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9Be scattering with microscopic wave functions and the continuum-discretized
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We use microscopic 9Be wave functions defined in a α + α + n multicluster model to compute 9Be+target
scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational
method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the
Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be
microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of
9Be + 208Pb and of 9Be + 27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with
experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This
result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic
CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work
represents a first step towards more ambitious calculations involving heavier Be isotopes.
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I. INTRODUCTION

Exotic nuclei represent a major interest in current nuclear
physics [1]. These nuclei, close to the drip lines, are charac-
terized by a low binding energy of the last nucleon(s). This
property leads to a halo structure, well known for 30 years [2].
A halo nucleus is considered as a core surrounded by one or
two nucleons. Owing to the low binding energy, the spatial
extension of the valence nucleons is large, and the associated
radii are much larger than in stable nuclei. Exotic nuclei present
further interesting properties such as a change of the magic
numbers [3].

Most exotic nuclei have a short lifetime, and can be
investigated by reactions only. The recent development of
radioactive beam facilities over the world provided many new
data, which require more and more sophisticated models.
The weak binding energy of the projectile, however, needs
a special attention since it strongly affects the various cross
sections (elastic scattering, breakup, fusion, etc.). To address
this issue, a well-known approach is the continuum-discretized
coupled-channel (CDCC) method [4], which was originally
developed to investigate deuteron scattering [5].

The CDCC method is based on a structure model for the
projectile. The simplest approach is of course a two-body
model, where the projectile consists of two structureless clus-
ters. Typical examples are d = p + n, 11Be = 10Be + n, or
8B = 7Be + p. Many studies have been performed within this
approach. For some nuclei, however, this two-body description
is not adapted, and extensions have been recently developed.
The first extension is a three-body model of the projectile,
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which is necessary for nuclei such as 6He [6], 9Be [7,8], or 11Li
[9]. Another development of CDCC involves core excitations,
which are considered in 19C [10] and in 11Be [11], for example.

The determination of the scattering matrices in the CDCC
method makes use of fragment-target optical potentials. This
technique provides a set of coupled-channel equations which
leads to the projectile-target wave functions and to the scat-
tering matrices. The projectile breakup, important for weakly
bound nuclei, is simulated by approximate continuum states of
the projectile. These states, also referred to as pseudostates, do
not have a physical meaning, but allow to take account of the
projectile breakup. For weakly bound nuclei, the cross sections
are in general different whether breakup is included or not.
As mentioned before, most CDCC calculations are performed
within a two-body or a three-body model. A drawback of this
approach is that it requires the knowledge of fragment-target
optical potentials, which are sometimes poorly known, or not
known at all. In these circumstances, simplifying assumptions
are necessary.

In a recent development, the projectile is described within
a microscopic model, where all nucleons are involved [12,13].
The main advantage of this approach is that only nucleon-target
optical potentials are needed. These potentials are known over
a wide range of energies and masses, and accurate parametriza-
tions are available [14,15]. Several variants of microscopic
models have been developed. In particular, cluster models [16]
are well adapted to CDCC calculations. In cluster models, the
A-nucleon structure is taken into account, but the nucleons are
assumed to be grouped in clusters [17]. This approximation
permits a simplification of the calculations, while it keeps
the microscopic character of the model. Besides, the cluster
structure is a natural starting point for the treatment of breakup.
Recently, 7Li [12] and 6He [18] scatterings have been studied
within this formalism.
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A challenge for cluster models is the description of nuclei
involving several clusters. In that case, the number of degrees of
freedom is large, and the choice of the basis functions requires
a special attention. This problem can be efficiently addressed
by using the stochastic variational method (SVM) [19,20]. The
SVM randomly generates parameter sets of the wave function,
and it permits to achieve convergence by superposing several
Slater determinants, even when many parameters are involved
(see, for example, Ref. [21]). Our goal for the future is to
apply the SVM to nucleus-nucleus reactions, where one of
the colliding particles is an exotic light nucleus. In particular,
11Be + target reactions provide a strong evidence for a halo
structure in 11Be [22]. The traditional description of 11Be is a
two-body 10Be + n potential model. However, our aim is to go
beyond this simple approximation, and to use a microscopic
description of 11Be. It has been shown that a multicluster
microscopic model based on two α particles and on additional
neutrons provides a precise description of low-lying states of
Be isotopes [23–27].

In the present work, we want to explore multicluster wave
functions for the projectile description. Our first application
deals with 9Be, considered as an α + α + n three-cluster
system. The microscopic structure calculation is performed
using the idea of SVM, and obtained transition densities are
utilized in the CDCC calculation. It is known that breakup
effects are likely weaker in 9Be and 10Be than in 11Be [22].
However, many data on elastic scattering are available, and
9Be + target scattering is an excellent test before considering
more ambitious systems, involving 10Be or 11Be. As the model
is parameter free, validity tests on well-known systems are
necessary.

The paper is organized as follows. In Sec. II, we present
the microscopic model of 9Be, and discuss the main properties
(energy spectrum, rms radii, electric transition probabilities,
etc.). Section III is devoted to a brief outline of the microscopic
CDCC method. We apply the scattering model to 9Be + 27Al
and 9Be + 208Pb systems in Sec. IV. These reactions involve
a light target, 27Al, and a heavy target, 208Pb. Concluding
remarks and outlook are presented in Sec. V.

II. MICROSCOPIC DESCRIPTION
OF THE 9Be STRUCTURE

In this section, we explain the structure calculation, which
is the microscopic description of 9Be based on the α + α + n
model. The idea of the SVM is used for the generation of the ba-
sis states. Additional information can be found in Refs. [26,28].
From the wave functions we determine the transition densities,
which are then used in the CDCC calculations.

A. 9Be Hamiltonian

In a microscopic approach, the 9Be Hamiltonian H0 de-
pends on all nucleon coordinates, and is given by

H0 =
9∑

i=1

ti − Tc.m. +
9∑

i�j=1

vij , (1)

where the center-of-mass kinetic energy Tc.m. is subtracted
to guarantee the translation-invariance of the wave functions.
In this equation, ti is the kinetic energy of nucleon i, and
vij a nucleon-nucleon interaction. The two-body nucleon-
nucleon interaction vij consists of central (vcentral

ij ), spin-orbit

(vspin−orbit
ij ), and Coulomb parts.
For the central interaction, we adopt the Minnesota potential

[29], which involves the exchange parameter u. The standard
value is u = 1, but it can be slightly modified to reproduce
important properties of the system. We have used different
values for both parities, in order to reproduce the experimental
binding energies of the 3/2− ground state and of the 1/2+
first excited state (−1.57 MeV and 0.11 MeV, respectively).
These constraints provide u = 0.993 for positive parity, and
u = 0.967 for negative parity. Throughout the text, energies
are defined with respect to the α + α + n threshold.

For the spin-orbit part, we adopt a one-Gaussian-type
interaction

v
spin−orbit
ij = VlsLLL · SSS exp

[−(rrri − rrrj )2
/
r2
ls

]/
r5
ls , (2)

where the operatorLLL stands for the relative angular momentum,
and where SSS is the total spin, (SSS = SSS1 + SSS2). The strength
and range, Vls = −20 MeV fm5 and rls = 0.1 fm, have been
tested in many previous cases, and we adopt these values. The
Coulomb interaction is treated exactly.

For given spin j and parity π , Hamiltonian (1) is then
diagonalized as

H0 �
jmπ
k = E

jπ
0,k �

jmπ
k , (3)

where k is the excitation level. In the CDCC framework, neg-
ative energies E

jπ
0,k correspond to physical states, and positive

energies to pseudostates, which can be considered as discrete
approximations of the continuum. Different techniques are
used to find approximate solutions of (3): the resonating group
method [30], the antisymmetrized molecular dynamics [31],
the fermionic molecular dynamics [32], or the molecular orbit
model [26] are typical methods.

For the CDCC calculation, we need the transition densities.
They are calculated with the wave functions of the static
calculation as

ρ
j1m1,j2m2
kl (rrr) = 〈

�
j1m1
k

∣∣∑
i

(
1

2
± tiz

)
δ(rrr − rrri)

∣∣�j2m2
l

〉
, (4)

where i runs over protons or neutrons. In this definition, ttt i is
the isospin of nucleon i, and the signs “+” and “−” correspond
to the neutron and proton densities, respectively. In the actual
calculation, we write the density in a multipole expansion [33]
as

ρ
j1m1,j2m2
kl (rrr) =

∑
λ

〈j2m2λm1 − m2|j1m1〉

×ρ
j1,j2
kl,λ (r)Y ∗

λm1−m2
(�r ) (5)

and calculate the matrix elements of ρ
j1,j2
kl,λ (r). For the purpose

of applying to reaction calculations, we have to carefully
describe the tail regions of the densities. The method to directly
calculate the multipole densities can be found in Ref. [34], and
we adopt the same formalism.
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B. Basis wave functions

A 9Be intrinsic wave function 	 is the antisymmetrized
product of single-particle wave functions ψn as

	 = A{ψ1ψ2ψ3 · · · ·ψ9}, (6)

where ψn has a Gaussian shape

ψn(rrrn) =
(

2ν

π

) 3
4

exp[−ν(rrrn − RRRn)2]ηn. (7)

In this definition, ηn represents the spin-isospin component
of the wave function, and RRRn is a parameter representing the
center of a Gaussian function for the nth nucleon. The size
parameter ν is equal to ν = 1/2b2 and the oscillator parameter
b is chosen as 1.36 fm, a standard value for the α particle.

Based on the generator coordinate method (GCM), the
superposition of different wave functions can be done as

�jmπ =
N∑

i=1

∑
K

ciP
j
mKP π	i, (8)

where K is the projection of the angular momentum on the
intrinsic axis. The states projected on different K quantum
numbers are mixed. We superpose N different Slater deter-
minants, and N is 175 in the present model. Here, {	i} is a
set of Slater determinants with different values {RRRi}, and the
coefficients for the linear combination, {ci}, are obtained by
solving the Hill-Wheeler equation.

The projection on parity and angular momentum is per-
formed by introducing the projection operators P

j
mK and P π ,

and these are carried out numerically. The angular momentum
projection is performed using the Wigner function Dj

mK (�)
and rotation operator R(�),

P
j
mK	i = 1

8π2

∫
d� Dj∗

mK (�) R(�) 	i, (9)

where R(�) rotates both the Gaussian center parameters {RRRi}
and the spin part of the wave functions, and � stands for
the Euler angles, α, β, and γ . We have to solve the motion
of the valence neutron, which is spatially extended. In these
conditions, we need a large number of mesh points for the
Euler angles to guarantee the numerical accuracy.

The parity projection is performed by superposing another
Slater determinant, where the Gaussian center parameters are
spatially inverted,

P π = (1 + P r )/
√

2, (10)

where P r is the operator, which inverts the spatial coordinates
of the Gaussian center parameters, P r	({RRRi}) = 	({−RRRi}).

C. Generation of the Gaussian center parameters

We superpose different configurations as in Eq. (8). For
this purpose, we generate many different sets of the Gaus-
sian center parameters {RRRn} (n = 1,2,3, . . . ,9) in Eq. (7).
We use random numbers to achieve a fast convergence of
the energy based on the spirit of the SVM [19,20] and of
the antisymmetrized molecular dynamics—superposition of
selected snapshots (AMD triple-S) [27].

The two-α cluster parts (n = 1–8) are introduced with a
relative distance R,

RRRn = −R

2
eeez (11)

for n = 1–4 and

RRRn = +R

2
eeez (12)

for n = 5–8, where eeez is a unit vector along the z axis. The R
values are generated between 0 fm and 5 fm with a uniform
distribution.

For the valence neutron (n = 9), we have to precisely
describe the wave function up to the tail region. For the three
directions (k = x,y,z), the Gaussian center parameter of the
valence neutron (RRR9)k is generated using random numbers
{ri}, which are not equally distributed but have the probability
proportional to exp(−ri/σ ), where σ = 4 fm is introduced.
Positive and negative values are generated with equal proba-
bility. In this way we generate 175 Slater determinants with
different sets of Gaussian center parameters. In the actual
calculation, we prepared different sets of Gaussian center
parameters using different random numbers and compared the
results. The energies of the states, which are candidates for the
resonances, are almost the same, and continuum solutions are
also very similar.

In the original SVM, the selection of important basis states
was performed. On the other hand, here we employ all the basis
states generated. The selection of the basis states works well
for bound states and for narrow resonances, which are well
confined inside the interaction range. However, for continuum
states, which are important in the present case, the selection
sometimes restricts too much the functional space. If the num-
ber of valence nucleons increases, we eventually need a selec-
tion of the basis states, but here, we employ all the basis states.

D. 9Be properties

The energy convergence of the 3/2− and 1/2+ states is
illustrated in Figs. 1(a) and 1(b), respectively. Clearly, N =
175 provides energies close to convergence. The monopole
density distributions of the ground state and of the first excited
state are shown in Fig. 2. As expected, the neutron density of
the 1/2+ state extends to large distances. This statement is true
for most pseudostates. The root mean square matter radius of
the ground state is 2.45 fm, in excellent agreement with the
experimental value [2] (2.45 ± 0.01 fm) and previous works
[35–37]. The root mean square matter radius of the first excited
state, 1/2+

1 , is 3.83 fm.
For the electromagnetic properties, the quadrupole moment

Q of the ground 3/2− state is calculated as 5.82 e2fm2, rather
close to the experimental value [38] (5.288 ± 0.038 e2fm2).
Since the charge distribution is coming only from the two α
part, the E1 transition from the ground 3/2− state to the first
1/2+ state occurs as a result of recoil effect due to the presence
of the valence neutron. Therefore, to properly evaluate the
B(E1) value, which is essential in calculating the reaction
cross section, solving the neutron wave function up to the
long-range region is quite important. The present model gives
B(E1) = 0.0460 e2fm2, which is consistent with the observa-
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FIG. 1. Energy convergence of the 3/2− (a) and 1/2+ (b) states

[E3/2−
0,k and E

1/2+
0,k in Eq. (3)] as a function of number of Slater

determinants [N in Eq. (8)]. The dotted lines show the α + α + n

threshold.

tions (0.027(2) ∼ 0.0685 e2fm2 [39]). For E2 transitions, the
B(E2) value from the ground 3/2− state to the 5/2− state is
25.8 e2fm4.

III. MICROSCOPIC CDCC FORMALISM

In the standard CDCC formalism, the projectile is described
by a two-body [5] or by a three-body [6] model. The corre-
sponding Hamiltonian is diagonalized over a basis, and the
eigenstates are used in an expansion of the projectile-target
wave functions. The projectile continuum is simulated by the
positive-energy eigenvalues, referred to as pseudostates.

The total Hamiltonian of the projectile + target system is
given by

H = H0 + TR + Vint, (13)

0 2 4 6 8 10

1/2

3/2

)

10

10

10

10

10

FIG. 2. Neutron (solid lines) and proton (dashed lines) monopole
densities of the 3/2− and 1/2+ states.

where H0 is the internal Hamiltonian of the projectile, TR is
the kinetic energy depending on the relative coordinate R,
and Vint involves optical potentials between the target and the
constituents of the projectile. This term depends on the internal
coordinates of the projectile, and on the relative coordinate R.

The first step of the CDCC method is to diagonalize H0 as
mentioned in Eq. (3). With the eigenstates �

jmπ
k we define the

channel wave functions ϕJM�
c as

ϕJM�
c = iL

[
�

jπ
k ⊗ YL(�R)

]JM
, (14)

where (J�) are the total angular momentum and parity, and
where � = π (−1)L. The total wave function is then expanded
as

	JM� = 1

R

∑
c

ϕJM�
c uJ�

c (R), (15)

where index c stands for c = (j,π,k,L). Expansion (15)
assumes a spin zero for the target, but is general regarding
the description of the projectile.

After inserting expansion (15) in the Schrödinger equation,
the radial functions uJ�

c (R) are determined from the coupled-
channel system

[TL + Ec − E]uJ�
c (R) +

∑
c′

V J�
c,c′ (R)uJ�

c′ (R) = 0, (16)

where the kinetic-energy operator is

TL = − h̄2

2μPT

(
d2

dR2
− L(L + 1)

R2

)
, (17)

μPT being the reduced mass of the system. In Eq. (16), the
coupling potentials are defined by

V J�
c,c′ (R) = 〈

ϕJM�
c

∣∣Vint

∣∣ϕJM�
c′

〉
. (18)

The integration is performed over the internal coordinates of
the projectile, and over the relative angle �R . Again, Eqs. (16)–
(18) are common to all CDCC approaches. The calculation of
the coupling potentials, however, depends on the description of
the projectile or, in other words, on the structure of the internal
wave functions �

jmπ
k .
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FIG. 3. Pseudostate energies for j = 1/2,3/2,5/2. The solid
and dashed lines correspond to the positive and negative parities,
respectively.

The main specificity of the microscopic CDCC is the
interaction potential, which reads

Vint(RRR,rrri) =
Ap∑
i=1

VT i(RRR − rrri), (19)

where rrri are the nucleon coordinates, and VT i(SSS) is an optical
potential between nucleon i and the target. This potential
includes the Coulomb interaction, and depends on isospin. The
calculation of the coupling potentials (18) is then performed
by using a folding technique, which makes use of the projectile
densities [12].

Finally, system (16) is solved with the R-matrix method
[40,41], which provides the radial functions, and the corre-
sponding scattering matrices. The cross sections are deduced
from the scattering matrices by using standard formula.

IV. APPLICATION TO 9Be + 27Al
AND 9Be + 208Pb SCATTERING

In this section, we apply the model to two systems:
9Be + 208Pb, typical of heavy targets, and 9Be + 27Al, typical
of light targets. These two collisions have been studied experi-
mentally [42–44], and theoretically in nonmicroscopic CDCC
approaches [7,8]. We cover energies around the Coulomb
barrier (EB ≈ 38.9 MeV for 9Be + 208Pb, and EB ≈ 8.0 MeV
for 9Be + 27Al).

In Fig. 3, we show the 9Be pseudostate energies for angular
momenta j = 1/2,3/2,5/2. Positive-parity states are indicated
by solid lines, and negative-parity states by dashed lines. In
addition to the 3/2− ground state, the model also reproduces
the low-energy 1/2+ and 5/2− resonances. All other states
are approximations of the α + α + n continuum, and do not
correspond to physical states.

0
0.2
0.4
0.6
0.8
1

1.2

0 30 60 90 120 150 180

= 38 MeV

(a)

0 30 60 90 120 150 180

= 44 MeV

(b)
10-1

10-2

1

0 30 60 90 120 150 180

= 50 MeV

(c)

10-5
10-4

10-3

10-2
10-1

1

0 30 60 90

= 75 MeV

(d)

1

10-1

10-2

10-3

FIG. 4. 9Be + 208Pb elastic cross sections (divided by the Ruther-
ford cross section) at different 9Be laboratory energies. Dashed lines:
single-channel calculations limited to the 9Be ground state; solid lines:
full calculations. The experimental data are taken from Ref. [42] (filled
circles) and Ref. [43] (open circles).

For the neutron-target optical potential, we take the local
potential of Koning and Delaroche [15] at a neutron energy
En = Elab/9. The proton-target interaction only contains the
Coulomb term. In all cases, the proton energy Ep = Elab/9 is
much lower than the Coulomb barrier of the p + target system,
and the corresponding cross sections are purely Rutherford.
We take a truncation energy Emax = 15 MeV, and a maximum
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FIG. 5. 9Be + 27Al elastic cross sections (see caption to Fig. 4).
The experimental data are taken from Ref. [42].

angular momentum of jmax = 7/2. Several tests have been
done to check the stability of the cross sections against these
parameters.

The 9Be + 208Pb cross sections are presented in Fig. 4,
with the data of Refs. [42,44]. We have selected four typical
energies, Elab = 38,44,50, and 75 MeV. We compare the full
CDCC calculation with the single-channel approximation, i.e.,
by neglecting 9Be breakup. At all energies, we have a fair
agreement with the data when breakup is included. As found

in Refs. [7,8], the single-channel approximation significantly
deviates from the data.

An example with a light target, 9Be + 27Al, is shown in
Fig. 5. Again, the agreement with the experimental data is quite
good, considering that there is no free parameter in the model.
For light systems, however, the role of the breakup channels
is minor. This was already found in a nonmicroscopic CDCC
analysis [8].

V. CONCLUSION

In this paper, we have applied the SVM to 9Be wave
functions, with the aim of performing CDCC scattering calcu-
lations. Elastic scattering is one of the main tools to investigate
exotic nuclei, and developing accurate reaction models is a
challenge for theory. Owing to their low breakup threshold,
exotic nuclei can be easily broken up, and this property must
be taken into account in scattering calculations.

The present description of 9Be is based on a microscopic
multicluster α + α + n model. The wave functions depend
on all nucleon coordinates, and are fully antisymmetric. The
cluster approximation is used to solve the Schrödinger equation
associated with 9Be. We use the SVM to optimize the basis
functions, where the distances between the α particles, and
between their center off mass and the additional neutron are
parameters. Optimizing the parameter set is crucial when the
number of parameters increases.

We have applied the model to 9Be + 208Pb and 9Be + 27Al
elastic scattering at various energies around the Coulomb
barrier. The only input is the nucleon-target optical potential,
which is well known over a wide range of target masses and of
nucleon energies. In both cases, we find a fair agreement with
the experimental data.

Our goal for the future is to investigate reactions involving
heavier Be isotopes, where the number of degrees of freedom
in the basis functions is larger. The present application to
9Be shows that the method is promising, and that reactions
involving 10Be or 11Be should be feasible in the near future.
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