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Neutrinoless double-β decay matrix elements in light nuclei
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We present the first ab initio calculations of neutrinoless double-β decay matrix elements in A = 6−12 nuclei
using variational Monte Carlo wave functions obtained from the Argonne v18 two-nucleon potential and Illinois-7
three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large
class of multi-TeV mechanisms of lepton-number violation. Our results provide benchmarks to be used in testing
many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we also
study the impact of two-body short-range correlations and the use of different forms for the transition operators,
such as those corresponding to different orders in chiral effective theory.
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I. INTRODUCTION

Searches for neutrinoless double-β decay (0νββ) constitute
the most sensitive laboratory probe of lepton-number violation
(LNV). In 0νββ two neutrons in a nucleus turn into two
protons, with the emission of two electrons and no neutrinos,
violating L by two units. The observation of 0νββ would
demonstrate that neutrinos are Majorana fermions [1], shed
light on the mechanism of neutrino mass generation, and give
insight into leptogenesis scenarios for the generation of the
matter-antimatter asymmetry in the universe [2].

For certain even-even nuclei the single-β decay is ener-
getically forbidden. In many such nuclei, the standard model
allowed two-neutrino double-β decay has already been ob-
served [3–8] (see Ref. [9] for older references), and the search
for the LNV neutrinoless mode is being pursued by many
collaborations worldwide. The current experimental limits on
the half-lives for the neutrinoless mode are quite impressive
[10–17], at the level of T1/2 > 5.3 × 1025 y for 76Ge [17]
and T1/2 > 1.07 × 1026 y for 136Xe [10], with next-generation
ton-scale experiments aiming at two orders of magnitude
sensitivity improvements.

The observation of 0νββ, while of great significance by
itself, would not immediately point to the underlying mech-
anism of lepton-number violation. In fact, next-generation
experiments are sensitive to a variety of mechanisms, which
are most efficiently discussed in an effective theory approach to
new physics, in which LNV arises from �L = 2 operators of
odd dimension, starting at dimension 5 [18–21]. As discussed
for example in Ref. [22], if the scale of lepton-number
violation, �LNV, is in the range 1–100 TeV, short-distance
effects encoded in local operators of dimensions 7 and 9
provide contributions to 0νββ within reach of next-generation
experiments. However, whenever �LNV is much higher than
the TeV scale, the only low-energy manifestation of this new
physics is a Majorana mass for light neutrinos, encoded in a sin-
gle gauge-invariant dimension-5 operator [18], which induces
0νββ through light Majorana-neutrino exchange [23,24].

To interpret positive or null 0νββ results in the context of
various LNV mechanisms it is essential to have control over
the relevant hadronic and nuclear matrix elements. Current
knowledge of these is somewhat unsatisfactory [25], as various
many-body approaches lead to estimates that differ by a factor
of 2 to 3 for nuclei of experimental interest. This is true both for
the light Majorana-neutrino exchange mechanism, which has
received much attention in the literature, and for short-distance
sources of LNV encoded in dimension-7 and -9 operators (see
Ref. [22] and references therein).

In this paper we present the first ab initio calculations of
0νββ nuclear matrix elements in light nuclei (A = 6−12),
using variational Monte Carlo (VMC) wave functions obtained
from the Argonne v18 (AV18) [26] two-body potential and
Illinois-7 (IL7) [27] three-nucleon interaction. We use the mea-
sured value of the axial coupling constant gA = 1.2723(23)
[28]—also utilized in recent ab initio quantum Monte Carlo
calculations of single-β decays in A = 6−10 nuclei [29] that
explain the data at the �2% (∼10%) level in A = 6−7 (A =
10) decays—and compare with results for A = 48−136 nuclei
[30,31] also based on the measured value of gA. We study the
matrix elements of light Majorana-neutrino exchange as well
as those arising from a large class of multi-TeV mechanisms
of LNV. While the transitions studied here are not directly
relevant from an experimental point of view, this study has
several merits:

(i) Because the ab initio framework used here accurately
explains, qualitatively and quantitatively, the observed
properties of light nuclei [32–34], our results provide
an important benchmark to test other many-body
methods that can be extended to the heavy nuclei of
experimental interest.

(ii) In this framework we can study in a controlled way
the impact of various approximations inherent to some
many-body methods, such as neglecting two-body
correlations.
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(iii) For a given LNV mechanism, we can explore the
impact of using different forms for the transition
operators (“potentials”) mediating 0νββ.

(iv) In the same vein, we can study the relative size
of matrix elements corresponding to different LNV
mechanisms.

The paper is organized as follows. In Sec. II we present the
two-body transition operators (potentials) that mediate 0νββ
from a large class of LNV mechanisms. In Sec. III we describe
the VMC method and in Sec. IV we discuss our results. We
present our conclusions in Sec. V and provide some details on
the potentials in coordinate space in the Appendix.

II. NUCLEAR OPERATORS FOR 0νββ

A. Matching quark operators to hadronic operators

Our starting point is a �L = 2 effective Lagrangian L�L=2

at the hadronic scale E ∼ �χ ∼ GeV written in terms of
leptons and quarks. This effective Lagrangian originates from
integrating out heavy new physics at the scale �LNV and match-
ing onto [SU(3)C × SU(2)L × U(1)Y ]-invariant operators. Af-
ter integrating out the heavy SM fields at the electroweak scale,
one obtains a set of [SU(3)C × U(1)EM]-invariant operators
that we incorporate into our effective Lagrangian. In this work,
with the purpose of benchmarking nuclear matrix elements,
we include only the Majorana neutrino mass operator, which is
dimension 3 after electroweak symmetry breaking, and a subset
of dimension-9 six-fermion operators that mediate short-range
contributions to 0νββ:

L�L=2 = −1

2
mββ νT

eL CνeL + L(9)
�L=2 + H.c., (1)

L(9)
�L=2 = V 2

ud

v5
× ēLCēT

L

{
C

(9)
1 ūLγ μdL ūLγμdL

+C
(9)
2 ūLdR ūLdR + C

(9)
3 ūα

Ld
β
R ū

β
Ldα

R

+C
(9)
4 ūLγ μdL ūRγμdR

+C
(9)
5 ūα

Lγ μd
β
L ū

β
Rγμdα

R

}
. (2)

Here v = (
√

2GF )−1/2 = 246 GeV, α and β are color indices,
and for later convenience we have extracted a factor of V 2

ud from
the dimensionless Wilson coefficients C

(9)
i . The dimension-3

term in Eq. (1) originates from the only SU(2)L-invariant
operator at dimension 5, while the dimension-9 terms can arise
from both dimension-7 and dimension-9 SU(2)L-invariant
operators.

In principle, the most general �L = 2 low-energy effec-
tive Lagrangian would include additional dimension-6 and
-7 charged-current operators, which give rise to long-range
contributions to 0νββ, not proportional to mββ . However, as
was shown in Ref. [22], the nuclear matrix elements (NMEs)
needed in this case are related to NMEs that appear in
light and heavy Majorana-neutrino exchange and thus do not
require independent calculations. Furthermore, the effective
Lagrangian in Eq. (2) represents a subset of the most general
dimension-9 �L = 2 interactions. The complete basis of
dimension-9 operators includes additional terms that can be
obtained by the interchange of L ↔ R on the quark and/or

lepton fields in Eq. (2), as well as operators in which the quark
and electron structures are Lorentz vectors (e.g., ēLγμCēT

R)
[35,36]. However, as far as 0+ → 0+ transitions are concerned,
none of these additional operators leads to different hadronic
realizations from those induced by the operators in Eq. (2)
[37]. As a result, the NMEs studied in the following capture the
leading contributions to 0νββ from SU(2)L-invariant operators
of dimensions 5 and 7, as well as those from dimension-9
operators involving six fermions.

The leading low-energy realization of the effective La-
grangian (1) in terms of leptons, pions, and nucleons reads
[36,37]

L�L=2 = −1

2
mββ νT

eL CνeL + V 2
ud

v5

× ēLCēT
L

{
5

6
C

(9)
1 g27×1 F 2

π∂μπ−∂μπ−

+ 1

2
F 2

π

(
C

(9)
4 g8×8 + C

(9)
5 gmix

8×8 − C
(9)
2 g6×6

−C
(9)
3 gmix

6×6̄

)
π−π−

+
√

2gAFπC
(9)
1 gπN

27×1 p̄S · (∂π−)n

+ 1

2
C

(9)
1 gNN

27×1 p̄n p̄n

}
. (3)

The low-energy constants (LECs) g8×8 and g6×6̄ are ofO(�2
χ ),

while g27×1 and gπN
27×1 are ofO(1). The coupling constant of the

�L = 2 four-nucleon operator, gNN
27×1, is O(1) in the Weinberg

power counting [38,39]. We follow the notation of Ref. [37],
in which g8×8, g6×6̄, and g27×1 (see also Ref. [40]) were
estimated using SU(3) chiral perturbation theory (χPT) re-
lations and lattice-QCD calculations of kaon matrix elements.
At μ = 3 GeV in the MS scheme one has g27×1 = 0.37 ±
0.08, g8×8 = −(3.1 ± 1.3) GeV2, gmix

8×8 = −(13 ± 4) GeV2,
g6×6̄ = (3.2 ± 0.7) GeV2, and gmix

6×6̄ = −(1.1 ± 0.3) GeV2.
For the new-physics operators that transform as 8L × 8R or
6L × 6̄R , within the Weinberg power counting, only the ππ
interactions contribute at leading order (LO), and we neglect
the subleading pion-nucleon and nucleon-nucleon couplings
in Eq. (3). Instead, for the operator transforming as 27L × 1R ,
we include all three types of interactions as they contribute to
0νββ at the same order.

B. The isotensor nuclear potentials

From the effective Lagrangian (3) one obtains the following
�L = 2 effective Hamiltonian for 0νββ in terms of electrons
and nucleons:

H�L=2 = 2G2
F V 2

ud ēLCēT
L

∑
a,b

V (a,b), (4)

with the isotensor potential given by

V = mββ Vν + m2
π

v
(cππVππ + cπNVπN + cNNVNN ). (5)

In what follows we give the two-body potentials in momentum
space, while providing their coordinate space expressions in
the Appendix.
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FIG. 1. Diagrams illustrating the 0νββ potentials mediated by
neutrinos—Vν defined in Eq. (6)—and two-pion-exchange, one-
pion-exchange, and short-distance interactions—Vππ , VπN , and VNN

defined in Eqs. (12).

1. Light Majorana-neutrino exchange

The first term in Eq. (5) is generated by light Majorana-
neutrino exchange, depicted in the top-left panel of Fig. 1, and
at leading order is given by

Vν = τ+
a τ+

b

1

q2

×
{
g2

V − g2
A

[
σ a · σ b

(
1− 2

3

q2

q2 + m2
π

+ 1

3

(q2)2(
q2 + m2

π

)2

)

− Sab(q̂)

3

(
− 2q2

q2 + m2
π

+ (q2)2(
q2 + m2

π

)2

)]}
, (6)

where q̂ = q/|q|, gV = 1, gA = 1.27, and the tensor operator
is given by Sab = −(3 σ a · q̂ σ b · q̂ − σ a · σ b) in momentum
space. Higher-order corrections to the single-nucleon charged
currents can be taken into account by including momentum-
dependent form factors and contributions proportional to the
nucleon isovector magnetic moment. These effects appear
at next-to-next-to-leading order (N2LO) in the chiral power
counting, while two-body effects in the weak currents [41–43],
which induce three-nucleon potentials, appear at next-to-next-
to-next-to-leading order (N3LO). Here we parametrize the
N2LO terms by following Ref. [25] and re-expressing Vν as

Vν = τ+
a τ+

b

g2
A

q2

{
g2

V

g2
A

vν
F (q2)

−σ a · σ b vν
GT (q2) − Sab vν

T (q2)

}
. (7)

The Fermi (F), Gamow-Teller (GT), and tensor (T) functions
can be expressed in terms of the nucleon isovector vector, axial,
induced pseudoscalar and tensor form factors as

vν
F (q2) = g2

V (q2)/g2
V ,

vν
GT (q2) = vAA

GT (q2) + vAP
GT (q2) + vPP

GT (q2) + vMM
GT (q2), (8)

vν
T (q2) = vAP

T (q2) + vPP
T (q2) + vMM

T (q2),

where for the GT and T terms we have

vAA
GT ,T (q2) = g2

A(q2)

g2
A

,

vAP
GT (q2) = gP (q2)

g2
A

gA(q2)
q2

3mN

,

(9)

vPP
GT (q2) = g2

P (q2)

g2
A

q4

12m2
N

,

vMM
GT (q2) = g2

M (q2)
q2

6g2
Am2

N

,

and vAP
T (q2) = −vAP

GT (q2), vPP
T (q2) = −vPP

GT (q2), and
vMM

T (q2) = vMM
GT (q2)/2.

As commonly done in the 0νββ literature, we use a dipole
parametrization for the vector and axial form factors, and write

gV (q2) = gV

(
1 + q2

�2
V

)−2

, gM (q2) = (1 + κ1)gV (q2),

gA(q2) = gA

(
1 + q2

�2
A

)−2

, gP (q2) = −2mNgA(q2)

q2 + m2
π

,

(10)

where the vector and axial masses are �V = 850 MeV and
�A = 1040 MeV, and the anomalous nucleon isovector mag-
netic moment κ1 = 3.7. In the limit �A,V → ∞, Eq. (10)
reduces to the LO χPT expression. In what follows, we define
the neutrino potentials in momentum space as

Vα,β (q2) = 1

q2
vβ

α (q2), (11)

with α ∈ {F,GT,T } and β ∈ {ν,AA,AP,PP,MM}, and the
functions vβ

α given in Eqs. (8) and (9). The potential VT, AA does
not appear in the case of light Majorana-neutrino exchange, but
it is relevant in the presence of right-handed charged currents
[22,44,45].

Additional non-factorizable contributions to Vν arise at the
same order as form-factor corrections, as recently shown in
Ref. [46]. We explore the impact of these in Sec. IV D.

2. LNV from short distance

The dimension-9 operators with couplings C
(9)
i induce the

pion-range and short-range potentials Vππ , VπN , and VNN in
Eq. (5) through the diagrams shown in Fig. 1:

Vππ = τ+
a τ+

b (σ a · σ b − Sab)
q2

3
(
q2 + m2

π

)2 ,

VπN = −τ+
a τ+

b

(
σ a · σ b + Sab

q2

m2
π

)
1

3
(
q2 + m2

π

) , (12)

VNN = τ+
a τ+

b

1

m2
π

,

where we eliminated a GT-like contact interaction by use of
the Fierz relation, (p̄σn) (p̄σn) = −3 (p̄n) (p̄n). As for the
light Majorana-neutrino exchange potential Vν , we split the
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Vππ and VπN in Gamow-Teller and tensor components (see the
Appendix). The dimensionless effective couplings are given by

cππ = − g2
A

2m2
π

(
C

(9)
4 g8×8 + C

(9)
5 gmix

8×8 − C
(9)
2 g6×6

−C
(9)
3 gmix

6×6̄ + 5

3
C

(9)
1 g27×1m

2
π

)
, (13)

cπN = −g2
A C

(9)
1

(
gπN

27×1 − 5

6
g27×1

)
, (14)

cNN = −C
(9)
1

(
gNN

27×1 − g2
A

(
gπN

27×1 − 5

6
g27×1

))
. (15)

At leading order in chiral effective field theory (EFT), the
potentials in Eq. (12) do not include momentum-dependent
form factors. Note that, after absorbing the short-distance
pieces of the cπN and cππ contributions into VNN , we have
VGT ,ππ = −VGT ,PP and VGT ,πN = −VGT ,AP /2 (see the Ap-
pendix). In our analysis, we study the sensitivity to the large
momentum region by multiplying Vππ , VπN , and VNN by a
dipole form factor, for which we take g2

A(q2)/g2
A.

C. Matrix elements

To make contact with the standard 0νββ literature, it
is convenient to define the dimensionless matrix elements
between the initial and final nuclear states, |i〉 and |f 〉, as

Mα,β = 〈f |Oα,β |i〉, (16)

where the two-body F, GT, and T operators are given by

OF,β = (4πRA)
∑
a,b

VF,β(rab) τ+
a τ+

b , (17)

OGT ,β = (4πRA)
∑
a,b

VGT ,β(rab) σ a · σ b τ+
a τ+

b , (18)

OT,β = (4πRA)
∑
a,b

VT,β (rab) Sab τ+
a τ+

b , (19)

where RA = 1.2A1/3 fm is the nuclear radius and now β ∈
{ν,AA,AP,PP,MM,ππ,πN,NN}. Note that the operators
defined above involve an unconstrained sum over a 
= b. The
potentials in momentum and coordinate space are related by

Vα,β (rab) =
∫

d3q

(2π )3
eiq·rab Vα,β (q). (20)

For completeness, we report explicit expressions for the po-
tentials in coordinate space in the Appendix.

III. VARIATIONAL MONTE CARLO METHOD

The evaluation of the matrix elements defined in Eq. (16)
is carried out using VMC computational algorithms [32].
The VMC wave function (Jπ ; T ,Tz)—where Jπ and T are
the spin parity and isospin of the state—is constructed from
products of two- and three-body correlation operators acting
on an antisymmetric single-particle state of the appropriate
quantum numbers. The correlation operators are designed
to reflect the influence of the two- and three-body nuclear

interactions at short distances, while appropriate boundary
conditions are imposed at long range [47,48].

The (Jπ ; T ,Tz) has embedded variational parameters that
are adjusted to minimize the expectation value,

EV = 〈|H |〉
〈|〉 � E0, (21)

which is evaluated by Metropolis Monte Carlo integration [49].
In the equation above, E0 is the exact lowest eigenvalue of the
nuclear Hamiltonian H for the specified quantum numbers.
The many-body Hamiltonian is given by

H =
∑

i

Ki +
∑
i<j

vij +
∑

i<j<k

Vijk, (22)

where Ki is the non-relativistic kinetic energy of nucleon i and
vij and Vijk are, respectively, the AV18 [26] two-body potential
and the IL7 [27] three-nucleon interaction. The AV18+IL7
model reproduces the experimental binding energies, charge
radii, electroweak transitions, and responses of A = 3−12
systems in numerically exact calculations based on Green’s
function Monte Carlo (GFMC) methods [29,32–34].

A good variational wave function, that serves as the starting
point of GFMC calculations, can be constructed with

|V 〉 = S
A∏

i<j

⎡
⎣1 + Uij +

A∑
k 
=i,j

Ũijk

⎤
⎦|J 〉. (23)

The Jastrow wave function J is fully antisymmetric, transla-
tionally invariant, has the (Jπ ; T ,Tz) quantum numbers of the
state of interest, and includes a product over pairs of a central
correlation functionf (rij ) that is small at short distances, peaks
around 1 fm, and decays exponentially at long range [50]. The
Uij and Ũijk are the two- and three-body correlation operators,
and S is a symmetrization operator. The two-body correlation
operators [32,50] can be schematically written as

Uij =
∑

p

f p(rij ) O
p
ij , (24)

where

O
p
ij = τ i · τ j , σ i · σ j , (τ i · τ j )(σ i · σ j ), Sij , Sijτ i · τ j (25)

are the main static operators that appear in the two-nucleon
potential and the f p are functions of the interparticle distance
rij generated by the solution of a set of coupled differential
equations containing the bare two-nucleon potential with
asymptotically confined boundary conditions [32]. In order to
study how correlations in the nuclear wave functions affect
the calculated matrix elements, we perform a calculation in
which we turn off the “one-pion-exchange-like” correlation
operators, i.e., (τ i · τ j )(σ i · σ j ) and Sijτ i · τ j . The effects
such an artificial change are discussed in Sec. IV.

In principle, the variational wave function can be further im-
proved via an imaginary time propagation of the Schrödinger
equation. This procedure has the effect of eliminating spurious
contributions coming from excited states and it is implemented
by the GFMC algorithm [32]. However, quantum Monte Carlo
studies of electroweak matrix elements in low-lying nuclear
states of A � 10 nuclei indicate that the GFMC propagation
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improves the VMC results by � 3% [29,51], an accuracy that
goes beyond the scope of the present investigation.

The results presented below for A � 10 nuclei use the VMC
wave functions that serve as starting trial functions for the
GFMC calculations summarized in Ref. [32]. We emphasize
that the A = 12 matrix elements are based on the first quantum
Monte Carlo wave function for 12Be. For the A = 12 nuclei,
we use new clusterized variational wave functions that provide
for α- and dineutron-like clusters among the p-shell nucleons.
As for the lighter nuclei, they are fully antisymmetric A-body
wave functions, are translationally invariant, and include the
same product of two- and three-body operator correlations
induced by the nuclear Hamiltonian. However, for simplicity,
only the highest spatial symmetry states are used, i.e., [444] in
12C and [4422] in 12Be, as specified in Young diagram notation
[52]. The construction of 12C can be thought of as coupling a
core 8Be nucleus in one of its first three states (0+, 2+, or
4+) with an additional p-shell α-like cluster in respectively a
1S0, 1D2, or 1G4 state, to give a total Jπ = 0. Similarly, for
12Be, a core 8He nucleus in one of its first two states (0+ or
2+) is coupled with a 1S0 or 1D2 p-shell α-like cluster. In
both cases a small-basis diagonalization is made among these
components. These A = 12 calculations are computationally
demanding because of the size of the spin-isospin vectors
needed to represent the wave function: 4096 × 132 for 12C
and 4096 × 275 for 12Be, where we assume pure T = 0 and
T = 2 states, respectively.

In addition to presenting results on the matrix elements of
Eq. (16), we study their associated transition distributions in
r-space, Cα,β (r), and q-space, C̄α,β (q), defined as

Mα,β =
∫

dr ρα,β (r) ≡
∫

dr Cα,β (r) ≡
∫

dq C̄α,β (q),

(26)

where ρα,β (r) is the transition density associated with the
transition operator Oα,β (r).

Finally, following Ref. [53] we represent the δ functions
entering the VGT ,MM and VF,NN potentials defined in Eqs. (A5)
and (A7) with

δ(mπr) = e−(r/RS )2

m3
π R3

S π3/2
, (27)

where RS is a short-range cutoff. We tested the sensitivity of
the calculated matrix elements with respect to variations of
RS ∈ {0.6 ,1.0} fm. The matrix elements were found to be
stable at the few percent level.

We also analyzed the sensitivity of the GT-AA matrix
elements to variation in the regulator function F (r) defined as

F (r) = 1 − 1

(r/RL)6e[2(r−RL)/RL] + 1
, (28)

for values of RL ∈ {0.6 ,0.8} fm. We found a variation of
� 17% in the calculated isospin-changing matrix elements of
A = 8−12 decays, a somewhat large variation which arises
from a delicate cancellation in the associated GT-AA transition
densities (see Sec. IV for explanation). A detailed study
focused on the cutoff dependence is beyond the scope of
this work, and in what follows we report the matrix elements

obtained without the regulator function given above. It would
indeed be interesting to reanalyze these systems using different
nuclear Hamiltonians. This would allow one to assess the
sensitivity to short-distance dynamics and to associate a model
dependence uncertainty to the calculations. In particular, quan-
tum Monte Carlo calculations based on chiral two- and three-
body potentials are now feasible [53–55], which opens up the
possibility of systematically and consistently studying the sen-
sitivity to cutoff variations in both the nuclear Hamiltonian and
0νββ-decay potentials. Work along these lines is in progress.

IV. RESULTS

Before proceeding to the discussion of the results, we
emphasize that we use the value of the axial coupling constant
gA = 1.2723(23) [28]. In fact, recent GFMC studies on single-
β decay in A � 10 nuclei, based on the AV18+IL7 model
adopted here, indicate that the “gA problem”—the systematic
over-prediction of single-β Gamow-Teller matrix elements in
simplified nuclear calculations—can be resolved by correlation
effects in the nuclear wave functions [29]. These findings
are limited to studies of matrix elements at zero momentum
transfer, whereas the average momentum transfer in 0νββ-
decay matrix elements is of the order of ∼100 MeV [25]. It
remains to be determined how the gA problem propagates at
intermediate values of momentum transfer, and whether the
microscopic picture of the nucleus based on the “unquenched”
nucleonic weak couplings successfully explains the data in this
energy regime. Progress in this direction would be facilitated
by the acquisition of neutrino-nucleus scattering data, which
are scarce at moderated values of momentum transfer.

In Tables I and II, we list the calculated 0νββ-decay
matrix elements in 6He, 8He, 10Be, 10He, and 12Be transitions.
We identify two classes of transitions, namely, transitions in
which the total isospin of the initial and final states remains
unchanged, i.e., �T = |Ti − Tf | = 0, and those in which the
total isospin changes by two units, i.e., �T = 2. The former
involves isobaric analog states, which is never the case in
nuclear transitions considered for the actual experiments. It is
nevertheless interesting to study these systems with the goal of
benchmarking different nuclear models and/or computational
methods.

Transition densities between isobaric analog states are
characterized by the lack of nodes: this can be appreciated in the
left-hand panel of Fig. 2, where we show results for the 6He →
6Be decay as a representative of this class. Once the VMC
nuclear wave function for, e.g., 6He, is determined, then that
of 6Be is obtained from it by swapping protons and neutrons.
As a result, the initial and final wave functions differ only in the
third component of the isospin, while their radial and spin de-
pendence are the same, implying a maximum overlap between
the two wave functions and the consequent lack of nodes in
the transition densities. In fact, evaluation of the

∑
a<b τ+

a τ+
b

operator in between these wave functions gives one, i.e., the
wave function normalization (this is in case one neglects tiny
contributions induced by the isoscalar Coulomb term [56]
which is different in the two isobaric analog nuclei due to their
different number of protons). Similar considerations apply
to the A = 10 transitions in this class. The 8He and 8Be�
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TABLE I. VMC calculations of the dimensionless matrix elements, defined in Eq. (16), relevant for light Majorana-neutrino exchange. The
first (second) three rows show the results for the �T = 0 (�T = 2) transitions (see text for explanation). For comparison, the bottom five rows
show the results of Refs. [30,31] for the heavy nuclei 48Ca, 76Ge, and 136Xe. VMC statistical errors (not reported in the table) are �2%.

F GT T

(Ti) → (Tf ) ν AA AP PP MM ν AP PP MM ν AA

6He(1) → 6Be(1) −1.502 4.114 −0.692 0.164 0.103 3.688 −0.032 0.010 −0.004 −0.025 −0.099
8He(2) → 8Be�(2) −3.310 3.132 −0.548 0.134 0.082 2.798 −0.009 0.000 0.000 −0.009 −0.060
10Be(1) → 10C(1) −1.898 4.326 −0.834 0.216 0.139 3.848 −0.097 0.032 −0.012 −0.078 −0.255
8He(2) → 8Be(0) −0.097 0.152 −0.117 0.042 0.030 0.108 −0.026 0.010 −0.004 −0.021 −0.058
10He(3) → 10Be(1) −0.078 0.196 −0.094 0.032 0.020 0.156 −0.032 0.012 −0.004 −0.026 −0.074
12Be(2) → 12C(0) −0.192 0.500 −0.240 0.084 0.056 0.400 −0.066 0.024 −0.010 −0.052 −0.142
48Ca → 48Ti [30] −0.25 1.08 −0.38 0.13 0.10 0.93 −0.08 0.03 −0.01 −0.06
76Ge → 76Se [30] −0.59 3.15 −0.94 0.30 0.22 2.73 −0.01 0.00 0.00 −0.01

[31] −1.74 5.48 −2.02 0.66 0.50 4.62 −0.35 0.10 −0.04 −0.29
136Xe → 136Ba [30] −0.54 2.45 −0.79 0.25 0.19 2.10 0.01 −0.01 0.00 0.00

[31] −0.89 3.17 −1.19 0.39 0.31 2.67 −0.28 0.09 −0.03 −0.22

excited state have the same spatial symmetry, predominantly a
1S0-[422], but with different Tz component. In fact, they both
have an α-like core with S = T = 0, whereas the remaining
two-nucleon pairs are two 1S0-(nn) dineutrons in 8He, and
an equal mixture of two 1S0-(np) T = 1 pairs, one 1S0-(nn)
dineutron and one 1S0-(pp) diproton in 8Be. Again, there is no
change in the spatial symmetry of the initial and final states.

�T = 2 transitions are especially interesting due to their
direct correspondence to the experimental cases. As an ex-
ample of this class, in the right-hand panel of Fig. 2 we
show the 10He → 10Be transition densities associated with
the F, GT, and T operators, namely,

∑
a<b(τ+

a τ+
b ),

∑
a<b(σ a ·

σ b τ+
a τ+

b ), and
∑

a<b(Sab τ+
a τ+

b ), respectively. Here, the F
and GT densities present nodes due to the orthogonal-
ity between the dominant spatial symmetries of the initial
[4222]=[α,(nn),(nn),(nn)] and final [442]=[α,α,(nn)] wave
functions. Note that integrating the F transition density (blue
dots labeled with “F” in the figure) over dr gives zero, which
follows from isospin conservation. Similarly, nodes are found
in the F and GT densities associated with the A = 8 and 12
transitions in this class. In particular, the nodes are due to

the orthogonality between the dominant spatial symmetries of
the initial [422]=[α,(nn),(nn)] ([4422]=[α,α,(nn),(nn)]) and
final [44]=[α,α] ([444]=[α,α,α]) states in the 8He → 8Be
(12Be → 12C) decay. In the remainder of this section we
primarily focus our attention on �T = 2 transitions in A = 10
and 12, and just report the results obtained for the A = 8 decay.
In fact, 8Be presents a unique and rich structure characterized
by a strong two-α cluster in both its ground state—that lies
∼0.1 MeV above the threshold for breakup into two α’s—and
first two rotational excited states of two α particles rotating
about each other [57,58]. These features make this test case
less appealing for comparisons with decays relevant from the
experimental point of view.

A. Light Majorana neutrino exchange

In Table I, we report a breakdown of the tree-level light
Majorana-neutrino exchange potentials defined in Eqs. (7)–(9).
The first three rows show the results for transitions between
isobaric analog states. In this case, the absence of nodes implies
that the F-ν and GT-AA contributions dominate the 0νββ

TABLE II. VMC results for the dimensionless matrix elements, defined in Eq. (16), relevant for the contributions of the dimension-9
operators in Eq. (2). For comparison, we also show the total matrix elements for the light Majorana neutrino mechanism. The first (second)
three rows show the results for the �T = 0 (�T = 2) transitions (see text for explanation). For comparison, the bottom three rows show the
results of Ref. [30] for the heavy nuclei 48Ca, 76Ge, and 136Xe. VMC statistical errors (not reported in the table) are �2%.

F GT T

(Ti) → (Tf ) ν NN ν ππ πN NN ν ππ πN

6He(1) → 6Be(1) −1.502 −0.586 3.688 −0.160 0.354 1.740 −0.025 −0.009 −0.040
8He(2) → 8Be�(2) −3.310 −0.532 2.798 −0.128 0.276 1.414 −0.009 0.000 0.015
10Be(1) → 10C(1) −1.898 −0.876 3.848 −0.218 0.432 2.588 −0.078 −0.032 −0.148
8He(2) → 8Be(0) −0.097 −0.198 0.108 −0.044 0.058 0.596 −0.021 −0.010 −0.053
10He(3) → 10Be(1) −0.078 −0.134 0.156 −0.032 0.046 0.402 −0.026 −0.012 −0.057
12Be(2) → 12C(0) −0.192 −0.370 0.400 −0.084 0.120 1.106 −0.052 −0.022 −0.122
48Ca → 48Ti −0.25 −0.64 0.93 −0.12 0.18 2.11 −0.060 −0.026 −0.153
76Ge → 76Se −0.59 −1.46 2.73 −0.31 0.49 4.87 −0.010 0.00 −0.026
136Xe → 136Ba −0.54 −1.28 2.1 −0.26 0.42 4.25 −0.010 0.00 0.026
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FIG. 2. VMC calculations of the transition densities associated
with the F, GT, and T operators—

∑
a<b(τ+

a τ+
b ),

∑
a<b(σ a · σ b τ+

a τ+
b ),

and
∑

a<b(Sab τ+
a τ+

b ), respectively—for the 6He → 6Be (left panel)
and 10He → 10Be decays (right panel).

potentials. The GT-AP and GT-PP components, which have
pion range, steeply fall off for r � 2 fm and give, respectively,
a ∼20% and ∼5% correction to the GT-ν matrix element. This
can be appreciated from Fig. 3, which shows that for r > 2 fm
the total GT distribution CGT ,ν is very well approximated by
the AA component. The weak-magnetic term GT-MM, which
is a N2LO correction in chiral EFT, is small, about 2%. Figure 3
also shows that the tensor matrix elements are negligible.

The results for the �T = 2 transitions are shown in rows
4–6 of Table I. The most important feature of these transitions
is the presence of nodes, which causes the GT and F densities,
illustrated in the right-hand panel of Fig. 2, to change sign
at about 2.5 fm. As a result, there is a large cancellation
for the F-ν and GT-AA matrix elements, which causes these
NMEs to be significantly smaller than in the case of transitions
involving isobaric analog states. This is illustrated in the
left-hand panel of Fig. 4 for the 12Be → 12C transition, where
the region with r > 2.5 fm reduces the GT-AA matrix element
by 50%. The same NMEs were compared in �T = 2 and
�T = 0 transitions of heavier systems, such as 48Ca → 48Ti,
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FIG. 3. VMC calculations of the transition distributions Cα,β (r)
defined in Eq. (26) for the 6He → 6Be decay.
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FIG. 4. VMC calculations of the transition distributions Cα,β (r)
defined in Eq. (26) for the 12Be → 12C decay.

in Refs. [59,60], where a similar suppression of the NMEs in
�T = 2 transitions was found. In contrast, the AP, PP and MM
components, which are pion- and short-range contributions,
are much less affected by this cancellation and are therefore
more important in the �T = 2 transitions. Both of these
effects can also be seen from Table I. For example, in the
10He → 10Be transition the AP, PP and MM components are,
respectively, 48%, 16%, and 10% of the GT-AA, and, while
the GT-AA matrix element is 20 times smaller than in the
6He → 6Be transition, the AP, PP and MM matrix elements
are only about a factor of 5 smaller. Table I also shows a partial
cancellation between the GT-AP and GT-PP and GT-MM
components, which is a common feature of both �T = 0 and
�T = 2 transitions. As a result we find that the GT-ν matrix
element is always dominated by the GT-AA component. In
the case of transitions between isobaric analogs, the GT-AA
matrix element is 90% of the total GT-ν contribution, while in
�T = 2 transitions, it is approximately 80%. A similar effect
is observed in calculations of heavier systems, such as 48Ca,
76Ge, and 136Xe [30,31,61–63]. The T-MM contribution—a
contact-like contribution—is statistically zero in both �T = 0
and 2. This is a consequence of the fact that the tensor operator
Sab vanishes in between nn pairs in relative S wave, which is
the dominant two-nucleon component at short distances.

The absolute size of the NMEs shows sizable variations
between different �T = 2 transitions. In particular, the matrix
elements increase by a factor of 2.5 between the 10He → 10Be
and 12Be → 12C transitions. This can be appreciated from
Fig. 5, where we show the GT-ν and F-ν transition distributions
in momentum space. While the shape of the distributions is
very similar in the two transitions, the peak is significantly
larger in 12Be → 12C. This effect may be due, at least partially,
to a large difference in the spatial extent of the relevant wave
functions. The 10He system is only a resonance, unstable
against breakup into 8He + 2n by about 1 MeV. Here we
have employed a pseudo-bound (with an exponentially falling
density at long range) VMC wave function that is quite diffuse,
with a proton (neutron) rms radius of 1.95 (3.66) fm. The
10Be, 12Be, and 12C nuclei are all bound systems, with VMC
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FIG. 5. The GT-ν, F-ν, GT-ππ , and GT-πN distributions in
momentum space for the 10He → 10Be and 12Be → 12C decays. Solid
and dashed lines are obtained, respectively, with and without the
inclusion of the momentum dependence in nucleonic form factors.
See text for explanation.

wave functions that have proton (neutron) rms radii of 2.32
(2.50) fm, 2.43 (2.99) fm, and 2.48 (2.48) fm, respectively.
GFMC calculations change these radii by less than 5%. Thus,
for the A = 10 decay, two neutrons with an rms radius of 3.66
fm must be converted to two protons at an rms radius of 2.32 fm,
indicating a small spatial overlap between the initial and
final wave functions and consequently relatively small matrix
elements. In comparison, the A = 12 decay only requires a
shift from 2.99 to 2.48 fm, which leads to a significantly larger
spatial overlap, and larger matrix elements. This last transition
in A = 12 is possibly the test case that is most like 0νββ decays
in nuclei of experimental interest.

To the best of our knowledge, the first microscopic cal-
culations of transition distributions in A = 8 and 10 nuclei
were reported in Ref. [64] within the no-core shell model
framework. In that reference, the authors were interested in
testing the validity of the Lee-Suzuki mappings and related
techniques to construct effective two-body operators, rather
than having results based on realistic wave functions. It is
nevertheless interesting to compare the two calculations. We
find that our NMEs based on VMC wave functions are smaller
by a factor of ∼40% with respect to those reported in Ref. [64].

We think that this discrepancy is due to the capability of the
VMC wave functions of capturing the diffuseness of the 8He
and 10He systems. This makes the overlaps with the final 8Be
and 10Be smaller with respect to those obtained in the no-core
shell model which instead utilize the same oscillator well for
both the initial and final states.

As a comparison, in the last five rows of Table I we show
the shell model [30,61,65] and proton-neutron quasiparticle
random-phase approximation [31] for 48Ca, 76Ge, and 136Xe.
Results from other many-body methods differ by a factor of 2 to
3 [25]. Although the absolute sizes of these NMEs are larger by
a factor of a few than those of the�T = 2 transitions calculated
here, the relative factors between the different NMEs seem to
agree fairly well (see also Table III), indicating that the relative
size of long- and short-distance physics is independent of the
particular nuclear systems considered.

It is interesting to note that the RA normalization factor in-
troduced in Eqs. (17)–(19) can induce some misjudgment when
comparing results from different nuclei. In fact, if we multiply
the NMEs by 1/RA (with R8 = 2.40 fm, R10 = 2.58 fm, and
R12 = 2.75 fm) we find a remarkably good agreement between
short- and pion-range potentials evaluated in A = 12 and
A = 48 with R48 = 4.36 fm (and, to a lesser extent, A = 76
and A = 136 with R76 = 5.08 fm and R136 = 6.17 fm) decays.
This could be due to the fact that short-range operators depend
on the nuclear density, which is roughly the same in all nuclei.

The last column of Table I reports our results for the matrix
element T-AA, which does not contribute in the case of light
Majorana-neutrino exchange, but it is relevant in the presence
of right-handed charged currents [22,44,45]. This matrix ele-
ment is not often computed in the literature, and in Ref. [22]
bounds on the right-handed operator C

(6)
VR were obtained by

setting MT,AA = 0. If we naively assume that the ratio between
the GT-AA and T-AA matrix elements is the same in heavy
and light nuclei, a T-AA matrix element of the size reported in
Table I would affect the bounds on C

(6)
VR at the 20% level.

The results discussed in this section, summarized in Table I,
deal mostly with NMEs involved in light Majorana-neutrino
exchange. However, as noted in Ref. [22], linear combina-
tions of the same NMEs determine additional long-range
contributions to 0νββ mediated by dimension-6 and -7 LNV
semileptonic operators that are not proportional to mββ .

TABLE III. The same matrix elements as Table II, relevant for dimension-9 contributions, now normalized to the GT-AA (GT-πN ) matrix
element in the left (right) columns. For comparison, the results of Refs. [30,31] for 48Ca, 76Ge, and 136Xe are shown.

F GT F GT

(Ti) → (Tf ) ν NN AA ν ππ πN NN ππ πN

8He(2) → 8Be(0) −0.63 −1.37 1 0.71 −0.28 0.38 3.38 −0.76 1
10He(3) → 10Be(1) −0.39 −0.71 1 0.79 −0.16 0.23 2.86 −0.68 1
12Be(2) → 12C(0) −0.38 −0.77 1 0.80 −0.17 0.24 3.08 −0.70 1
48Ca → 48Ti [30] −0.23 −0.60 1 0.86 −0.11 0.17 3.55 −0.68 1
76Ge → 76Se [30] −0.19 −0.46 1 0.87 −0.10 0.15 2.97 −0.63 1

[31] −0.32 −0.63 1 0.84 −0.12 0.19 3.34 −0.66 1
136Xe → 136Ba [30] −0.22 −0.52 1 0.86 −0.10 0.17 3.06 −0.59 1

[31] −0.28 −0.48 1 0.84 −0.11 0.16 3.03 −0.68 1
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TABLE IV. VMC calculations of the dimensionless matrix elements relevant for light Majorana-neutrino exchange, defined in Eqs. (A2)–
(A4), for the 10He → 10Be transition. The first row repeats the results of Table I, which include both the form factors and correlations. The results
reported in the second row neglect the momentum dependence in the axial, vector, and pseudoscalar nucleonic form factors. Results in the third
row are obtained by including the regulator given in Eq. (28). Results in the fourth row are obtained by turning off the one-pion-exchange-like
correlations in the nuclear wave functions (see text for explanation). VMC statistical errors (not reported in the table) are � 2%.

F GT T

(Ti) → (Tf ) ν AA AP PP MM ν AP PP MM ν

10He(3) → 10Be(1) −0.078 0.196 −0.094 0.032 0.020 0.156 −0.032 0.012 −0.004 −0.026
no form factors −0.088 0.218 −0.098 0.034 0.020 0.172 −0.042 0.016 −0.006 −0.032
F (r), RL = 0.7 fm −0.076 0.180 −0.086 0.028 0.013 0.141 −0.041 0.015 −0.006 −0.033
no correlations −0.086 0.222 −0.106 0.036 0.022 0.172 −0.004 0.002 0.000 −0.004

B. LNV from short distance

We now discuss the neutrino potentials induced by
dimension-9 operators, which do not involve neutrino ex-
change, but are pion or short range. Our results are summarized
in Table II, where the first and middle three rows give the
�T = 0 and �T = 2 transitions, respectively. For compari-
son, the bottom three rows give the results of Ref. [30] for the
corresponding NMEs in heavier systems.

By power counting, with the definitions in Eqs. (7)–(9) and
(12), one would expect all the NMEs in Table II to be of similar
size. In the case of the �T = 0 transitions, however, the lack
of nodes is responsible for the dominance of the GT-ν and
F-ν NMEs over the other matrix elements listed in Table II.
The GT-ππ and GT-πN contributions are, respectively, only
∼5% and ∼10% of the GT-ν matrix element. As these NMEs
are proportional to GT-PP and GT-AP matrix elements, this is
what we would expect from the results in Table I. In Figs. 3 and
4 we can see how the transition distributions associated with
the pion-exchange operators ππ and πN start to die off at
∼1 fm, which is expected since the range of these operators is
approximately set by 1/mπ ∼ 1.4 fm. We also note that T-like
operators are highly suppressed, as can be seen from the figures
as well as from Table II. As discussed in the previous section,
this is a consequence of the fact that the tensor operator Sab

vanishes in between nn pairs in relative S wave, which is the
dominant two-nucleon component at short distances.

For the �T = 2 class, we show in Fig. 4 the calculated
distributions of the 12Be → 12C transition. Owing to the
characteristic node in the GT transition densities and the
ensuing cancellation, the GT-ππ (GT-πN ) matrix element
of this class is found to be as large as ∼30% (∼40%) of
the GT-ν contribution (see Table II). This is (numerically)
consistent with the results for the GT-PP and GT-AP matrix
elements of Table I. One can again see that the GT-ππ and
GT-πN distributions start to fall off around 1.1 fm, and that
the T -like operators are highly suppressed for the �T = 2
transitions as well. From comparing the last six rows of Table II
one can see that the absolute sizes of the matrix elements
calculated here are smaller by a factor of a few than those
calculated for heavier systems. In Table III we show the F and
GT matrix elements normalized to the GT-AA and GT-πN
components, including, for heavy systems, results obtained
with two many-body methods, the shell model [30], and the
quasiparticle random phase approximation [31]. From the

left-hand columns we see that, in a given method, the relative
importance of long-, pion-, and short-range potentials is fairly
constant, and the hierarchy of matrix elements is the same for
heavy and light nuclei. For pion- and short-distance matrix
elements, we observe an even better agreement. As illustrated
in the right-hand columns, after normalizing to GT-πN , the
normalized short-range matrix elements of light and heavy
nuclei, and of heavy nuclei computed with different methods,
are consistent at the 20% level or better.

Finally, to obtain the short-range matrix elements GT-NN
and F-NN we used the regularization of the δ function potential
in Eq. (27). If we instead regulate the divergence by using a
dipole form factor, either gV (q2) or gA(q2), the NMEs vary by
no more than a few percent. The relation GT-NN = −3 F-NN
is very accurately satisfied by the matrix elements in Table II.

C. Sensitivity to form factors and correlations

We now turn our attention to the sensitivity of the matrix
elements to variations in the nucleonic form factors as well as
variations in the nuclear wave functions’ correlations. To this
end we study in more detail the �T = 2 transition 10He →
10Be and report our results in Table IV. The findings discussed
in this section in relation to the A = 10 decay apply to the other
�T = 2 transitions considered in the present work as well.

The neutrino potentials in Eqs. (7)–(9) include the vector
and axial form factors gV (q2) and gA(q2), whose momentum
dependence is an N2LO correction in chiral EFT. To study the
impact of these form factors, we repeated the calculation of
the NMEs setting gV (q2) = 1 and gA(q2) = gA. We report the
results for the 10He → 10Be transition in the second row of
Table IV. For the F-ν and GT-ν matrix elements the effect of
turning off the axial and vector form factors is mild, resulting
in at most a 10% increase. For the T-AP and the T-PP compo-
nents, this effect appears to be larger, ∼20−30 %. In �T = 2
transitions the variation is magnified by the cancellations that
affect the F and GT-AA matrix elements. For comparison, in
�T = 0 transitions the effect of turning off the momentum
dependence of gV,A(q2) is less than 5%.

For the weak-magnetic contributions GT-MM, some care
has to be taken when removing the form factors. As evident
from Eqs. (A5) and (A6), in the absence of gV (q2), both
VGT,MM and VT,MM are singular at r → 0. To compute the GT-
MM matrix element in the second line of Table IV we used the
regularization of the δ function in Eq. (27), with R = 0.6 fm.
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Varying R between 0.6 and 0.8 fm does not have an appreciable
effect on the result. The good agreement for the values of
GT-MM in the first and second lines of Table IV indicates that
the result does not strongly depend on the way the region of
large q2 is regulated. For the T-MM matrix element, the second
line of Table IV is obtained by naively using the potential
VT,MM (r) in Eq. (A6). Here the divergence at r = 0 does not
spoil the evaluation of the associated matrix element. Again
this is due to the fact that the tensor operator T (Sab) gives zero
on pairs in relative S wave. In fact, the τ+

a τ+
b is selecting out

valence (nn) pairs in the initial state. These are largely in a 1S0

relative state, with some 3P0 components which are, however,
zero at short range due to an angular momentum barrier.

While in Table IV we only report results for the impact
of form factors on the light neutrino-exchange potentials, the
same features are shared by matrix elements of the Vππ and
VπN potentials, as they are proportional to the AP and PP
components in Table IV. The same holds for the VNN potential,
which is analogous to GT-MM. In particular, changing the
regularization of the δ function potential from Eq. (27) to a
dipole form factor, either gV (q2) or gA(q2) has little effect on
the F-NN and GT-NN matrix elements.

The impact of the axial and vector form factors on the
10He → 10Be and 12Be → 12C transitions is illustrated in
Fig. 5. The solid and dashed lines denote the distributions C̄(q)
defined in Eq. (26), with and without the dipole form factors
for gV,A(q2). We see that the dipole form factors start to have
an effect at around q ∼ 200 MeV, and cut off the distributions
for q � 500 MeV. The effect is similar for the F-ν and GT-ν,
which are mostly long distance, and the pion-range GT-ππ
and GT-πN matrix elements, which are induced by heavy
LNV new physics.

In the third row of Table IV, we report results obtained by
regulating the matrix elements with the F (r) function defined
in Eq. (28) with RL = 0.7 fm. We studied the sensitivity of
our results with respect to variation of RL ∈ {0.6,0.8} fm
and found that the most affected matrix elements are those
characterized by the presence of the node. For example, by
comparing the second and the third rows in the table we can
see that GT-ν and F-ν undergo a ∼18% and ∼13% variation,
respectively, whereas T-ν is essentially unaffected by the
regulator function. This is because the T-like operators are
already zero at short distances.

Finally, in the fourth row of Table IV we report results
obtained by artificially turning off the “one-pion-exchange-
like” correlation operators in the nuclear wave functions as
discussed in Sec. III. Turning the correlations off has a dramatic
effect on the tensor matrix elements, which become statistically
equal to zero. The GT-ν and F-ν magnitudes increase by ∼10%
with respect to the correlated results given in the first row of the
table. The effect of the one-pion-exchange-like correlations is
represented in Fig. 6, where the blue triangles (solid line) in
the left (right) panel represent the r-space (q-space) GT-AA
transition distribution obtained by turning off the correlations
to be compared with the red dots (solid line) obtained with the
correlated wave function.

In closing this section, we reiterate that 0νββ matrix
elements involve on average values of momentum transfer
q of the order of hundreds of MeVs. This can be seen, for
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FIG. 6. The left (right) panel shows the GT-AA distribution in
r-space (q-space) for the 10He → 10Be transition, with and without
“one-pion-exchange-like” correlations in the nuclear wave functions.
See text for explanation.

example, in Fig. 5 where the momentum distributions1 in both
the A = 10 and 12 decays peak at ∼200 MeV.

D. Light neutrino exchange beyond leading order

Beyond leading order, several new contributions to light
Majorana-neutrino exchange arise. At N2LO in the Weinberg
counting, these consist of corrections to the single-nucleon
currents as well as contributions to a genuine two-body po-
tential that cannot be absorbed by the one-body weak currents
[46]. In addition, at N3LO there are two-body effects in the
weak currents (see Refs. [41–43]), which lead to three-nucleon
potentials that we do not consider further here. Instead, the
N2LO two-body potentials are induced by loop diagrams
involving the neutrino, as well as counterterms that appear at
the same order. The corrections to the one-body currents are
often included in the 0νββ literature through the form factors
in Eq. (10), while the two-body contributions have so far not
been implemented in nuclear calculations. Here we investigate
the impact of this second type of corrections, which appears
at the same order as the effect of the form factors discussed in
Sec. IV C.

The N2LO correction to the neutrino-exchange potential of
Eq. (6) was derived in Ref. [46] and can be written as

Vν,2 = τ+
a τ+

b

(
V

(a,b)
V V + V

(a,b)
AA + V

(a,b)
CT + V (a,b)

us ln
m2

π

μ2
us

)
,

(29)

where V
(a,b)
V V (V (a,b)

AA ) arises from loops with two inser-
tions of the vector (axial) current, Vus is generated by
loops involving ultrasoft neutrinos, and V

(a,b)
CT captures the

1We point out that with our definition of GT-AA potential given in
Eq. (11), the associated q-space transition distribution does not go
to zero at q = 0 (see Figs. 5 and 6). The different behavior at q = 0
that is found in the literature [66] is due to the different definition
of GT-AA potential, which in the latter case includes the so-called
closure energy [25].
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counterterm contributions. The latter term involves three
counterterms which absorb the renormalization scale (μ)
dependence of divergent loop diagrams. We write these pieces
as follows:2

V
(a,b)
CT =

(
5

6
gππ

ν + 3Lπ

)
V

(a,b)
CT,ππ + (

gπN
ν + (

1 − g2
A

)
Lπ

)

×V
(a,b)
CT,πN +

(
gNN

ν + 3

8

(
1 − g2

A

)2
Lπ

)
V

(a,b)
CT,NN,

(30)

where Lπ = ln μ2

m2
π

and gππ
ν , gπN

ν , and gNN
ν are the

counterterms.
It should be noted that the potential in Eq. (29) does

not capture the complete N2LO correction. First, the loops
involving ultrasoft neutrinos (captured by Vus) are divergent
and induce the dependence on the renormalization scale μus

in Eq. (29). This μus dependence is canceled by ultrasoft
contributions to the 0νββ amplitude. However, the calculation
of these contributions requires knowledge of the intermediate
states [46] and is beyond the scope of the current work.
Second, although gππ

ν can be estimated through a connection
to electromagnetic corrections to ππ interactions [67], leading
to [46] gππ

ν (μ = mρ) = −7.6, the counterterms gπN
ν and gNN

ν

are currently unknown. Without these missing pieces we do
not have full control over the complete N2LO correction.
Nevertheless, a rough estimate of the size of the counterterm
and the ultrasoft contributions can be obtained by varying
the renormalization scales, μ and μus, respectively, such that
the logarithms change by O(1) [this corresponds to naive
dimensional analysis (NDA)].

With the above caveats in mind, we find in the case of the
10He → 10Be transition

MV V

Mν

= 7.1 × 10−3,
MAA

Mν

= −7.9 × 10−2,

MCT,ππ

Mν

= 8.5 × 10−3,
MCT,πN

Mν

= −3.8 × 10−3,

MCT,NN

Mν

= 1.4 × 10−2,
Mus

Mν

= −2.4 × 10−2 , (31)

where Mν denotes the matrix element of the potential in Eq. (7),
Mν = −MF,ν + g2

A(MGT,ν + MT,ν), which can be read from
Table I. For the 10He → 10Be transition, one has Mν � 0.29. It
should be noted that the potential in Eq. (29) has a divergence
for q → ∞ (or r → 0), making it rather sensitive to the way
short-distance scales are regulated. Here we naively regulated
this divergence by multiplying all terms by g2

A(q2)/g2
A.

The sizes of the different pieces in Eq. (31) vary from the
sub-percent level to O(10%) of the LO matrix element, Mν ,
which is consistent with the expected size of N2LO corrections.
As a result, some of the larger terms in Eq. (31) are of the same
order of magnitude as the effects of including the form factors.

2With these definitions, VV V,AA and Vus correspond to VV V,AA and
ṼAA of Ref. [46] with Lπ = 0, while VCT includes VCT as well as the
Lπ pieces of VV V,AA. We neglected the contribution of the contact
interaction, CT , everywhere.

NDA estimates of the counterterms do not alter this conclusion.
However, one should note that the NDA scaling of gNN

ν is far
from obvious in the context of chiral EFT. As discussed in
Ref. [46], further work to determine the scaling of gNN

ν and its
possible enhancement is needed.

V. CONCLUSION

The nuclear ab initio approach aims at describing the
widest range of nuclear properties in terms of interactions
occurring between nucleons inside the nucleus. In this micro-
scopic picture, nucleons interact with each other via two- and
three-body interactions, and with external electroweak probes
via couplings to individual nucleons and to nucleon pairs.
Albeit limited to light nuclei (A � 12), quantum Monte Carlo
calculations based on the AV18 two-body and IL7 three-body
interactions successfully explain available experimental data in
a broad energy range, from the keV regime relevant to astro-
physics studies to the GeV regime where short-range correla-
tions become predominant [32–34]. These studies yield a rather
complex picture of the nucleus with many-body correlations
in both the nuclear wave functions and electroweak currents
playing an important role in reaching agreement with the data.

In this work, we used the ab initio approach supported by
the computationally accurate quantum Monte Carlo methods
to study 0νββ matrix elements in A = 6−12 nuclei. While
these systems are not relevant from the experimental point
of view, they are nevertheless interesting and provide us
with an extremely useful set of test cases. In fact, the 0νββ
rate depends on matrix elements that are not experimentally
accessible and need to be estimated theoretically. At present,
the calculated nuclear matrix elements of experimental interest
(A � 48) have large theoretical uncertainties which complicate
the interpretation of any future 0νββ observation or lack
thereof. The uncertainties on the calculated matrix elements are
primarily attributable to the fact that for larger nuclear systems,
in order for the calculations to be computationally feasible, one
has to (drastically) approximate the ab initio framework, by,
e.g., leaving out correlations and/or truncating the model space.

It is in this context that this study on 0νββ in light nuclei
finds its relevance. For a start, we provided a set of VMC
calculations that can be used for benchmarking purposes.
We have presented results for the nuclear matrix elements
relevant for the light Majorana-neutrino exchange mechanism
(Table I) as well as for TeV-scale mechanisms of lepton-
number violation (Table II), and we have studied their relative
size (see Table III).

Our results for the �T = 2 transitions show the following
features:

(i) The matrix elements for A = 10,12 are between an or-
der of magnitude and a factor of 2 smaller compared to
shell-model results for systems with A = 48,76,136.
The bulk of this difference can be attributed to the
normalization factor RA entering Eqs. (17)–(19).

(ii) The difference in the A = 10 and A = 12 matrix
elements is correlated with the height of the peaks in
their associated transition densities (see Fig. 5) and it is
due to the different spatial overlaps between an initial
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diffuse neutron distribution and a final compact proton
distribution in the case of the A = 10 transition, and
between two compact initial neutron and final proton
distributions in the A = 12 transition.

(iii) As illustrated in Table III, the ratios of different matrix
elements to the dominant Gamow-Teller one (GT-AA)
are, in a given method, roughly independent of A. We
find that for A = 10,12, the ratios agree at the 5%
level, while for A = 48,76,136 they agree at the 15%
level or better, and are consistent with the A = 10,12
results at the 30% level. However, if we normalize the
GT-like matrix elements by a short-range contribution,
e,g„ GT-πN , then the normalized short-range matrix
elements are consistent at the ∼20% level or better in
all the considered nuclear transitions.

Our results will help the community assess the adequacy of
the various methods used to estimate 0νββ matrix elements and
identify the key dynamical features that need to be retained in
more approximate many-body computational methods. This is
especially relevant for benchmarking those methods that can
be extended to the heavier systems of experimental interest.
In this spirit, we have studied the effect of artificially turning
off correlations in the VMC nuclear wave functions, finding a
∼10% increase in the calculated nuclear matrix elements for
the light Majorana neutrino exchange mechanism. This corre-
sponds to having to “quench” gA by ∼0.95 to accommodate
for correlation effects. However, shell-model calculations of
single-β decays [68] indicate that the required “quenching” of
gA in, e.g., the 10C weak transition, is ∼0.83. These findings
may indicate that the gA “quenching” required in calculations
based on more approximated nuclear models (for A > 12
nuclei) is larger in single-β decay than in neutrinoless double-β
decays.

Within the VMC approach, we have also explored the
impact of using different forms for the transition operators
mediating 0νββ—another potential source of uncertainty in
the matrix elements of physical interest. In particular, for the
light Majorana-neutrino exchange mechanism, following the
chiral EFT approach of Ref. [46], we estimated the impact
of N2LO corrections (in the Weinberg power counting) on
the 10He → 10Be transition. The “factorizable” N2LO effects
captured by nucleon form factors impact the matrix elements at
the 10% level (see Table IV). The non-factorizable genuinely
two-body effects are discussed in Sec. IV D. While we do not
have yet full control over the N2LO amplitude (counterterms
and ultrasoft contributions are not yet known), our results
suggest that the non-factorizable effects may lead to O(10%)
corrections, consistently with the expectations of the chiral
power counting. Counterterms of the size implied by naive
dimensional analysis would not change this conclusion. One
should keep in mind, however, that the NDA scaling of the
four-nucleon coupling gNN

ν cannot be taken for granted [46],
and further work to check the consistency of Weinberg power
counting for 0νββ and to determine the scaling of gNN

ν is
needed. In a similar vein, future work should focus on a more
consistent chiral EFT approach, in which the nuclear wave
functions are determined from a chiral potential. In addition,
it would be interesting to examine the three-body potentials

induced by chiral EFT two-body axial currents [69,70]. Work
along these lines is in progress.
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APPENDIX: NEUTRINO POTENTIALS
IN COORDINATE SPACE

Neglecting the momentum dependence of the axial and
vector form factors, the potentials in coordinate space read

Vν = mπτ+
a τ+

b

(
1 × 1 V ν

F (z)

−g2
A σ a · σ b V ν

GT (z) − g2
A Sab V ν

T (z)
)
,

Vππ = −mπτ+
a τ+

b (σ a · σ b VGT,ππ (z) + Sab VT,ππ (z)),

VπN = −mπτ+
a τ+

b (σ a · σ b VGT ,πN (z) + Sab VT, πN (z)),

VNN = mπ τ+
a τ+

b VF,NN (z), (A1)

where Sab(r̂) ≡ 3 σ a · r̂ σ b · r̂ − σ a · σ b, and we have intro-
duced z = rmπ , with r indicating the distance between parti-
cles a and b. The light Majorana-neutrino exchange potentials
V ν

F , V ν
GT , and V ν

T are

VF, ν(z) = 1

4πz
, (A2)

VGT, ν(z) = VGT ,AA(z) + VGT ,AP (z)

+VGT ,PP (z) + VGT ,MM (z), (A3)

VT, ν(z) = VT,AP (z) + VT,PP (z) + VT,MM (z), (A4)

where the GT functions are given by

VGT ,AA(z) = 1

4πz
, VGT ,AP (z) = − e−z

6πz
,

VGT ,PP (z) = −e−z(z − 2)

24πz
, (A5)

VGT ,MM (z) = (1 + κ1)2 m2
π

6g2
Am2

N

δ(3)(mπr).
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The tensor functions are

VT,AP (z) = 1

4πz3

(
2 − 2

3
e−z(3 + 3z + z2)

)
,

VT,PP (z) = −e−z(1 + z)

24πz
, (A6)

VT,MM (z) = (1 + κ1)2 m2
π

12g2
Am2

N

3

4πz3
.

The pion- and short-range potentials induced by dimension-
9 �L = 2 operators are

VGT ,ππ (z) = −VGT ,PP , VT, ππ (z) = −VT,PP ,

VGT ,πN (z) = −1

2
VGT ,AP , VT,πN (z) = e−z(3 + 3z + z2)

12πz3
,

VF,NN = VGT , NN = δ(3)(mπr). (A7)

[1] J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).
[2] S. Davidson, E. Nardi, and Y. Nir, Phys. Rep. 466, 105 (2008).
[3] J. Argyriades et al. (NEMO Collaboration), Phys. Rev. C 80,

032501 (2009).
[4] J. Argyriades et al. (NEMO-3 Collaboration), Nucl. Phys. A 847,

168 (2010).
[5] N. Ackerman et al. (EXO-200 Collaboration), Phys. Rev. Lett.

107, 212501 (2011).
[6] M. Agostini et al. (GERDA Collaboration), J. Phys. G 40,

035110 (2013).
[7] A. Gando et al. (KamLAND-Zen Collaboration), Phys. Rev. C

85, 045504 (2012).
[8] C. Alduino et al. (CUORE Collaboration), Eur. Phys. J. C 77,

13 (2017).
[9] R. Saakyan, Annu. Rev. Nucl. Part. Sci. 63, 503 (2013).

[10] A. Gando, Y. Gando, T. Hachiya, A. Hayashi, S. Hayashida, H.
Ikeda, K. Inoue, K. Ishidoshiro, Y. Karino, M. Koga, S. Matsuda,
T. Mitsui, K. Nakamura, S. Obara, T. Oura, H. Ozaki, I. Shimizu,
Y. Shirahata, J. Shirai, A. Suzuki et al. (KamLAND-Zen Collab-
oration), Phys. Rev. Lett. 117, 082503 (2016) [Addendum: 117,
109903 (2016)].

[11] K. Alfonso et al. (CUORE Collaboration), Phys. Rev. Lett. 115,
102502 (2015).

[12] J. B. Albert et al. (EXO-200 Collaboration), Nature (London)
510, 229 (2014).

[13] M. Agostini et al. (GERDA Collaboration), Phys. Rev. Lett. 111,
122503 (2013).

[14] A. Gando et al. (KamLAND-Zen Collaboration), Phys. Rev.
Lett. 110, 062502 (2013).

[15] S. R. Elliott et al., J. Phys. Conf. Ser. 888, 012035 (2017).
[16] S. Andringa et al. (SNO + Collaboration), Adv. High Energy

Phys. 2016, 6194250 (2016).
[17] M. Agostini et al., Nature (London) 544, 47 (2017).
[18] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).
[19] K. S. Babu and C. N. Leung, Nucl. Phys. B 619, 667 (2001).
[20] A. de Gouvea and J. Jenkins, Phys. Rev. D 77, 013008 (2008).
[21] L. Lehman, Phys. Rev. D 90, 125023 (2014).
[22] V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, and E.

Mereghetti, J. High Energy Phys. 12 (2017) 082.
[23] S. M. Bilenky and C. Giunti, Int. J. Mod. Phys. A 30, 1530001

(2015).
[24] S. M. Bilenky and S. T. Petcov, Rev. Mod. Phys. 59, 671 (1987);

60, 575(E) (1988).
[25] J. Engel and J. Menéndez, Rep. Prog. Phys. 80, 046301 (2017).
[26] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).
[27] S. C. Pieper, AIP Conf. Proc. 1011, 143 (2008).
[28] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40,

100001 (2016).

[29] S. Pastore, A. Baroni, J. Carlson, S. Gandolfi, S. C. Pieper, R.
Schiavilla, and R. B. Wiringa, arXiv:1709.03592.

[30] J. Menéndez (private communication).
[31] J. Hyvärinen and J. Suhonen, Phys. Rev. C 91, 024613

(2015).
[32] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,

K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067
(2015), and references therein.

[33] J. Carlson and R. Schiavilla, Rev. Mod. Phys. 70, 743 (1998),
and references therein.

[34] S. Bacca and S. Pastore, J. Phys. G: Nucl. Part. Phys. 41, 123002
(2014), and references therein.

[35] M. L. Graesser, J. High Energy Phys. 08 (2017) 099.
[36] G. Prezeau, M. Ramsey-Musolf, and P. Vogel, Phys. Rev. D 68,

034016 (2003).
[37] V. Cirigliano, W. Dekens, M. Graesser, and E. Mereghetti, Phys.

Lett. B 769, 460 (2017).
[38] S. Weinberg, Phys. Lett. B 251, 288 (1990).
[39] S. Weinberg, Nucl. Phys. B 363, 3 (1991).
[40] M. J. Savage, Phys. Rev. C 59, 2293 (1999).
[41] J. Menéndez, D. Gazit, and A. Schwenk, Phys. Rev. Lett. 107,

062501 (2011).
[42] J. Engel, F. Šimkovic, and P. Vogel, Phys. Rev. C 89, 064308

(2014).
[43] J. Menéndez, arXiv:1605.05059.
[44] M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl.

83, 1 (1985).
[45] K. Muto, E. Bender, and H. V. Klapdor, Z. Phys. A 334, 187

(1989).
[46] V. Cirigliano, W. Dekens, E. Mereghetti, and A. Walker-Loud,

arXiv:1710.01729.
[47] R. B. Wiringa, Phys. Rev. C 43, 1585 (1991).
[48] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C.

Pieper, and R. B. Wiringa, Phys. Rev. C 56, 1720
(1997).

[49] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087
(1953).

[50] S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51,
53 (2001).

[51] S. Pastore, S. C. Pieper, R. Schiavilla, and R. B. Wiringa, Phys.
Rev. C 87, 035503 (2013).

[52] R. B. Wiringa, Phys. Rev. C 73, 034317 (2006).
[53] M. Piarulli, L. Girlanda, R. Schiavilla, R. N. Pérez, J. E. Amaro,

and E. R. Arriola, Phys. Rev. C 91, 024003 (2015).
[54] J. E. Lynn, J. Carlson, E. Epelbaum, S. Gandolfi, A. Gezerlis,

and A. Schwenk, Phys. Rev. Lett. 113, 192501 (2014).
[55] M. Piarulli et al., arXiv:1707.02883 [Phys. Rev. Lett. (to be

published)].

014606-13

https://doi.org/10.1103/PhysRevD.25.2951
https://doi.org/10.1103/PhysRevD.25.2951
https://doi.org/10.1103/PhysRevD.25.2951
https://doi.org/10.1103/PhysRevD.25.2951
https://doi.org/10.1016/j.physrep.2008.06.002
https://doi.org/10.1016/j.physrep.2008.06.002
https://doi.org/10.1016/j.physrep.2008.06.002
https://doi.org/10.1016/j.physrep.2008.06.002
https://doi.org/10.1103/PhysRevC.80.032501
https://doi.org/10.1103/PhysRevC.80.032501
https://doi.org/10.1103/PhysRevC.80.032501
https://doi.org/10.1103/PhysRevC.80.032501
https://doi.org/10.1016/j.nuclphysa.2010.07.009
https://doi.org/10.1016/j.nuclphysa.2010.07.009
https://doi.org/10.1016/j.nuclphysa.2010.07.009
https://doi.org/10.1016/j.nuclphysa.2010.07.009
https://doi.org/10.1103/PhysRevLett.107.212501
https://doi.org/10.1103/PhysRevLett.107.212501
https://doi.org/10.1103/PhysRevLett.107.212501
https://doi.org/10.1103/PhysRevLett.107.212501
https://doi.org/10.1088/0954-3899/40/3/035110
https://doi.org/10.1088/0954-3899/40/3/035110
https://doi.org/10.1088/0954-3899/40/3/035110
https://doi.org/10.1088/0954-3899/40/3/035110
https://doi.org/10.1103/PhysRevC.85.045504
https://doi.org/10.1103/PhysRevC.85.045504
https://doi.org/10.1103/PhysRevC.85.045504
https://doi.org/10.1103/PhysRevC.85.045504
https://doi.org/10.1140/epjc/s10052-016-4498-6
https://doi.org/10.1140/epjc/s10052-016-4498-6
https://doi.org/10.1140/epjc/s10052-016-4498-6
https://doi.org/10.1140/epjc/s10052-016-4498-6
https://doi.org/10.1146/annurev-nucl-102711-094904
https://doi.org/10.1146/annurev-nucl-102711-094904
https://doi.org/10.1146/annurev-nucl-102711-094904
https://doi.org/10.1146/annurev-nucl-102711-094904
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.109903
https://doi.org/10.1103/PhysRevLett.117.109903
https://doi.org/10.1103/PhysRevLett.117.109903
https://doi.org/10.1103/PhysRevLett.115.102502
https://doi.org/10.1103/PhysRevLett.115.102502
https://doi.org/10.1103/PhysRevLett.115.102502
https://doi.org/10.1103/PhysRevLett.115.102502
https://doi.org/10.1038/nature13432
https://doi.org/10.1038/nature13432
https://doi.org/10.1038/nature13432
https://doi.org/10.1038/nature13432
https://doi.org/10.1103/PhysRevLett.111.122503
https://doi.org/10.1103/PhysRevLett.111.122503
https://doi.org/10.1103/PhysRevLett.111.122503
https://doi.org/10.1103/PhysRevLett.111.122503
https://doi.org/10.1103/PhysRevLett.110.062502
https://doi.org/10.1103/PhysRevLett.110.062502
https://doi.org/10.1103/PhysRevLett.110.062502
https://doi.org/10.1103/PhysRevLett.110.062502
https://doi.org/10.1088/1742-6596/888/1/012035
https://doi.org/10.1088/1742-6596/888/1/012035
https://doi.org/10.1088/1742-6596/888/1/012035
https://doi.org/10.1088/1742-6596/888/1/012035
https://doi.org/10.1155/2016/6194250
https://doi.org/10.1155/2016/6194250
https://doi.org/10.1155/2016/6194250
https://doi.org/10.1155/2016/6194250
https://doi.org/10.1038/nature21717
https://doi.org/10.1038/nature21717
https://doi.org/10.1038/nature21717
https://doi.org/10.1038/nature21717
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1016/S0550-3213(01)00504-1
https://doi.org/10.1016/S0550-3213(01)00504-1
https://doi.org/10.1016/S0550-3213(01)00504-1
https://doi.org/10.1016/S0550-3213(01)00504-1
https://doi.org/10.1103/PhysRevD.77.013008
https://doi.org/10.1103/PhysRevD.77.013008
https://doi.org/10.1103/PhysRevD.77.013008
https://doi.org/10.1103/PhysRevD.77.013008
https://doi.org/10.1103/PhysRevD.90.125023
https://doi.org/10.1103/PhysRevD.90.125023
https://doi.org/10.1103/PhysRevD.90.125023
https://doi.org/10.1103/PhysRevD.90.125023
https://doi.org/10.1007/JHEP12(2017)082
https://doi.org/10.1007/JHEP12(2017)082
https://doi.org/10.1007/JHEP12(2017)082
https://doi.org/10.1007/JHEP12(2017)082
https://doi.org/10.1142/S0217751X1530001X
https://doi.org/10.1142/S0217751X1530001X
https://doi.org/10.1142/S0217751X1530001X
https://doi.org/10.1142/S0217751X1530001X
https://doi.org/10.1103/RevModPhys.59.671
https://doi.org/10.1103/RevModPhys.59.671
https://doi.org/10.1103/RevModPhys.59.671
https://doi.org/10.1103/RevModPhys.59.671
https://doi.org/10.1103/RevModPhys.60.575
https://doi.org/10.1103/RevModPhys.60.575
https://doi.org/10.1103/RevModPhys.60.575
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1063/1.2932280
https://doi.org/10.1063/1.2932280
https://doi.org/10.1063/1.2932280
https://doi.org/10.1063/1.2932280
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
http://arxiv.org/abs/arXiv:1709.03592
https://doi.org/10.1103/PhysRevC.91.024613
https://doi.org/10.1103/PhysRevC.91.024613
https://doi.org/10.1103/PhysRevC.91.024613
https://doi.org/10.1103/PhysRevC.91.024613
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.70.743
https://doi.org/10.1103/RevModPhys.70.743
https://doi.org/10.1103/RevModPhys.70.743
https://doi.org/10.1103/RevModPhys.70.743
https://doi.org/10.1088/0954-3899/41/12/123002
https://doi.org/10.1088/0954-3899/41/12/123002
https://doi.org/10.1088/0954-3899/41/12/123002
https://doi.org/10.1088/0954-3899/41/12/123002
https://doi.org/10.1007/JHEP08(2017)099
https://doi.org/10.1007/JHEP08(2017)099
https://doi.org/10.1007/JHEP08(2017)099
https://doi.org/10.1007/JHEP08(2017)099
https://doi.org/10.1103/PhysRevD.68.034016
https://doi.org/10.1103/PhysRevD.68.034016
https://doi.org/10.1103/PhysRevD.68.034016
https://doi.org/10.1103/PhysRevD.68.034016
https://doi.org/10.1016/j.physletb.2017.04.020
https://doi.org/10.1016/j.physletb.2017.04.020
https://doi.org/10.1016/j.physletb.2017.04.020
https://doi.org/10.1016/j.physletb.2017.04.020
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1103/PhysRevC.59.2293
https://doi.org/10.1103/PhysRevC.59.2293
https://doi.org/10.1103/PhysRevC.59.2293
https://doi.org/10.1103/PhysRevC.59.2293
https://doi.org/10.1103/PhysRevLett.107.062501
https://doi.org/10.1103/PhysRevLett.107.062501
https://doi.org/10.1103/PhysRevLett.107.062501
https://doi.org/10.1103/PhysRevLett.107.062501
https://doi.org/10.1103/PhysRevC.89.064308
https://doi.org/10.1103/PhysRevC.89.064308
https://doi.org/10.1103/PhysRevC.89.064308
https://doi.org/10.1103/PhysRevC.89.064308
http://arxiv.org/abs/arXiv:1605.05059
https://doi.org/10.1143/PTPS.83.1
https://doi.org/10.1143/PTPS.83.1
https://doi.org/10.1143/PTPS.83.1
https://doi.org/10.1143/PTPS.83.1
http://arxiv.org/abs/arXiv:1710.01729
https://doi.org/10.1103/PhysRevC.43.1585
https://doi.org/10.1103/PhysRevC.43.1585
https://doi.org/10.1103/PhysRevC.43.1585
https://doi.org/10.1103/PhysRevC.43.1585
https://doi.org/10.1103/PhysRevC.56.1720
https://doi.org/10.1103/PhysRevC.56.1720
https://doi.org/10.1103/PhysRevC.56.1720
https://doi.org/10.1103/PhysRevC.56.1720
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1146/annurev.nucl.51.101701.132506
https://doi.org/10.1146/annurev.nucl.51.101701.132506
https://doi.org/10.1146/annurev.nucl.51.101701.132506
https://doi.org/10.1146/annurev.nucl.51.101701.132506
https://doi.org/10.1103/PhysRevC.87.035503
https://doi.org/10.1103/PhysRevC.87.035503
https://doi.org/10.1103/PhysRevC.87.035503
https://doi.org/10.1103/PhysRevC.87.035503
https://doi.org/10.1103/PhysRevC.73.034317
https://doi.org/10.1103/PhysRevC.73.034317
https://doi.org/10.1103/PhysRevC.73.034317
https://doi.org/10.1103/PhysRevC.73.034317
https://doi.org/10.1103/PhysRevC.91.024003
https://doi.org/10.1103/PhysRevC.91.024003
https://doi.org/10.1103/PhysRevC.91.024003
https://doi.org/10.1103/PhysRevC.91.024003
https://doi.org/10.1103/PhysRevLett.113.192501
https://doi.org/10.1103/PhysRevLett.113.192501
https://doi.org/10.1103/PhysRevLett.113.192501
https://doi.org/10.1103/PhysRevLett.113.192501
http://arxiv.org/abs/arXiv:1707.02883


S. PASTORE et al. PHYSICAL REVIEW C 97, 014606 (2018)

[56] M. Pervin, S. C. Pieper, and R. B. Wiringa, Phys. Rev. C 76,
064319 (2007).

[57] S. Pastore, R. B. Wiringa, S. C. Pieper, and R. Schiavilla, Phys.
Rev. C 90, 024321 (2014).

[58] V. M. Datar, D. R. Chakrabarty, S. Kumar, V. Nanal, S. Pastore,
R. B. Wiringa, S. P. Behera, A. Chatterjee, D. Jenkins, C. J.
Lister, E. T. Mirgule, A. Mitra, R. G. Pillay, K. Ramachandran,
O. J. Roberts, P. C. Rout, A. Shrivastava, and P. Sugathan, Phys.
Rev. Lett. 111, 062502 (2013).

[59] J. Menéndez, N. Hinohara, J. Engel, G. Martínez-Pinedo, and T.
R. Rodríguez, Phys. Rev. C 93, 014305 (2016).

[60] J. Menéndez, T. R. Rodríguez, G. Martínez-Pinedo, and A.
Poves, Phys. Rev. C 90, 024311 (2014).

[61] J. Menéndez, A. Poves, E. Caurier, and F. Nowacki, Nucl. Phys.
A 818, 139 (2009).

[62] J. Barea and F. Iachello, Phys. Rev. C 79, 044301
(2009).

[63] J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 91, 034304
(2015).

[64] D. Shukla, J. Engel, and P. Navratil, Phys. Rev. C 84, 044316
(2011).

[65] Y. Iwata, N. Shimizu, T. Otsuka, Y. Utsuno, J. Menéndez, M.
Honma, and T. Abe, Phys. Rev. Lett. 116, 112502 (2016); 117,
179902(E) (2016).

[66] F. Šimkovic, A. Faessler, V. Rodin, P. Vogel, and J. Engel, Phys.
Rev. C 77, 045503 (2008).

[67] B. Ananthanarayan and B. Moussallam, J. High Energy Phys.
06 (2004) 047.

[68] W. T. Chou, E. K. Warburton, and B. A. Brown, Phys. Rev. C
47, 163 (1993).

[69] A. Baroni, L. Girlanda, S. Pastore, R. Schiavilla, and M. Viviani,
Phys. Rev. C 93, 015501 (2016); 95, 059901(E) (2017).

[70] H. Krebs, E. Epelbaum, and U.-G. Meiner, Ann. Phys. 378, 317
(2017).

014606-14

https://doi.org/10.1103/PhysRevC.76.064319
https://doi.org/10.1103/PhysRevC.76.064319
https://doi.org/10.1103/PhysRevC.76.064319
https://doi.org/10.1103/PhysRevC.76.064319
https://doi.org/10.1103/PhysRevC.90.024321
https://doi.org/10.1103/PhysRevC.90.024321
https://doi.org/10.1103/PhysRevC.90.024321
https://doi.org/10.1103/PhysRevC.90.024321
https://doi.org/10.1103/PhysRevLett.111.062502
https://doi.org/10.1103/PhysRevLett.111.062502
https://doi.org/10.1103/PhysRevLett.111.062502
https://doi.org/10.1103/PhysRevLett.111.062502
https://doi.org/10.1103/PhysRevC.93.014305
https://doi.org/10.1103/PhysRevC.93.014305
https://doi.org/10.1103/PhysRevC.93.014305
https://doi.org/10.1103/PhysRevC.93.014305
https://doi.org/10.1103/PhysRevC.90.024311
https://doi.org/10.1103/PhysRevC.90.024311
https://doi.org/10.1103/PhysRevC.90.024311
https://doi.org/10.1103/PhysRevC.90.024311
https://doi.org/10.1016/j.nuclphysa.2008.12.005
https://doi.org/10.1016/j.nuclphysa.2008.12.005
https://doi.org/10.1016/j.nuclphysa.2008.12.005
https://doi.org/10.1016/j.nuclphysa.2008.12.005
https://doi.org/10.1103/PhysRevC.79.044301
https://doi.org/10.1103/PhysRevC.79.044301
https://doi.org/10.1103/PhysRevC.79.044301
https://doi.org/10.1103/PhysRevC.79.044301
https://doi.org/10.1103/PhysRevC.91.034304
https://doi.org/10.1103/PhysRevC.91.034304
https://doi.org/10.1103/PhysRevC.91.034304
https://doi.org/10.1103/PhysRevC.91.034304
https://doi.org/10.1103/PhysRevC.84.044316
https://doi.org/10.1103/PhysRevC.84.044316
https://doi.org/10.1103/PhysRevC.84.044316
https://doi.org/10.1103/PhysRevC.84.044316
https://doi.org/10.1103/PhysRevLett.116.112502
https://doi.org/10.1103/PhysRevLett.116.112502
https://doi.org/10.1103/PhysRevLett.116.112502
https://doi.org/10.1103/PhysRevLett.116.112502
https://doi.org/10.1103/PhysRevLett.117.179902
https://doi.org/10.1103/PhysRevLett.117.179902
https://doi.org/10.1103/PhysRevLett.117.179902
https://doi.org/10.1103/PhysRevC.77.045503
https://doi.org/10.1103/PhysRevC.77.045503
https://doi.org/10.1103/PhysRevC.77.045503
https://doi.org/10.1103/PhysRevC.77.045503
https://doi.org/10.1088/1126-6708/2004/06/047
https://doi.org/10.1088/1126-6708/2004/06/047
https://doi.org/10.1088/1126-6708/2004/06/047
https://doi.org/10.1088/1126-6708/2004/06/047
https://doi.org/10.1103/PhysRevC.47.163
https://doi.org/10.1103/PhysRevC.47.163
https://doi.org/10.1103/PhysRevC.47.163
https://doi.org/10.1103/PhysRevC.47.163
https://doi.org/10.1103/PhysRevC.93.015501
https://doi.org/10.1103/PhysRevC.93.015501
https://doi.org/10.1103/PhysRevC.93.015501
https://doi.org/10.1103/PhysRevC.93.015501
https://doi.org/10.1103/PhysRevC.95.059901
https://doi.org/10.1103/PhysRevC.95.059901
https://doi.org/10.1103/PhysRevC.95.059901
https://doi.org/10.1016/j.aop.2017.01.021
https://doi.org/10.1016/j.aop.2017.01.021
https://doi.org/10.1016/j.aop.2017.01.021
https://doi.org/10.1016/j.aop.2017.01.021



