The $d\sigma/d\Omega$ database for ⁷ Li elastic scattering. The	E_{in}
is the incident	energy for different targets in the laboratory system	n.

Target	$E_{\rm in}({ m MeV})$	Ref.
²⁷ Al	6.0,7.0,8.0,9.0,10.0,11.0,12.0,14.0,16.0,18.0	[13]
	13.0,19.0,24.0	[14]
²⁸ Si	8.0,8.5,9.0,10.0,11.0,13.0,15.0,16.0	[15]
	11.5,13.0,16.0,21.0,26.0	[16]
	36.0	[17]
	177.8	[18]
⁴⁰ Ca	34.0	[19]
	88.7	[20]
⁴⁴ Ca	34.0	[21]
⁴⁸ Ca	34.0	[21]
	88.7	[20]
^{46,48} Ti	17.0	[22]
⁵⁴ Fe	36.0,42.0,48.0	[21]
⁵⁶ Fe	34.0	[19]
⁵⁸ Ni	14.22,16.25,18.28,19.0,20.31	[23]
	34.0	[21]
	42.0	[24]
⁶⁰ Ni	34.0	[21]
⁶² Ni	34.0	[25]
⁶⁵ Cu	25.0	[26]
^{64,68} Zn	34.0	[25]
⁸⁰ Se	14.0,14.5,15.0,15.5,16.0,17.0,18.0,19.0,20.0,23.0,26.0	[5]
⁸⁹ Y	60.0	[27]
⁹⁰ Zr	34.0	[21]
116 Sn	18.0,19.0,20.0,21.0,22.0,23.0,24.0,26.0,30.0,35.0	[28]
120 Sn	19.5,20.5,25.0	[29]
	20.0,22.0,24.0,26.0	[30]
	28.0,30.0,44.0	[31]
¹³⁸ Ba	21.0,22.0,23.0,24.0,28.0,30.0,32.0	[32]
	52.0	[33]
¹⁴⁰ Ce	52.0	[33]
¹⁴² Nd	52.0	[34]
144 Sm	21.6,22.1,22.6,23.0,25.0,27.0,29.0,30.0,32.0,35.0,40.8	[35]
	52.0	[34]
208 Pb	27.0	[<mark>36</mark>]
	29.0,33.0,39.0	[37]
	42.0	[38]
	52.0	[39]

angular distributions and reaction cross sections for 7 Li is detailed in Tables I and II.

In the present work, the elastic-scattering angular distributions and reaction cross sections of ⁷Li are fitted with the improved code APMN [11], which automatically searches global phenomenological OMP parameters on the basis of the improved fastest falling method [12] at incident energies below 300 MeV. All the potential parameter reasonable boundaries of the varied region are given by some physical limitation before the global phenomenological OMP parameters are automatically searched. The best OMP parameters are optimized with usual minimization of the χ^2 , which represents the deviation of the calculated results from the experimental values. We first get the χ square for each single target and then obtain the average value of total χ square for all of the targets. The χ_i^2

TABLE II. The reaction cross section database for incident ⁷Li.

Target	Ref.
²⁷ Al	[14,50]
²⁸ Si	[51-54]
^{nat.} Cu	[55]
⁶⁴ Zn	[56]
¹¹⁶ Sn	[28]
¹³⁸ Ba	[32]
²⁰⁸ Pb	[37,57]

for each target at all energy points, here *i* and *j*, respectively, indicate each target nucleus and each energy point, is defined as follows:

$$\chi_{i,\text{el}}^{2} = \frac{1}{N_{i,\text{el}}} \sum_{j=1}^{N_{i,\text{el}}} \frac{1}{K_{i,j,\text{el}}} \sum_{k=1}^{K_{i,j,\text{el}}} \left[\frac{\sigma_{i,j,\text{el}}^{\text{th}}(\theta_{i,j,k}) - \sigma_{i,j,\text{el}}^{\text{ex}}(\theta_{i,j,k})}{\Delta \sigma_{i,j,\text{el}}^{\text{ex}}(\theta_{i,j,k})} \right]^{2},$$
(10)

$$\chi_{i,\text{re}}^2 = \frac{1}{N_{i,\text{re}}} \sum_{j=1}^{N_{i,\text{re}}} \left[\frac{\sigma_{i,\text{re}}^{\text{th}}(j) - \sigma_{i,\text{re}}^{\text{ex}}(j)}{\Delta \sigma_{i,\text{re}}^{\text{ex}}(j)} \right]^2.$$
(11)

The average value of total chi square χ^2 is

$$\chi^{2} = \frac{1}{N} \sum_{i=1}^{N} \frac{W_{i,\text{el}} \chi^{2}_{i,\text{el}} + W_{i,\text{re}} \chi^{2}_{i,\text{re}}}{W_{i,\text{el}} + W_{i,\text{re}}},$$
(12)

where $N_{i,el}$ and $N_{i,re}$ are energy point numbers of the experimental elastic-scattering angular distributions and reaction cross sections for the *i*th nucleus. $K_{i,j,el}$ is the angle numbers of the experimental elastic-scattering angular distributions. The superscripts th and ex represent the theoretically calculated value and the experimental value, respectively. $\sigma_{i,j,el}(\theta_{i,j,k})$ and $\sigma_{i,re}(j)$ are the elastic-scattering angular distributions for the *k*th outgoing angle and reaction cross sections, as well as $\Delta \sigma$ is the experimental error of corresponding data. $W_{i,el}$ and $W_{i,re}$ are the weight of the experimental elastic-scattering angular distributions and reaction cross sections for the *i*th nucleus. At the beginning of optimizing, the weight factors $W_{i,el}$ and $W_{i,re}$ both are taken as 1. *N* is the number of the considered nuclei.

On the basis of the elastic-scattering angular distributions in the mass range $27 \le A \le 208$, as well as using the improved optimization procedure, the global phenomenological OMP parameters for the ⁷Li projectile are obtained and listed in Table III.

III. CALCULATED RESULTS AND ANALYSIS

In this section, we first analyze the global OMP for the ⁷Li projectile. Then, the elastic-scattering angular distributions and reaction cross sections are calculated using the obtained global phenomenological OMP for ⁷Li in the target mass range $27 \leq A \leq 208$ below 200 MeV. These results are further compared with the corresponding experimental data. Finally, the elastic-scattering angular distributions and reaction cross sections are predicted for those targets outside of mass range.

Parameter	Value	Unit
$\overline{V_0}$	181.658	MeV
V_1	-0.0255	
V_2	-0.000627	
$\tilde{W_0}$	40.506	MeV
W_1	-0.125	
U_0	11.092	MeV
U_1	0.317	
U_2	-0.000223	
r_R	1.188 (A ≤ 100)	fm
	1.238 (A > 100)	fm
r _S	1.182	fm
r_V	1.593	fm
a_R	0.852	fm
a_S	0.869	fm
a_V	0.598	fm
r _C	1.802	fm

TABLE III. The global phenomenological OMP parameters for

⁷Li projectile.

The radial dependencies on the real part and imaginary part of global OMP are calculated for different targets at incident energies of 20, 100, 150, 200, 250, and 300 MeV. The results for ⁵⁸Ni are displayed in Fig. 1. It is found that the depth of real part potential decreases with increasing radius and incident energy. The absolute value of imaginary part firstly increases and then decreases with increasing incident radius. The contribution to imaginary part of global OMP changes from the dominant surface absorption into the volume absorption with increasing incident energy.

Another important quantity in the study of OMP is the volume integral of potential. The volume integral per nucleon of OMP is defined as

$$J_V = \frac{1}{A_p A_T} \int V_R(E, \vec{r}) d\vec{r},$$
(13)

$$J_W = \frac{1}{A_p A_T} \int [W_S(E, \vec{r}) + W_V(E, \vec{r})] d\vec{r}, \qquad (14)$$

where A_p and A_T are the mass numbers for projectile and target, respectively.

The ¹Li volume integrals per nucleon of real part and imaginary part are calculated through our global phenomenological OMP for different targets. Figure 2 shows the results for ⁵⁸Ni. It is observed that the volume integral per nucleon of real part J_V decreases with increasing incident energy. However, the total absorption volume integral per nucleon J_W and the volume absorption per nucleon J_{W_V} increase with increasing incident energy. The volume integral per nucleon of surface absorption J_{W_S} decreases as the projectile energy increases.

So far, a large number of the elastic-scattering angular distributions have been measured for the reactions induced by ⁷Li. First, we calculate the elastic-scattering angular distributions using the ⁷Li global OMP for different targets at the same incident energies. These results are further compared with the existing experiment data.



FIG. 1. The radial dependence of our global OMP at incident energies of 20, 100, 150, 200, 250, and 300 MeV for ⁵⁸Ni. (a) the real part; (b) the imaginary part.

Figure 3 presents the comparisons with the experimental data in the Rutherford ratio at incident ⁷Li energies 34.0 MeV. It is observed that this potential reproduces the elastic-scattering angular distributions data [19,21,25] well for ^{44,48}Ca, ⁵⁶Fe, ^{58,60,62}Ni, ^{64,68}Zn, and ⁹⁰Zr targets. For ⁴⁰Ca, there are two sets of experimental data [19,21]. The calculation is in somewhat good agreement with the experimental data from Ref. [21], and it slightly underestimates the data from Ref. [19] above 100 deg. In the same figure, the elastic-scattering angular distributions for light targets ¹¹B, ^{12,13}C, and ²⁴Mg predicted by the ⁷Li global OMP are also presented. From the figure, one can see that the good agreements with the experimental data [40– 42] are obtained except for ¹¹B and ^{12,13}C above 50 deg, where the predictions are smaller than the experimental data [40,41]. The disagreement could be from the neglect coupling effect between the elastic channel and other reaction mechanisms for these light targets. The calculations in the backward-angle area may be improved if the α cluster and sequential transfer reactions, as well as unconsidered contributions of inelastic channels were taken into account in the calculations [43,44]. Moreover, more significant influence from the nuclear structure

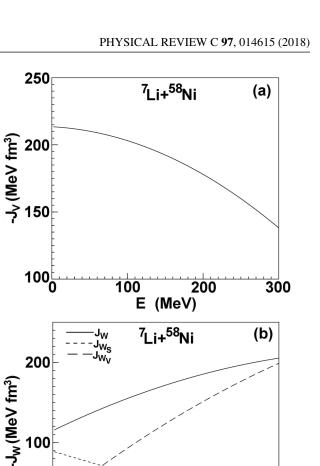


FIG. 2. Comparison between volume integrals of per nucleon for ⁵⁸Ni target calculated by using the ⁷Li global OMP (solid curve) (a) the real part J_V ; (b) the imaginary part J_W .

E (MeV)

200

300

100

100

0

0

effect may present for these light targets. This aspect needs to be investigated further.

The elastic-scattering angular distributions at incident ⁷Li energies 52.0 MeV are calculated for ¹³⁸Ba, ¹⁴⁰Ce, ¹⁴²Nd, ¹⁴⁴Sm, and ²⁰⁸Pb. The results are shown in Fig. 4. By comparison with the experimental data, the reasonable agreements with the data [33,34] are obtained for ¹³⁸Ba, ¹⁴⁰Ce, ¹⁴²Nd, and ¹⁴⁴Sm. The calculation slightly underestimates the data [39] for ²⁰⁸Pb at above 60 deg. For the disagreement, it should be further verified by some new experimental data.

In addition, the elastic-scattering angular distributions at incident ⁷Li energies 88.7 MeV are also calculated for ^{40,48}Ca. The satisfactory agreements between the calculations and experimental data [20] are presented in Fig. 5. In the figure, the elastic-scattering angular distributions for light targets ^{24,26}Mg are also predicted. One can see that the good agreements with the experimental data [20] are obtained for ²⁶Mg, while there is slight overestimation at above 40 deg for ²⁴Mg.

Then, the elastic-scattering angular distributions for the same target at different incident energies are calculated by the obtained ⁷Li global OMP.

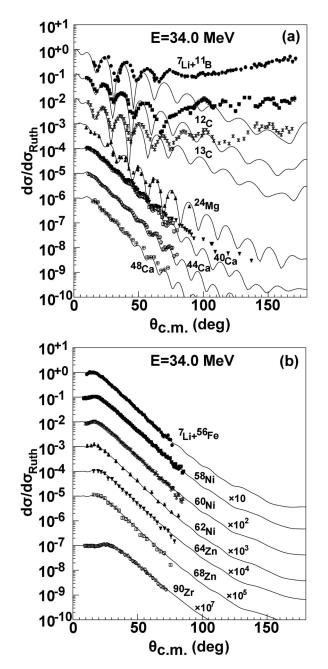


FIG. 3. Calculated elastic-scattering angular distributions in the Rutherford ratio compared with the experimental data [19,21,25,40-42] at incident ⁷Li energies 34.0 MeV.

Figure 6 shows the comparisons with the experimental data [13,14] for ²⁷Al. The good agreements are obtained with the experimental data [14]. The calculations are also in agreement with the experimental data from Ref. [13] except for those of the incident energies 11.0 and 14.0 MeV, where there is a slight underestimation above 70 deg.

The calculations of elastic-scattering angular distributions are also compared with the experimental data [15-18] for ²⁸Si in Fig. 7. They are slightly smaller than the experimental data [15] above 100 deg, as is shown in Fig. 7(a). However, in Fig. 7(b), the good agreements with the different experimental data [16-18] are obtained below 177.8 MeV.

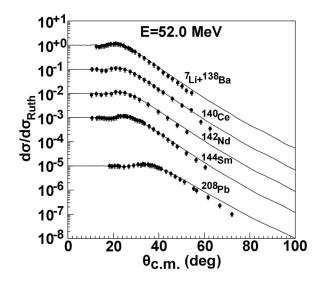


FIG. 4. Same as Fig. 3, but for 52.0 MeV [33,34,39].

In Fig. 8, the elastic-scattering angular distributions are calculated by the global ⁷Li OMP for ⁵⁴Fe at incident energies 36.0, 42.0, and 48.0 MeV. The results in the Rutherford ratio are further compared with the experimental data [21]. The close agreements between them are achieved within the experimental error. Additionally, the elastic-scattering angular distributions for ⁵⁸Ni are also compared with the experimental data [21–24] from 14.22 to 42.0 MeV, which is shown in Fig. 9. The excellent agreement are also obtained.

In Fig. 10, the elastic-scattering angular distributions for ⁸⁰Se at incident energies from 14.0 to 26.0 MeV are displayed. The comparison between the calculations and the experimental data [5] reveals the reasonable agreement.

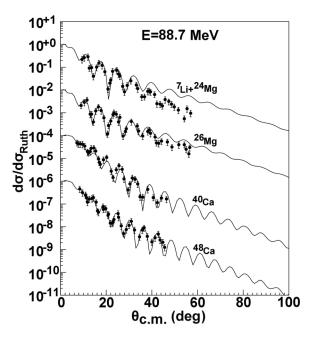


FIG. 5. Same as Fig. 3, but for 88.7 MeV [20].

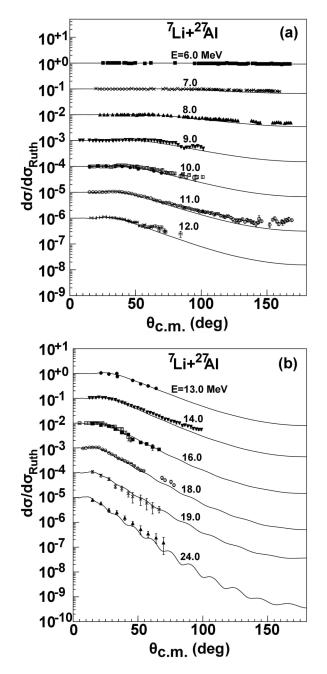
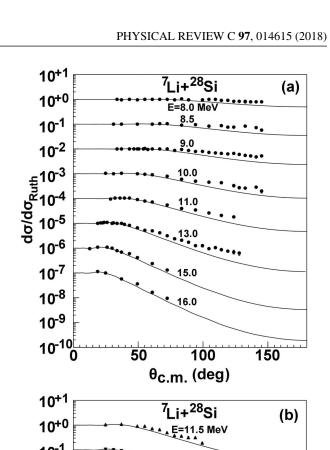



FIG. 6. Calculated elastic-scattering angular distributions in the Rutherford ratio compared with the experimental data [13,14] for ²⁷Al.

Moreover, the elastic-scattering angular distributions for some targets are measured at single incident energy. The elastic-scattering angular distributions for ⁶⁵Cu are calculated and compared with the corresponding experimental data [26] at incident energies 25.0 MeV, which is shown in Fig. 11. In Fig. 11, the comparisons with the experimental data [27] for ⁸⁹Y at incident energies 60.0 MeV are also presented. One can see that good agreements are obtained.

The elastic-scattering angular distributions for ¹¹⁶Sn at incident energies from 18.0 to 35.0 MeV are also analyzed. The comparisons with experiment data [28] are shown in

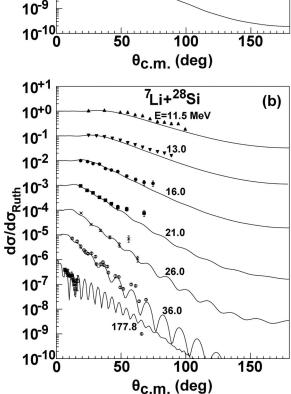


FIG. 7. Same as Fig. 6, but for ²⁸Si [15–18].

Fig. 12. It gives a slight underestimation of the experimental data [28] at incident energies from 21.0 to 26.0 MeV above 100 deg. At the other incident energies, good agreement is observed. Furthermore, we also calculate the elastic-scattering angular distributions for ¹²⁰Sn and compare with the latest experimental data [29–31]. However, it is clear from Fig. 12 that the calculations are in excellent agreement with the experimental data at incident energies from 19.5 to 44.0 MeV.

In Figs. 13 and 14, the elastic-scattering angular distributions for ¹³⁸Ba and ¹⁴⁴Sm are also obtained by the ⁷Li global phenomenological OMP. The comparisons with experiment data [32,35] are performed for them. From these figures, one can see that this potential reproduces the elastic-scattering

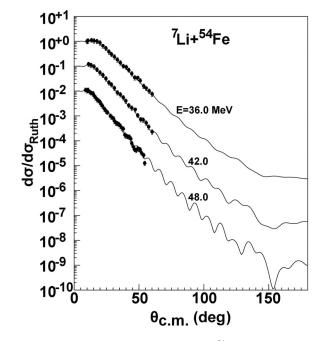


FIG. 8. Same as Fig. 6, but for ⁵⁴Fe [21].

angular distributions data [32] well for ¹³⁸Ba at incident energies from 21.0 to 32.0 MeV. The calculations are also in good agreement with the experimental data for ¹⁴⁴Sm at incident energies from 21.6 to 35.0 MeV, while the theoretical curve underestimates experimental values [35] at incident energies 40.8 MeV above 70 deg.

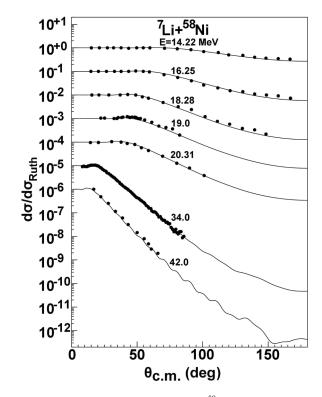


FIG. 9. Same as Fig. 6, but for ⁵⁸Ni [21–24].

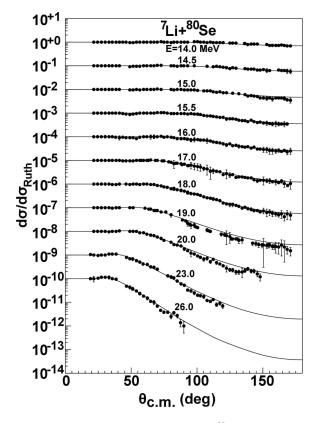


FIG. 10. Same as Fig. 6, but for ⁸⁰Se [5].

The calculations of elastic-scattering angular distributions for ²⁰⁸Pb are compared with the experimental data from 27.0 to 42.0 MeV in Fig. 15. It can be observed that the calculated results well reproduce the experimental data [36,38] at incident energies 27.0 and 42.0 MeV. But the calculations underestimate the experimental data [37] at 33.0 MeV above 100 deg; unexpectedly they overestimate the data from the same experiment at 39.0 MeV.

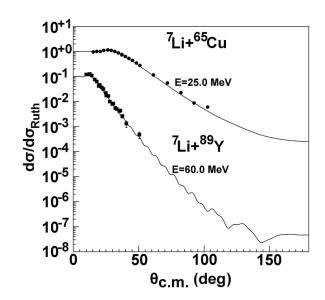


FIG. 11. Same as Fig. 6, but for ⁶⁵Cu and ⁸⁹Y [26,27].

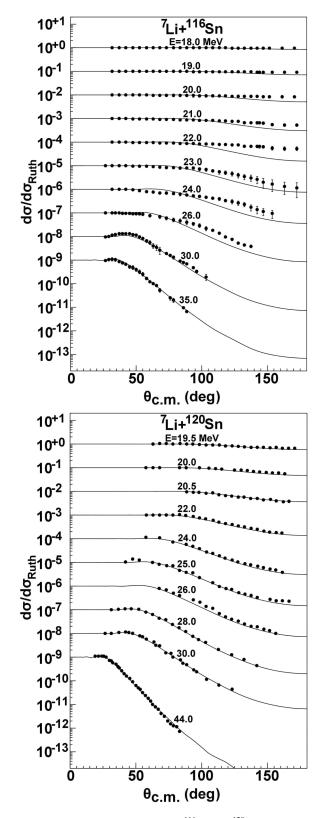


FIG. 12. Same as Fig. 6, but for ¹¹⁶Sn and ¹²⁰Sn [28–31].

Furthermore, the elastic-scattering angular distributions for some targets are measured at the same incident angle with different incident energies. The comparisons between the

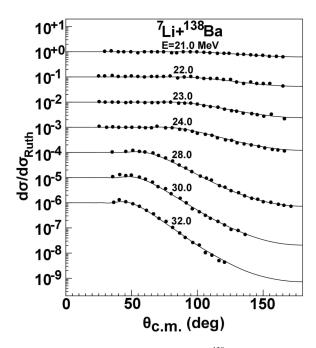


FIG. 13. Same as Fig. 6, but for ¹³⁸Ba [32].

optical model calculations and corresponding experimental data are made for different targets.

In Fig. 16, it can be seen that the ⁷Li OMP gives a good description of experimental data [45,46] in the error range for ²⁷Al at incident angles 140.0 and 165.0 deg. Up to now, there have been three sets of experimental data [47–49] for 170 deg. The calculated angular distributions at 170 deg are consistent with the experimental data [47,48] below about 8 MeV, while they underestimate the experimental value [49] above 8 MeV. Moreover, some experimental data at the other incident angles are given in Ref. [49] and the calculations are also compared with the corresponding data. The results are shown in Fig. 17.

The elastic-scattering angular distributions for ²⁸Si and ⁴⁸Ti are also compared with the experimental data [45,47,48] at 140 and 170 deg, as shown in Fig. 18. A good agreement is observed in the error range.

It is well known that the reaction cross section calculated with the optical model is important for the evaporation part of intranuclear cascade models and semiclassical pre-equilibrium models. All these nuclear models for the nonelastic channels rely on various ingredients, such as discrete level schemes, level densities, gamma-ray strength functions, fission barriers, etc. Partial wave analysis of elastic-scattering angular distributions results in sets of phase shifts that also uniquely determine the reaction cross sections. So, the reaction cross sections are also calculated by our global OMP for different targets and they are further compared with the corresponding experimental data.

In Fig. 19, the reaction cross sections for ²⁷Al and ²⁸Si calculated by the obtained ⁷Li global OMP are presented as well as the experimental data [14,50–54]. For ²⁷Al, only the experimental data at the incident energies below 30 MeV are available and a good agreement is obtained with the calculations. For ²⁸Si, the calculations of reaction cross sections are also consistent with the experimental data below 20 MeV and

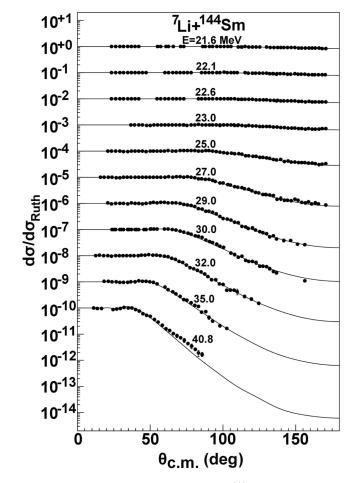


FIG. 14. Same as Fig. 6, but for ¹⁴⁴Sm [35].

those of above 200 MeV are also measured. The prediction is in good agreement with the corresponding experimental data [51].

FIG. 15. Same as Fig. 6, but for ²⁰⁸Pb [36–38].

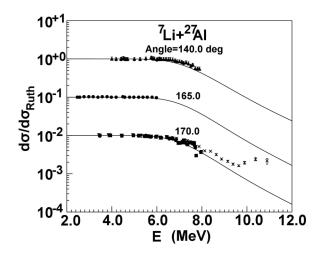


FIG. 16. Calculated elastic-scattering angular distributions in the Rutherford ratio at the same incident angle compared with the experimental data for 27 Al [45–49].

Figure 20 shows the reaction cross sections calculated by the global OMP for ^{63,65}Cu and ⁶⁴Zn. There are no experimental data of reaction cross sections for ^{63,65}Cu. We compare the results with the experimental data [55] of the ^{nat.}Cu target. The reasonable agreements are achieved above 200 MeV for ^{63,65}Cu, while they are smaller than the data from the same experiment at incident energies about 160 MeV. For ⁶⁴Zn, it only has experimental data at incident energies 20.0 and 22.0 MeV. From the figure, it can be seen the calculations are also in excellent agreement with the experimental data [56].

The results of reaction cross sections for ¹¹⁶Sn and ¹³⁸Ba are calculated by the global OMP. The comparisons with the experimental data [28] are shown in Figs. 21 and 22. One can

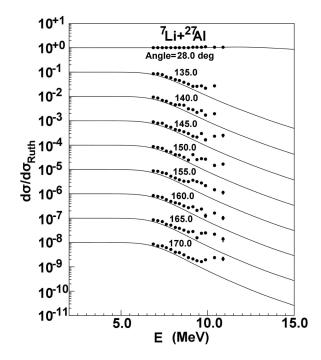


FIG. 17. Same as Fig. 16, but for other incident angles [49].

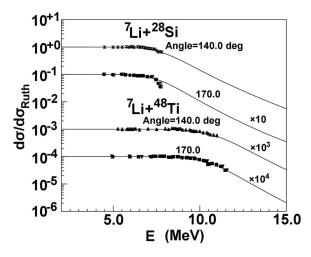


FIG. 18. Same as Fig. 16, but for ²⁸Si and ⁴⁸Ti [45,47,48].

see that the results are consistent with the experimental data for both targets. Furthermore, the reaction cross sections for ²⁰⁸Pb are also compared with the corresponding experimental data [37]. The good agreements are shown in Fig. 22. Moreover, the experiment from Ref. [57] measured the reaction cross sections

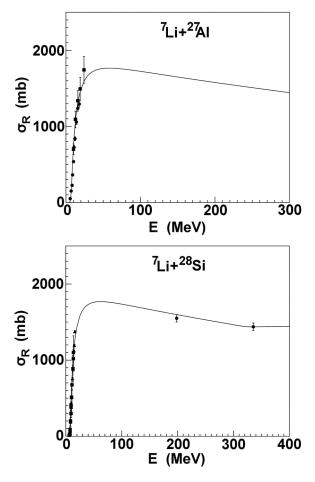


FIG. 19. Comparison between the optical model calculation and experimental data [14,50–54] of ⁷Li reaction cross sections for ²⁷Al and ²⁸Si.

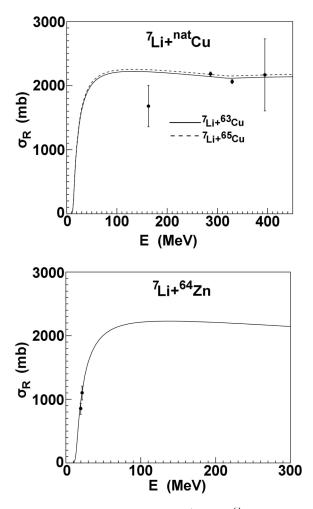


FIG. 20. Same as Fig. 19, but for ^{nat.}Cu and ⁶⁴Zn [55,56].

for ^{nat.}Pb at incident energies 343 MeV. The comparisons between the predictions and the experimental data are performed for 208 Pb. The good agreement is presented in Fig. 23.

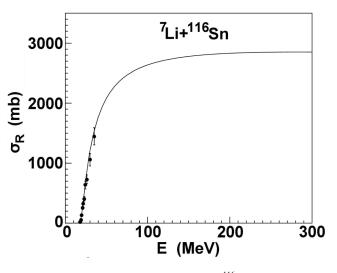


FIG. 21. Same as Fig. 19, but for ¹¹⁶Sn [28].

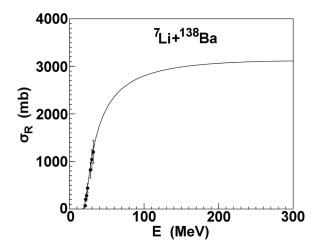


FIG. 22. Same as Fig. 19, but for ¹³⁸Ba [32].

From the above figures, it is revealed that there is a common tendency that the reaction cross sections for heavy nuclei increase with increasing incident energy from Coulomb barrier up to 200 MeV. However, they increase first, and then slightly decrease with increasing incident energy for light targets.

Finally, the observables in the target mass range $7 \le A \le 26$ are further predicted at incident energies below 200 MeV. The comparisons of elastic-scattering angular distributions for ⁹Be, ¹²C, and ¹⁶O with the experimental data [17,41,58–67] are shown in Figs. 24 to 26. From these figures, the reasonable agreements can be found between them for ¹²C at incident energies from 7.5 to 131.8 MeV. For ⁹Be and ¹⁶O, there are some discrepancies at some incident energies. It could be that some special reactions are not considered in the calculations for these lighter targets, such as the compound nucleus elastic scattering angular distributions, etc.

The calculations of elastic-scattering angular distributions for those targets in the mass range 209 $< A \le 239$, that is actinide nuclei, are also predicted by the ⁷Li global OMP. In Fig. 27, the elastic-scattering angular distributions for ²³²Th are compared with the experimental data [68] from 24.0 to 44.0 MeV. A good agreement is also observed between them.

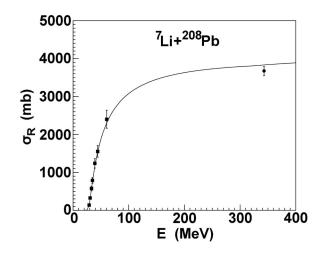


FIG. 23. Same as Fig. 19, but for ²⁰⁸Pb [37,57].

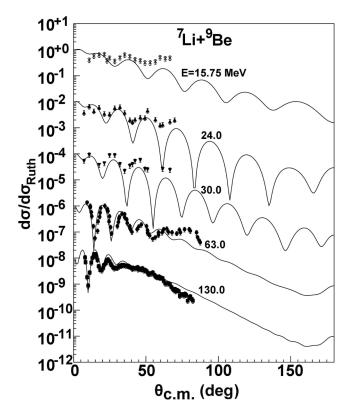


FIG. 24. Comparison between the optical model prediction and experimental data [58,59] of ⁷Li elastic-scattering angular distributions for ⁹Be.

Moreover, the reaction cross sections for some lighter targets are further predicted and compared with the experimental data below 200 MeV. Figure 28 gives the comparisons of

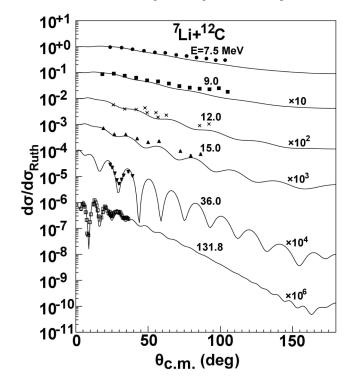


FIG. 25. Same as Fig. 24, but for ¹²C [17,41,60–64].

10+1

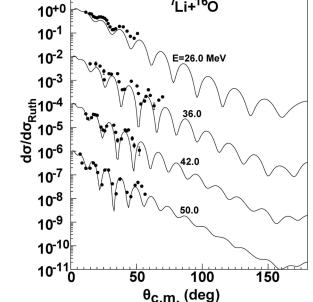


FIG. 26. Same as Fig. 24, but for ¹⁶O [17,65–67].

reaction cross sections predicted by the obtained ⁷Li global OMP with the corresponding experimental data [58] for ¹³C at incident energies 63.0 and 130.0 MeV. The satisfactory agreements are shown. Similarly, the reaction cross sections for ⁹Be also agree with the corresponding experimental data.

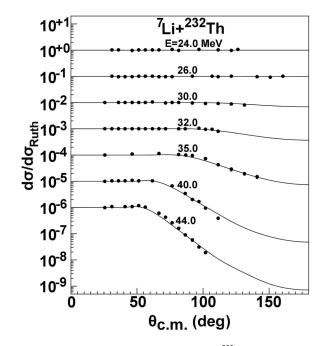


FIG. 27. Same as Fig. 24, but for ²³²Th [68].

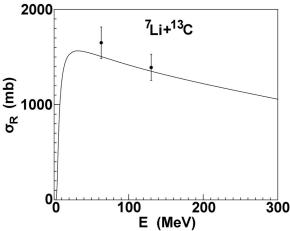


FIG. 28. Comparison between the optical model prediction and experimental data [58] of ⁷Li reaction cross sections for 13 C.

IV. SUMMARY AND CONCLUSIONS

We present a new set of ⁷Li global OMP parameters for the mass range of target nuclei from 27 to 209 at incident energies below 200 MeV by simultaneously fitting the experimental data of elastic-scattering angular distributions and reaction cross sections. The comparisons and analysis are made between the calculation results and experimental data. Good agreement are obtained over the whole energy range. The predictions are also performed for the mass number of targets nuclei A < 27 and the actinide nuclei. A comparison with the experimental data shows that the predictions are also reasonable for actinide nuclei. The results of elastic-scattering angular distributions for some light targets slightly underestimate the experimental data in backward-angle area. The performed calculations reveal that the obtained ⁷Li global OMP will be significant to investigators making systematic studies for nuclear model calculations and experimental analysis involving weakly bound nucleus ⁷Li scattering, especially for the breakup or transfer reactions. To improve the results of the light nuclei, the best-fit OMP for them will be extracted in the next work. Moreover, the threshold anomaly at energies around the Coulomb barrier was studied for the reactions involving weakly bound projectiles in recent years. The presence of the behavior is shown that the breakup and transfer process is a very important open channel at energies around or below the Coulomb barrier. In the future work, the threshold anomaly will be discussed by the dispersion relation in detail and the other reaction mechanisms will also be further studied for the reactions involving ⁷Li projectile.

ACKNOWLEDGMENTS

This work is supported by China National Natural Science Foundation under Grants No. 11405099 and No. 11575291. This work is also a part of IAEA Coordinated Research Projects (CRPs) on Recommended Input Parameter Library (RIPL) for Fission Cross Section Calculations under Contract No. 20464.

- P. E. Hodgson, *The Optical Model of Elastic Scattering* (Clarendon, Oxford, 1963).
- [2] A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).
- [3] P. R. S. Gomes, J. Lubian, L. F. Canto, D. R. Otomar, D. R. Mendes Junior, P. N. de Faria, R. Linares, L. Sigaud, J. Rangel, J. L. Ferreira *et al.*, Few Body Syst. **57**, 165 (2016).
- [4] L. F. Canto, P. R. S. Gomes, R. Donangelo, and M. S. Hussein, Phys. Rep. 424, 1 (2006).
- [5] L. Fimiani, J. M. Figueira, G. V. Marti, J. E. Testoni, A. J. Pacheco, W. H. Z. Ca Rdenas, A. Arazi, O. A. Capurro, M. A. Cardona, P. Carnelli *et al.*, Phys. Rev. C 86, 044607 (2012).
- [6] R. Cayrel, M. Steffen, P. Bonifacio, H. Ludwig, and E. Caffau, arXiv:0810.4290v2.
- [7] F. Spite and M. Spite, Astron. Astrophys. 115, 357 (1982).
- [8] A. Pakou, V. Soukeras, F. Cappuzzello, L. Acosta, C. Agodi, X. Aslanoglou, S. Calabrese, D. Carbone, M. Cavallaro, A. Foti *et al.*, Phys. Rev. C 94, 014604 (2016).
- [9] J. Cook, Atom. Data Nucl. Data Tables 26, 19 (1981).
- [10] J. Cook, Nucl. Phys. A 388, 153 (1982).
- [11] Q. B. Shen, Nucl. Sci. Eng. 141, 78 (2002).
- [12] B. Alder, S. Fernbach, and M. Rotenberg, *Methods in Compu*tational Physics (Academic Press, New York, 1966).
- [13] J. M. Figueira, D. Abriola, J. O. Fernandez-Niello, A. Arazi, O. A. Capurro, E. De Barbara, G. V. Marti, D. Martinez-Heimann, A. J. Pacheco, J. E. Testoni *et al.*, Phys. Rev. C 73, 054603 (2006).
- [14] K. Kalita, S. Verma, R. Singh, J. J. Das, A. Jhingan, N. Madhavan, S. Nath, T. Varughese, P. Sugathan, V. V. Parkar *et al.*, Phys. Rev. C 73, 024609 (2006).
- [15] A. Pakou, N. Alamanos, G. Doukelis, A. Gillibert, G. Kalyva, M. Kokkoris, S. Kossionides, A. Lagoyannis, A. Musumarra, C. Papachristodoulou *et al.*, Phys. Rev. C **69**, 054602 (2004).
- [16] M. Sinha, S. Roy, P. Basu, H. Majumdar, S. Santra, V. V. Parkar, K. S. Golda, and S. Kailas, Eur. Phys. J. C Web Conferences 17, 03004 (2011).
- [17] P. Schumacher, N. Ueta, H. H. Duhm, K.-L. Kubo, and W. J. Klages, Nucl. Phys. A 212, 573 (1973).
- [18] M. Lewitowicz, C. Borcea, F. Carstoiu, M. G. Saint-Laurent, A. Kordyasz, R. Anne, P. Roussel-Chomaz, R. Bimbot, V. Barrel, S. Dogny *et al.*, Nucl. Phys. A 562, 301 (1993).
- [19] D. P. Sanderson, S. P. Van Verst, J. Cook, K. W. Kemper, and J. S. Eck, Phys. Rev. C 32, 887 (1985).
- [20] M. F. Steeden, Jennifer Coopersmith, S. J. Cartwright, M. D. Cohler, N. M. Clarke, and R. J. Griffiths, J. Phys. G 6, 501 (1980)
- [21] C. W. Glover, R. I. Cutler, and K. W. Kemper, Nucl. Phys. A 341, 137 (1980).
- [22] T. P. Morrison, G. D. Jones, L. P. Ekstroem, F. Kearns, P. R. G. Lornie, O. M. Mustaffa, H. G. Price, D. N. Simister, P. J. Twin, and R. Wadsworth, J. Phys. G 5, 1751 (1979).
- [23] K. Zerva, A. Pakou, N. Patronis, P. Figuera, A. Musumarra, A. Di Pietro, M. Fisichella, T. Glodariu, M. La Commara, M. Lattuada *et al.*, Eur. Phys. J. A 48, 102 (2012).
- [24] D. Gupta, C. Samanta, R. Kanungo, M. K. Sharan, S. Kailas, A. Chatterjee, K. Mahata, and A. Shrivastava, Nucl. Phys. A 646, 161 (1999).
- [25] R. I. Cutler, M. J. Nadworny, and K. W. Kemper, Phys. Rev. C 15, 1318 (1977).
- [26] A. Shrivastava, A. Navin, N. Keeley, K. Mahata, K. Ramachandran, V. Nanal, V. V. Parkar, A. Chatterjee, and S. Kailas, Phys. Lett. B 633, 463 (2006).

- [27] R. Wadsworth, M. D. Cohler, M. J. Smithson, D. L. Watson, F. Jundt, L. Kraus, I. Linck, and J. C. Sens, J. Phys. G 9, 1237 (1983).
- [28] N. N. Deshmukh, S. Mukherjee, B. K. Nayak, D. C. Biswas, S. Santra, E. T. Mirgule, S. Appannababu, D. Patel, A. Saxena, R. K. Choudhury *et al.*, Eur. Phys. J. A 47, 118 (2011).
- [29] D. P. Sousa, D. Pereira, J. Lubian, L. C. Chamon, J. R. B. Oliveira, E. S. Rossi Jr., C. P. Silva, P. N. de Faria, V. Guimaraes, R. Lichtenthaler *et al.*, Nucl. Phys. A **836**, 1 (2010).
- [30] V. A. B. Zagatto, J. Lubian, L. R. Gasques, M. A. G. Alvarez, L. C. Chamon, J. R. B. Oliveira, J. A. Alcantara-Nunez, N. H. Medina, V. Scarduelli, A. Freitas *et al.*, Phys. Rev. C **95**, 064614 (2017).
- [31] A. Kundu, S. Santra, A. Pal, D. Chattopadhyay, R. Tripathi, B. J. Roy, T. N. Nag, B. K. Nayak, A. Saxena, and S. Kailas, Phys. Rev. C 95, 034615 (2017).
- [32] A. M. M. Maciel, P. R. S. Gomes, J. Lubian, R. M. Anjos, R. Cabezas, G. M. Santos, C. Muri, S. B. Moraes, R. Liguori Neto, N. Added *et al.*, Phys. Rev. C **59**, 2103 (1999).
- [33] P. D. Clark, T. R. Ophel, J. S. Eck, A. F. Zeller, J. Nurzynski, D. C. Weisser, and D. F. Hebbard, Nucl. Phys. A 349, 258 (1980).
- [34] P. D. Clark, T. R. Ophel, J. Nurzynski, C. H. Atwood, and D. F. Hebbard, Nucl. Phys. A 352, 267 (1981).
- [35] J. M. Figueira, J. O. Fernandez Niello, A. Arazi, O. A. Capurro, P. Carnelli, L. Fimiani, G. V. Marti, D. Martinez Heimann, A. E. Negri, A. J. Pacheco *et al.*, Phys. Rev. C 81, 024613 (2010).
- [36] V. V. Parkar, V. Jha, B. J. Roy, S. Santra, K. Ramachandran, A. Shrivastava, A. Chatterjee, S. R. Jain, A. K. Jain, and S. Kailas, Phys. Rev. C 78, 021601 (2008).
- [37] N. Keeley, S. J. Bennett, N. M. Clarke, B. R. Fulton, G. Tungate, P. V. Drumm, M. A. Nagarajan, and J. S. Lilley, Nucl. Phys. A 571, 326 (1994).
- [38] D. Gupta, C. Samanta, A. Chatterjee, S. Kailas, B. J. Roy, K. Mahata, and A. Shrivastava, Nucl. Phys. A 683, 3 (2001).
- [39] A. F. Zeller, D. C. Weisser, T. R. Ophel, and D. F. Hebbard, Nucl. Phys. A 332, 515 (1979).
- [40] J. Cook, M. N. Stephens, and K. W. Kemper, Nucl. Phys. A 466, 168 (1987).
- [41] E. E. Bartosz, N. Keeley, P. D. Cathers, M. W. Cooper, K. W. Kemper, F. Marechal, and K. Rusek, Phys. Rev. C 64, 014606 (2001).
- [42] G. E. Moore, K. W. Kemper, and L. A. Charlton, Phys. Rev. C 11, 1099 (1975).
- [43] A. A. Rudchik, A. T. Rudchik, G. M. Kozeratska, O. A. Ponkratenko, E. I. Koshchy, A. Budzanowski, B. Czech, S. Kliczewski, R. Siudak, I. Skwirczynska *et al.*, Phys. Rev. C 72, 034608 (2005).
- [44] L. Yang, C. J. Lin, H. M. Jia, X. X. Xu, F. Yang, H. Q. Zhang, Z. H. Liu, P. F. Bao, and L. J. Sun, Phys. Rev. C 87, 047601 (2013).
- [45] A. Nurmela, E. Rauhala, and J. Raisanen, Nucl. Instrum. Methods B 155, 211 (1999).
- [46] M. Mayer, B. Diaz-Herrera, and M. Schneider, Nucl. Instrum. Methods B 207, 263 (2003).
- [47] J. Raisanen and E. Rauhala, Nucl. Instrum. Methods B 73, 439 (1993).
- [48] E. Rauhala and J. Raisanen, J. Appl. Phys. 75, 642 (1994).
- [49] D. Abriola, P. Carnelli, A. Arazi, J. M. Figueira, O. A. Capurro, M. A. Cardona, J. O. Fernandez Niello, D. Hojman, L. Fimiani, P. Grinberg *et al.*, Nucl. Instrum. Methods B **268**, 1793 (2010).
- [50] E. A. Benjamim, A. Lepine-Szily, D. R. Mendes Jr, R. Lichtenthaler, V. Guimaraes, P. R. S. Gomes, L. C. Chamon, M. S.

Hussein, A. M. Moro, A. Arazi et al., Phys. Lett. B 647, 30 (2007).

- [51] R. E. Warner, R. A. Patty, P. M. Voyles, A. Nadasen, F. D. Becchetti, J. A. Brown, H. Esbensen, A. Galonsky, J. J. Kolata, J. Kruse *et al.*, Phys. Rev. C 54, 1700 (1996).
- [52] A. Pakou, K. Rusek, N. Alamanos, X. Aslanoglou, M. Kokkoris, A. Lagoyannis, T. J. Mertzimekis, A. Musumarra, N. G. Nicolis, D. Pierroutsakou *et al.*, Eur. Phys. J. A **39**, 187 (2009).
- [53] A. Pakou, K. Rusek, D. Pierroutsakou, N. Alamanos, P. A. Assimakopoulos, N. Divis, G. Doukelis, A. Gillibert, S. Harissopulos, G. Kalyva *et al.*, Phys. Rev. C 76, 054601 (2007).
- [54] A. Musumarra, P. Figuera, F. De Luca, A. Di Pietro, P. Finocchiaro, M. Fisichella, M. Lattuada, A. Pakou, M. G. Pellegriti, G. Randisi *et al.*, Nucl. Instrum. Methods A 612, 399 (2010).
- [55] M. G. Saint-Laurent, R. Anne, D. Bazin, D. Guillemaud-Mueller, U. Jahnke, Jin Gen Ming, A. C. Mueller, J. F. Bruandet, F. Glasser, S. Kox *et al.*, Z. Phys. A **332**, 457 (1989).
- [56] P. R. S. Gomes, M. D. Rodriguez, G. V. Marti, I. Padron, L. C. Chamon, J. O. F. Niello, O. A. Capurro, A. J. Pacheco, J. E. Testoni, A. Arazi, M. Ramirez *et al.*, Phys. Rev. C 71, 034608 (2005).
- [57] R. E. Warner, M. H. McKinnon, N. C. Shaner, F. D. Becchetti, A. Nadasen, D. A. Roberts, J. A. Brown, A. Galonsky, J. J. Kolata, R. M. Ronningen *et al.*, Phys. Rev. C 62, 024608 (2000).
- [58] F. Carstoiu, L. Trache, R. E. Tribble, and C. A. Gagliardi, Phys. Rev. C 70, 054610 (2004).
- [59] S. Verma, J. J. Das, A. Jhingan, K. Kalita, S. Barua, K. S. Golda, N. Madhavan, P. Sugathan, S. Nath, T. Varughese *et al.*, Eur. Phys. J. A 44, 385 (2010).

- [60] M. F. Vineyard, J. Cook, K. W. Kemper, and M. N. Stephens, Phys. Rev. C 30, 916 (1984).
- [61] M. D. Cortina-Gil, P. Roussel-Chomaz, N. Alamanos, J. Barrette, W. Mittig, F. S. Dietrich, F. Auger, Y. Blumenfeld, J. M. Casandjian, M. Chartier *et al.*, Phys. Lett. B 401, 9 (1997).
- [62] V. V. Parkar, K. Mahata, S. Santra, S. Kailas, A. Shrivastava, K. Ramachandran, A. Chatterjee, V. Jha, and P. Singh, Nucl. Phys. A 792, 187 (2007).
- [63] K. Katori, T. Shimoda, T. Fukuda, S. Shimoura, A. Sakaguchi, M. Tanaka, T. Yamagata, N. Takahashi, H. Ogata, M. Kamimura, and Y. Sakuragi, Nucl. Phys. A 480, 323 (1988).
- [64] S. Jun, L. Zhi-Hong, G. Bing, B. Xi-Xiang, L. Zhi-Chang, L. Jian-Cheng, W. You-Bao, L. Gang, Z. Sheng, W. Bao-Xiang et al., Chin. Phys. Lett. 27, 052101 (2010).
- [65] J. Cook, K. W. Kemper, P. V. Drumm, L. K. Fifield, M. A. C. Hotchkis, T. R. Ophel, and C. L. Woods, Phys. Rev. C 30, 1538 (1984).
- [66] A. T. Rudchik, K. W. Kemper, A. A. Rudchik, A. M. Crisp, V. D. Chesnokova, V. M. Kyryanchuk, F. Marechal, O. A. Momotyuk, O. A. Ponkratenko, B. T. Roeder *et al.*, Phys. Rev. C 75, 024612 (2007).
- [67] B. Guo, Z. H. Li, M. Lugaro, J. Buntain, D. Y. Pang, Y. J. Li, J. Su, S. Q. Yan, X. X. Bai, Y. S. Chen *et al.*, Astrophys. J. **756**, 193 (2012).
- [68] Shradha Dubey, S. Mukherjee, D. C. Biswas, B. K. Nayak, D. Patel, G. K. Prajapati, Y. K. Gupta, B. N. Joshi, L. S. Danu, S. Mukhopadhyay *et al.*, Phys. Rev. C 89, 014610 (2014).