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In this article, a mistake in the formulation of the modified Fisher model (MFM) derived in the pioneering
works of the Purdue group is addressed and corrected by reversing the sign of the mixing entropy term in
the original formulation. The errors in the results of the previous MFM-related studies, such as isotopic yield
distribution, isobaric yield ratios, isoscaling, m scaling, self-consistent determination of density, symmetry energy,
and temperature, and density and temperature determination related to the intermediate mass fragment (IMF)
freezeout, are quantitatively analyzed. It is found that the errors originating from the mistake in sign of the mixing
entropy term are generally small and even have no effect in some cases.
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I. INTRODUCTION

In 1967, M. E. Fisher proposed a droplet model of a second-
order phase transition to describe the power law behavior of
the “fragment” mass distribution around the critical point for
a liquid-gas phase transition [1]. In the early 1980s, based on
the Fisher model (FM), the Purdue group generated a novel
classical droplet model, which was the so-called modified
Fisher model (MFM), and introduced it into nuclear physics
[2–4]. Taking into account basic nuclear properties, such as
the Coulomb force, pairing effect, and proton-neutron two-
component mixture, the MFM is capable of describing the
general features of mass and isotopic yields [2–4]. Recently,
a series of experimental and theoretical investigations based
on the MFM have been carried out to explore the symmetry
energy of the nuclear equation of state and the critical behavior
of hot fragmenting matter [5–32].

However, the MFM formulation from the pioneering works
of the Purdue group in Refs. [2–4] contained a mistake which
originated from the wrong sign in front of the mixing entropy
term and caused some errors. In this work, we address this
mistake in their formulation, and quantitative analyses are
given for the errors originating from the mistake in typical
MFM-related studies. This article is organized as follows. In
Sec. II we briefly describe the formulism of FM and MFM, and
provide a corrected formulation of the MFM. In Sec. III, the
resultant changes in isotopic yield distribution, isobaric yield
ratios, isoscaling, m scaling, self-consistent determination of
density, symmetry energy, and temperature, and density and
temperature determination related to the intermediate mass
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fragment (IMF) freezeout are quantitatively discussed. Finally,
a summary is given in Sec. IV.

II. FORMULISM OF FM AND MFM

A. FM and MFM

In FM [1], for a single constituent system, a parent system
with A + B particles undergoes a phase transition into a
gas phase containing B particles and a droplet containing A
particles. The free energy of the system in the initial and final
phases can be written as

Finitial = μg(A + B) − T S, (1)

Ffinal = μlA + μgB + 4πR2σ − T (S − τ ln A). (2)

Here the Helmholtz free energy is used in this context. In
Eqs. (1) and (2), μl and μg are, respectively, the chemical
potentials of the liquid and gas phases, and S is the total entropy
of the initial state. The third term in Eq. (2) is the surface
contribution for a spherical droplet with radius R (R = r0A

1/3)
and surface tension parameter σ . Near the critical point, σ can
be expressed as a function of temperature as

σ (T ,Tc) =
{

σ0
(
1 + 3T

2Tc

)(
1 − T

Tc

)3/2
(T � Tc),

0 (T � Tc),
(3)

where Tc is the temperature at the critical point. The last term in
Eq. (2) originates from the entropy change of the system when
the droplet is formed. The term τ ln A is the entropy change
caused by liquefaction, introduced by Fisher [1], where τ is
the critical exponent. τ ln A with τ > 0 is subtracted from the
total entropy because when liquefaction occurs the entropy of
the system decreases.
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The free energy of the droplet can be obtained as the
difference between Eqs. (1) and (2):

Fdroplet = Ffinal − Finitial

= (μl − μg)A + 4πr2
0 σA2/3 + T τ ln A. (4)

In a canonical ensemble, free energy can be deduced as

−Fdroplet = T ln(Z), (5)

where Z is the partition function and it is proportional to the
yield Y (A) of a given type of droplets with A particles:

Y (A) ∝ Z = exp

(
−Fdroplet

T

)
. (6)

Equation (6) is the mathematical expression of Fisher model.
In order to apply the Fisher model to a nuclear multifrag-

mentation process, two constituents (neutrons and protons) and
the characteristics of nuclear force have to be taken into account
in the model. In the framework of MFM, from analogy to
Eq. (4), the free energy of an isotopic fragment with mass
number A and I = N − Z (N neutrons and Z protons) is
expressed as

F (I,A) = [−W (I,A) − μnN − μpZ] − T (−τ ln A + Smix).

(7)

Inserting Eq. (7) into Eq. (6), the yield of an isotope with A
and I = N − Z produced in a multi-fragmentation reaction,
can be written as

Y (I,A) = Y0 A−τ exp

[
W (I,A) + μnN + μpZ

T
+ Smix

]
.

(8)

In Eq. (8), the critical exponent τ is often taken as τ = 2.3 in
our previous works [5–14], according to Ref. [15]. W (I,A) is
given, utilizing the generalized Weizsäcker-Bethe semiclassi-
cal mass formula [33,34], and can be approximated as

W (I,A) = avA − asA
2/3 − ac

Z(Z − 1)

A1/3

− asym
I 2

A
− ap

δp

A1/2
,

δp = − (−1)Z + (−1)N

2
, (9)

where av , as , ac, asym, and ap are coefficients for quantifying
the contributions of volume, surface, Coulomb, symmetry
energy, and pairing effects. μn (μp) is the neutron (proton)
chemical potential. Smix is the mixing entropy.

The MFM is formulated at a critical temperature where one
can expect the nucleons are in a gas phase in the initial stage and
transition into a cluster-gas mixed phase. The mixing entropy
term provides a simple expression to describe the entropy
change originating from the component transition from a
single-component system to a proton-neutron two-component
system for such a phase transition. One should note that in
Eq. (8) the mixing entropy term has a positive contribution to
the total entropy, compared to τ ln A, since the entropy always
increases during the component transition. However, in the
original work of the Purdue group [2–4], this mixing entropy

term has a negative contribution. In the following section, the
derivation of Smix is introduced and the mistake that the Purdue
group made by putting a wrong sign in front of Smix in the MFM
formulation is addressed.

B. Mixing entropy

Following the FM and MFM scenario, the mixing entropy
can be derived within a classical approach. For a classical
system, the total number of microstates, �, is expressed as

� = N0!∏
al!

∏
ω

al

l , (10)

where N0 is the particle number and al is the particle number
at the l state, such that N0 = �al . ωl is the degeneracy of
the l state. Going to a nuclear system and ignoring the spin,
nucleons only have two states, proton and neutron, defined as
n state and p state here. The degeneracies for both states are
1. Therefore for a fragment with Z protons (ap = Z) and N
neutrons (an = N ), the total number of microstates becomes

�(N,Z) = A!

N !Z!
. (11)

Thus the mixing entropy is simply calculated following Boltz-
mann’s entropic equation as Smix(N,Z) = ln[�(N,Z)]. After
applying Stirling’s approximation for the factorial of a large
nucleon number, Smix(N,Z) is further reduced as

Smix(N,Z) = ln(A!) − ln(N ! · Z!)

=
[
A(ln A − 1) + 1

2
ln(2πA)

]
−

[
N (ln N − 1) + 1

2
ln(2πN )

+ Z(ln Z − 1) + 1

2
ln(2πZ)

]
≈ A(ln A − 1) − [N (ln N − 1) + Z(ln Z − 1)]

= −
[
N ln

(
N

A

)
+ Z ln

(
Z

A

)]
. (12)

It is well known that upon adding one component (neutron or
proton) to the other (proton or neutron), the fractions of the
two components are both less than 1. Therefore, Smix(N,Z)
is always positively defined in this expression, suggesting an
entropy increase due to the neutron-proton mixing mathemat-
ically. This positive Smix(N,Z) expression has been widely
applied to both ideal solutions and ideal gases.

For comparison, the mixing entropy is also derived within
a quantum approach. In the quantum framework, for an ideal
Fermi gas, the average number of fermions in a single-particle
state i is given by the Fermi-Dirac distribution as

fi = 1

e(εi−μ)/T + 1
, (13)

where T is the temperature, εi is the energy of the single-
particle state i, and μ is the chemical potential. The number of
states between ε and ε + dε is

D(ε)dε = g
2πV

h3
(2m0)3/2ε1/2dε, (14)
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where g is the degeneracy factor, V is the system volume,
and m0 is the mass of a fermion. The density ρ, total particle
number N0, and total energy U of the free Fermi gas are given
by

ρ = g
2π

h3
(2m0T )3/2

∫ ∞

0

x1/2dx

ex−μ/T + 1
, (15)

N0 = g
2πV

h3
(2m0T )3/2

∫ ∞

0

x1/2dx

ex−μ/T + 1
, (16)

U = g
2πV

h3
(2m0T )3/2T

∫ ∞

0

x3/2dx

ex−μ/T + 1
. (17)

Then the entropy per particle of the free Fermi gas is given as

S

N0
= U − F

N0T
= U + PV − μN0

N0T

=
5
3U − μN0

N0T
= 5

3

∫ ∞
0

x3/2dx
ex−μ/T +1∫ ∞

0
x1/2dx

ex−μ/T +1

− μ

T
, (18)

whereF = μN0 − PV is the free energy.P = 2
3

∂U
∂V

is the pres-
sure of the fermion system. S/N0 is a function of temperature
and density through the chemical potential μ.

Assuming the emitted fragment to be an ideal Fermi gas
system with a fixed density of neutrons and protons (ρ = ρn +
ρp), we have m = ρn−ρp

ρ
, where ρn, ρp, and ρ are the neutron,

proton, and total nucleon densities, respectively. Therefore, the
mixing entropy per nucleon of the fermion system is

Smix

N0
(ρn,ρp) =

[
ρn

ρ

S

N
(ρn) + ρp

ρ

S

Z
(ρp)

]
− S

N0
(ρ)

=
[

1 + m

2

S

N
(ρn) + 1 − m

2

S

Z
(ρp)

]
− S

N0
(ρ).

(19)

In Eq. (19), the chemical potentials for neutrons and protons
are, respectively, defined as μn and μp, and determined by
solving Eq. (15) for a given temperature and density of the
system. Inserting Eq. (18) into Eq. (19), one can obtain the
numerical values of the mixing entropy of the nuclear system
for a given density and temperature.

Figure 1 shows the calculated values of Smix per nucleon
within both the classical [Eq. (12)] and quantum [Eq. (19)]
approaches as a function of m. The quantum Smix(ρn,ρp) per
nucleon is calculated for T = 1, 3, 5, 7, and 30 MeV at a
given density ρ = ρ0/6 and the results are shown by different
symbols in the figure. The solid line corresponds to Smix(N,Z)
per nucleon calculated using the classical approach, where
m is calculated as m = N−Z

A
= ρn−ρp

ρ
. As T increases, the

quantum result gradually approaches the classical one, and
both results become consistent with each other at the classical
limit of high temperature and low density. Along with FM, the
MFM was originally formulated at the classical limit near the
critical point [2–4] and used to describe the critical properties
of the hot nuclear matter created in nuclear collisions in a
wide energy region under a coarse approximation; i.e., first
based on the MFM, the Purdue group studied the power law
behavior of the experimentally measured inclusive fragment
mass distributions, which is a natural result of the MFM model

FIG. 1. Mixing entropy per nucleon as a function of m. The
quantum results from Eq. (19) are shown by different symbols for
T = 1 MeV (dots), 3 MeV (solid squares), 5 MeV (solid triangles),
7 MeV (solid inverted triangles), and 30 MeV (open circles) at density
ρ = ρ0/6. The solid line corresponds to the mixing entropy per
nucleon calculated using the classical formula, Eq. (12).

at the critical point, from the reactions of proton on Xe and Kr
at 80 to 350 GeV/c [2–4]. The power law behavior has also
been demonstrated from the heavy ion reactions around the
Fermi energy in some of our previous works in more detail
[6,15]. In our present MFM formulation, the classical mixing
entropy is therefore adopted for consistency.

Therefore, following this classical scenario and inserting
Eq. (12) into Eq. (8), our present formulation of MFM is written
as

Y (I,A) = Y0 A−τ exp

[
W (I,A) + μnN + μpZ

T

− N ln

(
N

A

)
− Z ln

(
Z

A

)]
. (20)

Comparing Eq. (20) and the formulation of the Purdue group,
one should note that our present formulation of the MFM is
identical to that of the Purdue group in Refs. [2–4], except
for the opposite sign of the mixing entropy term. Clearly, the
negative expression ofSmix(N,Z) in their formulation is wrong,
since it goes against the nature of the mixing entropy increase as
a single-component system transforms into a two-component
(proton-neutron) system. The errors of the results related to
the MFM studies originating from this mistake in the sign
of Smix(N,Z) are quantitatively discussed in the following
section. They include isotopic yield distribution, isobaric yield
ratios, isoscaling, m scaling, self-consistent determination of
density, symmetry energy, and temperature, and density and
temperature determination related to the IMF freezeout.

III. RESULTS AND DISCUSSIONS

A. Isotopic yield distribution

After the formulation of the MFM, the Purdue group first
applied it to reproduce the fragment isotopic yields [2–4].
Figure 2 shows the isotopic yield of all available fragments
in the p + Xe system at incident momenta between 80 and
350 GeV/c (dots) and their corresponding fitting results
(triangles). In their fitting, av is fixed as 14.1 MeV without
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FIG. 2. Isotopic yields as a function of I . Dots: isotopic yield of all available measured fragments in p + Xe system at the incident
momentum between 80 and 350 GeV/c. Triangles: fitting results from the original MFM formulation of the Purdue group. Squares: fitting
results from the corrected MFM formulation, Eq. (20).

assuming a volume heat contribution of 8 MeV to the volume
free energy and τ is fixed as 2.64 [2–4]. Other parameters, as ,
ac, asym, ap, μp, μn, and T (1/β), are set free. The fitting is
preformed among the 60 isotopic yields with 12 � A � 31.
Also note that the Coulomb term and paring term of Eq. (9)
are generated as ac(Z2/A1/3) and ap(δp/A0.75), respectively,
in their formulation. Following the same approach, we refit
the data using the present MFM formulation with a positive
mixing entropy term, according to Eq. (20). Our results are
shown by squares in Fig. 2. As shown in the figure, the
experimental isotopic yield distributions are well reproduced
with both formulations by adjusting the parameters. The
resultant parameters are summarized in Table I. The present
parameter values optimized from the corrected formulation

TABLE I. Values for the parameters in the fits to the isotopic
yields using the original and present MFM formulas and values of the
normal nuclei taken from Refs. [2–4].

Purdue Present Normal nuclei

τ 2.64 2.64
av (MeV) 14.1 14.1 14.1
as (MeV) 5.35 12.12 13.0
ac (MeV) 0.489 0.510 0.595
asym (MeV) 22.60 19.13 19.00
ap (MeV) 5.92 10.45 33.5
μp (MeV) −11.32 −14.34
μn (MeV) −7.59 −10.46
T (MeV) 3.28 3.56

(third column) are more or less comparable to those presented
in Refs. [2–4] (second column), except for the surface and
pairing coefficients, as and ap; that is, the present as and
ap values are closer to those of cold nuclear nuclei. Rather
large values of as and ap are inconsistent with the fact that
at a critical temperature the surface energy and the pairing
correlation should become negligible. This indicates that the
experimentally measured isotopic yields reflect the nuclear
natures at the final stage, rather than at the critical point, due
to the secondary decay process [5,10,11,14].

B. Isobaric yield ratios

In Ref. [5], isobaric yield ratios were utilized to study
the asym, ac, μ (μ = μn − μp), and ap values, relative to
temperature, in the MFM framework for the first time. Based on
the MFM formulation, R(I + 2,I,A), the isobaric yield ratio
between isobars differing by 2 units of I , i.e., I + 2 and I , is
defined as

R(I + 2,I,A)

= Y (I + 2,A)/Y (I,A)

= exp{[μ + W (I + 2,A) − W (I,A)]/T + }. (21)

Taking the logarithm of R(I + 2,I,A), one can obtain

ln[R(I + 2,I,A)]

= [μ + W (I + 2,A) − W (I,A)]/T + , (22)

where  is the mixing entropy difference between isobars with
I + 2 and I . Following the corrected formulation of the MFM
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FIG. 3. Numerical values of Err calculated using Eq. (24) as a
function of A with I = −5 to 4 from the bottom to the top.

[Eq. (20)],  in the corrected present formula, Pres, is written
as

Pres = −
[
A + I + 2

2
ln

(
A + I + 2

2A

)
+ A − I − 2

2
ln

(
A − I − 2

2A

)]
+

[
A + I

2
ln

(
A + I

2A

)
+ A − I

2
ln

(
A − I

2A

)]
. (23)

For the original MFM formulation, Orig is expressed as
Orig = −Pres. Thus the error occurring from the mistake
in the sign of the mixing entropy term, Err , is given as the
difference between Orig and Pres,

Err = Orig − Pres = −2Pres. (24)

The numerical values of Err are calculated as a function of
A with I = −5 to 4 using Eq. (24) and the results are shown
in Fig. 3. As seen in the figure, the error decreases rapidly as
A increases, and the errors for the isobars with N closer to Z
are smaller. For the mirror isobars (black dotted-dashed line),
the errors fully cancel out.

In our recent work [7], the ratio of symmetry energy relative
to temperature, asym/T , was extracted from the cold isotopic
yields of 140 MeV/nucleon 40,48Ca + 9Be and 58,64Ni + 9Be
from the experiments performed by Mocko et al. at the National
Superconducting Cyclotron Laboratory (NSCL) at Michigan
State University (MSU) [35], using the equation

asym

T
= A

4(I + 1)
{[μ + 2ac(Z − 1)/A1/3]/T

− ln[R(I + 2,I,A)] + }. (25)

A
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/T
) 
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sy
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FIG. 4. Numerical values of (asym/T ) calculated using Eq. (26)
as a function of A with I = 1–9.

According to Eq. (25), the percentage error contribution to the
final result, (asym/T ), can be defined as

(asym/T ) = A

4(I + 1)

|Err |
asym/T

× 100%. (26)

Taking the 64Ni + 9Be system used in Ref. [7] as an example,
(asym/T ) is calculated for all available isotopic yields.
The resultant (asym/T ) values are plotted as a function of
A in Fig. 4. In the figure, (asym/T ) exhibits a behavior
similar to that of Err shown in Fig. 3, and rather small
errors, ∼3%–15%, are found in this analysis. Similarly, the
analyses of the symmetry energy and pairing energy relative to
temperature, the temperature of the cold fragment, neutron skin
effects, and critical behavior of the multifragmentation have
also been performed using the isobaric yield ratio observables
[5,6,21–32]. In Refs. [5,6,21–32], intermediate and heavy mass
isobars were generally utilized. Similar magnitudes of the
errors are also found for these works. Therefore, we conclude
that the conclusions of these works remain valid with small
changes in the extracted quantitative values.

C. Isoscaling and m scaling

In Ref. [9], asym/T was experimentally extracted as a
function of the fragment atomic number using isoscaling
parameters. From the MFM formulation, R12, the yield ratio
for the same isotope from two similar reaction systems with
different N/Z ratios, is written as

R21(N,Z) = C exp(αN + βZ). (27)

This relation is well known as the isoscaling relation [36].
The isoscaling parameters, α = (μ2

n − μ1
n)/T and β = (μ2

p −
μ1

p)/T , are the differences of the neutron or proton chemical
potentials between the systems 2 and 1, divided by the
temperature. C is a constant. According to Eq. (27), the error
in the MFM formulation does not contribute in the isoscaling
parameters, since the mixing entropy cancels out in R12. In the
same work, the variance of the isotope distributions was also
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TABLE II. Extracted a/T0 and μ/T0 for the first round (k = 0)
and the final round (k = 0.0022) using the self-consistent approach
based on the corrected formulation of the MFM.

ãv/T0 as/T0 ac/T0 ap/T0 μ/T0

k = 0
g0 −0.239 0.000 0.182 0.582 0.604
g0AS −0.282 0.000 0.164 0.691 0.480
g0ASS −0.319 0.000 0.145 1.121 0.432
Expt. −0.305 0.001 0.144 0.111 0.626

k = 0.0022
g0 −0.236 0.000 0.167 0.526 0.626
g0AS −0.277 0.000 0.150 0.630 0.505
g0ASS −0.308 0.000 0.133 1.046 0.451
Expt. −0.304 0.004 0.126 0.093 0.676

utilized to extract asym/T . However, the method used is based
on an approximation of the MFM formulation proposed by
Ono et al. [37], in which the mixing entropy does not appear.
Thus, the results and conclusions in the work are not affected.

In Refs. [8,15–20], A. Bonasera et al. proposed a Landau
free-energy approach for describing the free energy in the
exponent of Eq. (8) within the Landau O(m6) theory, where
m = (Nf − Zf )/Af is the order parameter, a consequence of
(one of) the symmetries of the nuclear Hamiltonian. Within this
framework, isoscaling depends mainly on this order parameter
through the “external (conjugate) field” H . The external field
is just given by the difference in chemical potentials of the
neutrons and protons of the two sources. To distinguish from
previously employed isoscaling analyses, this approach is
dubbed m scaling. For m scaling, the mixing entropy is absent
from the free energy of Eq. (8), so that the mistake in the
original MFM formulation does not affect the analyses in these
papers. Therefore, the results and conclusions related to m
scaling are fully valid.

D. Density, temperature, and symmetry energy determination

In Ref. [13], based on the original formulation of the MFM
[2–4], a self-consistent approach was developed to extract
the density, temperature, and symmetry energy for nuclear
fragmentation, and was applied to the reconstructed hot isotope
yields from 64Zn + 112Sn at 40 MeV/nucleon, utilizing the
simulations of antisymmetrized molecular dynamics (AMD)
of Ono et al. [38,39]. The basic steps of the self-consistent
procedure are briefly summarized as follows:

(1) Optimize μ/T0 and ac/T0 values from mirror isobars.
(2) Optimize ãv/T0, as/T0, and ap/T0 values from N = Z

isotopes, where ãv = av + 1
2 (μn − μp).

(3) Using parameters determined in steps 1 and 2, asym/T0

values are extracted from all available isotopes. Com-
paring the extracted asym/T0 values to those of the
AMD simulations with different Gogny interactions
with three density dependent symmetry energy terms,
i.e., the standard Gogny interaction which has an
asymptotic soft symmetry energy (g0), the Gogny
interaction with an asymptotic stiff symmetry energy

TABLE III. Extracted ρ/ρ0 and symmetry energy from the first
round (k = 0) and the final round (k = 0.0022) using the self-
consistent approach based on the corrected formulation of the MFM.

Rsym ρ/ρ0 asym (MeV)

k = 0
g0 24.2 ± 0.4
g0/g0AS 1.234 ± 0.025 0.529 ± 0.048
g0AS 19.0 ± 1.3
g0/g0ASS 1.545 ± 0.034 0.568 ± 0.021
g0ASS 15.8 ± 0.7
g0/Expt. 1.162 ± 0.025 0.562 ± 0.015
Expt. 20.8 ± 0.6

k = 0.0022
g0 24.1 ± 0.4
g0/g0AS 1.237 ± 0.026 0.524 ± 0.049
g0AS 18.9 ± 1.3
g0/g0ASS 1.553 ± 0.035 0.564 ± 0.020
g0ASS 15.6 ± 0.7
g0/Expt. 1.161 ± 0.025 0.558 ± 0.015
Expt. 20.8 ± 0.6

(g0AS), and the Gogny interaction with an asymptotic
super-stiff symmetry energy (g0ASS) [37–39], the den-
sity of the fragmenting source is extracted. Using this
density, the experimental value of the symmetry energy
coefficient, asym, is determined. The temperature is then
extracted following the relation T0 = asym/(asym/T0).

Iteration of steps 1–3 is performed to take into account
the difference of the apparent temperature T and the physical
temperature T0 in these steps [12]. Typically the iteration is
repeated two to three times to get a reasonably flat distribution
of T0 as a function of the fragment mass. More detailed
descriptions of the self-consistent approach can be found in
Refs. [12,13]. Note that in Ref. [10], Eq. (25) was applied
to extract the asym/T values instead of Steps. (2)-(3). As
mentioned in Sec. III A, the asym/T errors caused by the
mistake in the original Purdue formulation partially cancel
each other and become small. A detailed error evaluation and
the newly extracted values of the density, temperature, and
symmetry energy in Ref. [10] are given in an erratum [40].

Here, the density, temperature, and symmetry energy values
are recalculated based on the corrected formulation of the
MFM using steps 1–3. In Tables II and III, the newly extracted
values of the parameters ãv/T0, as/T0, ac/T0, ap/T0, and
μ/T0, and symmetry energy and ρ/ρ0, from both exper-
imental data and AMD simulated events are summarized,

TABLE IV. Comparison of density, temperature, and symmetry
energy from the corrected and original formulations of the MFM.

Present Original Diffrence

ρ/ρ0 0.56 ± 0.02 0.65 ± 0.02 16.1%
T0 5.2 ± 0.6 MeV 5.0 ± 0.4 MeV 3.8%
asym 20.8 ± 0.6 MeV 23.1 ± 0.6 MeV 11.1%
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FIG. 5. Comparisons between the present and original results
together with available published results. The line is from the fitting
of the available data using Eq. (28). Data are taken from Khoa et al.
(2005) [41], Kowalski et al. (2007) [42], Wada et al. (2012) [43],
Roca-Maza et al. (2013) [44], Shetty et al. (2004) [45], Shetty et al.
(2007) [46], Trippa et al. (2008) [47], and Tsang et al. (2009) [48].

respectively, for the first iteration round (k = 0) and the final
iteration round (k = 0.0022). In this analysis, the effect caused
by the mistake is absorbed mostly in step 2, when ãv/T0,
as/T0, and ap/T0 values are optimized as free parameters
using the MFM formulation. In Table II, the newly obtained
as/T0 and ap/T0 values are close to 0. This is reasonable, since
the reconstructed isotopic yields can reflect the characteristic
nature around the critical point. The density, temperature,
and symmetry energy values from the present and original
formulations of the MFM are compared in Table IV. As
presented in the table, the errors originating from the sign of
the mixing entropy are rather small, i.e., 16.1% for the density
and even smaller for the other deduced quantities.

In order to further investigate the effect of the mistake, the
asym values from the corrected and original MFM formulations
are compared together with other available published data

in Fig. 5. At 0.1 � ρ/ρ0 � 1.0, the existing data points are
consistent with each other within the errors and distribute along
a line systematically, which is optimized within the mean-field
theory:

asym(ρ/ρ0) = 31.5(ρ/ρ0)0.69. (28)

The present and original values are both along the same
curve. This observation indicates that the errors caused by the
mistake are of the order of 10%, but they do not change the
basic conclusions extracted.

E. Density and temperature determination
related to IMF Freezeout

In Ref. [14], for the central collision events of 40Ca + 40Ca,
generated by the AMD model in the intermediate energies of
35 to 300 MeV/nucleon, the density and temperature of a
fragmenting source were extracted using the self-consistent
method with the original MFM. The extracted density and
temperature values are, respectively, ρ/ρ0 ∼ 0.65 to 0.7 and
T0 ∼ 5.9 to 6.5 MeV. Here the density and temperature values
are recalculated using the corrected formulation of the MFM,
and the results are summarized in Table V, together with
those obtained in Ref. [14]. Errors, ∼12–17% for density
and ∼4–13% for temperature, are evaluated in the table. In
spite of the errors originating from the sign of the mixing
entropy, density and temperature show rather constant values
as a function of the incident energy, indicating that there is a
“freezeout” volume for the IMF production in the intermediate
heavy-ion reactions, which is commonly used in the statistical
multifragmentation model as the basic assumption. Thus, the
conclusion drawn in Ref. [14] is still valid.

IV. SUMMARY

In this article, the formulation of the modified Fisher model
is examined. A mistake in the formulation of the MFM derived
in the pioneering works of the Purdue group in Refs. [2–4]
is addressed. A corrected formulation of the MFM is presented
by reversing the sign of the mixing entropy term in the original
formulation. The errors from the mistake in the results of the
previous MFM-related studies, such as isotopic yield distribu-
tion, isobaric yield ratios, isoscaling, m scaling, self-consistent
determination of density, symmetry energy, and temperature,
and density and temperature determination related to the IMF
freezeout, are quantitatively evaluated. It is found that the
errors originating from the mistake in sign of the mixing

TABLE V. Density and temperature extracted using the self-consistent method for the central collision events of 40Ca + 40Ca in the incident
energies from 35 to 300 MeV/nucleon.

Energy (MeV/nucleon) ρPres/ρ0 ρOrig/ρ0 Diff. TPres (MeV) TOrig (MeV) Diff.

35 0.59 ± 0.02 0.67 ± 0.02 11.9% 6.3 ± 0.3 5.6 ± 0.2 12.5%
50 0.56 ± 0.02 0.64 ± 0.02 12.5% 6.6 ± 0.3 5.9 ± 0.3 11.9%
80 0.54 ± 0.02 0.65 ± 0.02 16.9% 6.7 ± 0.3 6.2 ± 0.2 8.1%
100 0.59 ± 0.02 0.69 ± 0.02 14.5% 6.8 ± 0.3 6.5 ± 0.3 4.6%
140 0.57 ± 0.02 0.67 ± 0.02 14.9% 6.9 ± 0.3 6.4 ± 0.3 7.8%
300 0.58 ± 0.02 0.68 ± 0.02 14.7% 7.1 ± 0.3 6.5 ± 0.3 9.2%
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entropy term are generally small and even have no effect in
some cases. The results and conclusions in the original papers
are generally valid.
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