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Elastic α-12C scattering at low energies with the bound states of 16O in effective field theory
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The elastic α-12C scattering for l = 0,1,2,3 channels at low energies is studied, including the energies of
excited bound states of 16O, in effective field theory. A new renormalization method is introduced due to the large
suppression factor produced by the Coulomb interaction when the effective range parameters are fitted to the
phase sift data. After fitting the parameters, the asymptotic normalization constants of the 0+

2 , 1−
1 , 2+

1 , 3−
1 states

of 16O are calculated. The uncertainties when the amplitudes are interpolated to the stellar energy region of the
12C(α,γ )16O reaction are also discussed.
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I. INTRODUCTION

The radiative α capture on carbon-12, 12C(α,γ )16O, is one
of the fundamental reactions in nuclear astrophysics, which
determines the C/O ratio synthesized in the stars [1]. The
reaction rate of the process at the Gamow peak energy, TG =
0.3 MeV, however, cannot be determined in experiment due
to the Coulomb barrier. It is necessary to employ a theoretical
model to extrapolate the reaction rate down to TG by fitting
model parameters to experimental data typically measured at a
few MeV. Since the 1960s, a lot of experimental and theoretical
studies for the reaction have been carried out. See Refs. [2–5]
for review.

The elastic α-12C scattering at low energies is an important
reaction to fix some parameters of a model for the study.
Accurate measurements of the elastic scattering have been
reported in Refs. [6,7], and those data provide indispensable
input for the parameter fittings. Elastic-scattering data at low
energies in general can be used for deducing an asymptotic
normalization constant (ANC), which determines an overall
strength of a nuclear reaction involving bound states [8–10].

The ANC of deuteron, for example, where the deuteron
is a simple system consisting of loosely bound proton and
neutron, leads to an overall factor of the reactions at low
energies, such as radiative neutron capture on a proton at
BBN energies [11,12] and proton-proton fusion in the Sun
[13–16]. The ANC of deuteron is accurately determined by two
effective range parameters: the deuteron binding momentum
and effective range [17,18], which are accurately fixed from
the deuteron binding energy and elastic NN scattering at low
energies. On the other hand, to deduce ANCs for nuclear
reactions relevant in nuclear-astrophysics is not so simple: The
Coulomb interaction between heavier nuclei plays a negative
role by preventing ones from obtaining elastic-scattering data
at very low energies, which makes the deduction of ANCs in
terms of effective range expansion difficult [19,20]. Recently,
a new method of the parametrization for deducting the ANCs
of nuclear reactions is suggested by Ramirez Suarez and
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Sparenberg [21], and new results of the ANCs by using the
new method are reported in Refs. [22,23].

Effective field theories (EFTs) provide us a model inde-
pendent and systematic method for theoretical calculations.
An EFT for a system in question can be built by introducing
a scale which separates relevant degrees of freedom at low
energies from irrelevant degrees of freedom at high energies.
An effective Lagrangian is written down in terms of the relevant
degrees of freedom and perturbatively expanded by counting
the number of derivatives order by order. The irrelevant degrees
of freedom are integrated out and their effect is embedded
in coefficients appearing in the Lagrangian. Thus, a transi-
tion amplitude is systematically calculated by writing down
Feynman diagrams, while the coefficients appearing in the
Lagrangian are fixed by experiment. For review, one may
refer to Refs. [24–27]. Since the mid-1990s, various processes
essential in nuclear-astrophysics have been investigated by
constructing EFTs, which arep(n,γ )d at BBN energies [11,12]
and pp fusion [13–16], 3He(α,γ )7Be [28], and 7Be(p,γ )7B
[29,30] in the Sun.

In the previous work [31], I have constructed an EFT of the
radiative capture reaction, 12C(α,γ )16O, obtained the counting
rules for the reaction at TG and fitted some parameters of
the theory to the phase-shift data of the elastic scattering. (I
briefly review the counting rules for the radiative capture and
elastic-scattering reactions in the following sections.) In the
parameter fitting to the phase-shift data, I have introduced
resonance energies of 16O as a large scale of the theory. As
suggested by Teichmann [32], below the resonance energies,
the Breit-Wigner-type parametrization for resonances can be
expanded in powers of the energy, and one can obtain an
expression of the amplitude in terms of the effective range
expansion. I have determined three effective range parameters
of the elastic scattering for l = 0,1,2 channels by fitting them
to the phase-shift data but not included the excited bound states
of 16O in the study. Though the phase-shift data below the reso-
nance energies can be reproduced very well by using the fitted
parameters, I find that significant uncertainties in the elastic
amplitudes are remained when extrapolating them to TG.

In the present work, I incorporate the excited binding
energies for 0+

2 , 1−
1 , 2+

1 , 3−
1 (lπith) states of 16O in the parameter
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FIG. 1. Diagrams for dressed 16O propagator. A thick (thin) dashed line represents a propagator of 12C (α), and a thick and thin double

dashed line with and without a filled blob represent a dressed and bare 16O propagator, respectively. A shaded blob represents a set of diagrams
consisting of all possible one-potential-photon-exchange diagrams up to infinite order and no potential-photon-exchange one.

fitting to the phase-shift data of the elastic scattering for
l = 0,1,2,3 channels. An assumption for the parameter fitting
is that fitted curves which interpolate the amplitude between
the phase-shift data and the excited binding energies can be
represented by several terms of a polynomial function. As
will be discussed in detail below, however, I find a mismatch
between the strength of the amplitudes estimated from the
phase-shift data and the first few terms of a polynomial function
obtained from the Coulomb self-energy term in the dressed 16O
propagator. Because those terms from the Coulomb self-energy
are larger, at most by two orders of magnitude, than the
term estimated by the phase-shift data, I introduce a new
renormalization method; I assume that those large terms should
be renormalized by counter terms, the role of which I assign
to the effective range terms. Thus I include the effective range
parameters up to third order (n = 3 in powers of k2n) for the
l = 0,1,2 channels and up to fourth order (n = 4) for the l = 3
channel. After fitting the parameters to the phase-shift data, I
calculate the ANCs of the 0+

2 , 1−
1 , 2+

1 , 3−
1 states of 16O and

compare the results to the existing ones.
This paper is organized as follows: In Sec. 2, the ap-

proach based on an EFT for the radiative capture reaction
is briefly reviewed, and the expression of equations related
to the elastic-scattering amplitudes, the phase shifts, and the
effective range parameters are displayed. In Sec. 3, I introduce
a new renormalization method and describe the details of the
numerical fitting to the elastic-scattering data. In Sec. 4, the
numerical results obtained in this work are exhibited, and,
finally, in Sec. 5, the results and discussion of the work are
presented. In the Appendix, the structure of the UV divergence
and the counter terms of the elastic-scattering amplitudes in the
conventional renormalization method are summarized.

II. EFT FOR THE RADIATIVE CAPTURE AND ELASTIC
SCATTERING AT LOW ENERGIES

In the study of the radiative capture process, 12C(α,γ )16O,
at TG = 0.3 MeV employing an EFT, at such a low energy, one
may regard the ground states of α and 12C as pointlike particles,
whereas the first excited state energies of α and 12C are chosen
as irrelevant degrees of freedom, by which a large scale of the
theory is determined. The effective Lagrangian for the process
is constructed in terms of two spinless scalar fields for α and
12C, and the terms of the Lagrangian are expanded in terms
of the number of derivatives. An expression of the effective
Lagrangian has been obtained in Eq. (1) in Ref. [31]. The
expansion parameter of the theory is Q/�H ∼ 1/3, where Q
denotes a typical momentum scale Q ∼ kG: kG is the Gamow
peak momentum, kG = √

2μTG � 41 MeV, where μ is the
reduced mass of α and 12C. �H denotes a large momentum
scale �H � √

2μ4T(4) or
√

2μ12T(12) ∼ 150 MeV, where μ4

is the reduced mass of one- and three-nucleon systems and
μ12 is that of four- and eight-nucleon systems. T(4) and T(12)

are the first excited energies of α and 12C, respectively. By
including the terms up to next-to-next-to-leading order, there-
fore, one may obtain about 10% theoretical uncertainty for the
process.

The amplitudes of the elastic scattering are calculated from
diagrams depicted in Figs. 1 and 2. In my previous works, I
have obtained the scattering amplitudes for lth partial wave
states as [31,33,34]

Al = 2π

μ

(2l + 1)Pl(cos θ )e2iσl Wl(η)C2
η

Kl(k) − 2κHl(k)
, (1)

where k is the magnitude of relative momentum between α and
12C and θ is the scattering angle in the center-of-mass frame.
In addition, η is the Sommerfeld parameter, η = κ/k, where κ
is the inverse of the Bohr radius, κ = Z2Z6μα, and

C2
η = 2πη

e2πη − 1
, Wl(η) = κ2l

(l!)2

l∏
n=0

(
1 + n2

η2

)
,

Hl(k) = Wl(η)H (η), (2)

with

H (η) = ψ(iη) + 1

2iη
− ln(iη), (3)

where ψ(z) is the digamma function, Pl(x) are the Legendre
polynomials, and σl are the Coulomb phase shifts. When η goes
to zero, the factor C2

η is normalized to one, whereas, when η
becomes large, the Gamow factor, P = exp(−2πη), appears
from the factor C2

η ∝ P . Note that the function, −2κHl(k), in
the denominator of the amplitude is obtained from the Coulomb
bubble diagram for the dressed propagator of 16O in Fig. 1, and
the factor, e2iσl Wl(η)C2

η , in the numerator is from the initial and
final state Coulomb interactions between α and 12C in Fig. 2.

The function Kl(k) represents the interaction due to the
short-range nuclear force (compared with the long-range
Coulomb force), which is obtained in terms of the effective

FIG. 2. Diagram of the scattering amplitude. See the caption of
Fig. 1 as well.
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range parameters as1

Kl(k) = − 1

al

+ 1

2
rlk

2 − 1

4
Plk

4 + Qlk
6 − Rlk

8 + · · · . (4)

Because the UV divergence comes out of the loop integrals in
the Coulomb self-energy terms (from the diagrams in Fig. 1),
one needs to introduce counter terms for renormalization. I
employ the dimensional regularization and the structure of the
UV divergence from the Coulomb self-energy terms is given in
the Appendix. Thus, I need to include one counter term, −1/a0

in the effective range expansion for l = 0; two counter terms,
−1/a1 and r1, for l = 1; three counter terms, −1/a2, r2, and P2,
for l = 2; and four counter terms,−1/a3, r3, P3, andQ3 for l =
3 to remove the UV divergence and make the terms finite. The
other higher-order terms in the effective range expansion are
introduced as finite terms in the conventional renormalization
method and supposed to obey counting rules in which higher-
order terms are less important than lower-order terms. One can
find that the expression obtained in Eq. (1) reproduces well the
previous results reported in Refs. [19,37–39].

At the binding energies of excited states of 16O, the ampli-
tudes should have a pole at kb = iγl , where γl are the binding
momenta,2 γl = √

2μBl ; Bl denote the binding energies of
excited states of 16O. Thus the denominator of the scattering
amplitude, Dl(k), should vanish at kb,

Dl(kb) = Kl(kb) − 2κHl(kb) = 0 . (5)

Using this condition, the first effective range parameter, al , is
related to other effective range parameters as

− 1

al

= 1

2
rlγ

2
l + 1

4
Plγ

4
l + Qlγ

6
l + Rlγ

8
l + · · · + 2κHl(kb),

(6)

and I remove the al dependence from the amplitude. Thus, I
have Dl(k) as

Dl(k) = 1
2 rl

(
k2 + γ 2

l

) − 1
4Pl

(
k4 − γ 4

l

) + Ql

(
k6 + γ 6

l

)
−Rl

(
k8 − γ 8

l

) + · · · − 2κ[Hl(k) − Hl(kb)]. (7)

The remaining effective range parameters are fixed by using
the phase-shift data of the elastic scattering.

The differential cross section of the elastic scattering is
represented in terms of the pure Coulomb scattering part and
the Coulomb modified nuclear scattering part, as presented
in Eq. (3) in Ref. [31], where the scattering function Ul is
Ul = exp[2i(δl + ωl)], where δl are the phase shifts for lth
partial waves and ωl = σl − σ0 with σl = arg 
(1 + l + iη).

1In this work, I employ a modified representation for effective
range parameters from that presented in Ref. [35]. Here I use the
effective volume-like parameter Pl rather than the shape parameter
Pl represented as −r2

l Plk
4. In addition, I introduced an opposite sign

for the Rl term so as to have positive sign in the bounding energy in
Eq. (6). I had employed another parametrization (v parametrization)
for the effective range parameters in Ref. [36].

2The quantity γl is also referred to the bound-state wave number in
the low-energy scattering theory.

Thus the scattering amplitudes are represented in terms of δl

as [40]

Al = 2π

μ

(2l + 1)Pl(cos θ )e2iσl

k cot δl − ik
. (8)

By comparing two expressions of the amplitudes Al in Eqs. (1)
and (8), one has a relation between the phase shift and the
effective range parameters in Dl(k) as

Wl(η)C2
ηk cot δl = ReDl(k). (9)

To estimate the ANC, |Cb|, for the 0+
2 , 1−

1 , 2+
1 , 3−

1 states of 16O,
we employ the definition of |Cb| from Eq. (14) in Ref. [39]:

|Cb| = γ l
l


(l + 1 + |ηb|)
l!

(∣∣∣∣−dDl(k)

dk2

∣∣∣∣
k2=−γ 2

l

)− 1
2

(fm−1/2),

(10)

where ηb = κ/kb.

III. FITTING THE PARAMETERS TO PHASE-SHIFT DATA

Four excited states of 16O exist below the α-12C threshold,
which I include in the parameter fitting in the present study.
The binding energies, Bi(lπ ), of the ith excited bound states
of 16O in lπ states from the α-12C threshold energy are
B1(0+) = 1.113, B2(3−) = 1.032, B3(2+) = 0.245, B4(1−) =
0.045 MeV. Thus, the binding momenta, γl = √

2μBi(lπ ), are

γl = 79.843, 15.860, 37.007, 75.954 (MeV), (11)

for the 0+
2 , 1−

1 , 2+
1 , 3−

1 states, respectively, where μ =
mαmC/(mα + mC) = 2795.079 MeV with mα = 3727.379
MeV and mC = 11174.862 MeV. As mentioned above, the
first effective range term, al , is constrained by using the binding
momenta.

To fix the other effective range parameters, the phase-shift
data for each lth partial wave state are used. In the present
work, I employ the phase-shift data from Tischhauser et al.’s
paper [7]. The reported energies of the α particle in the
laboratory frame are Tα = 2.6–6.6 MeV, and corresponding
momenta in the center-of-mass frame are k = 105–166 MeV
(i.e., k = √

1.5μTα). Because our large momentum scale of the
theory is �H ∼ 150 MeV, the convergence of the expansion
series should be carefully examined when the elastic-scattering
data are used for the parameter fitting. In addition, because I do
not explicitly include the resonance states of 16O in the theory,
I restrict data sets for the parameter fitting below the resonance
energies, Tα = 6.52, 3.23, 3.57, 5.09 MeV for 0+

3 , 1−
2 , 2+

2 , 3−
2

states, respectively; the corresponding momenta are k = 166,
117, 123, 146 MeV for the l = 0, 1, 2, 3, channels, respectively.
(I will mention data sets I choose for the parameter fitting in
detail below.)

Now I am in position to discuss a new renormalization
method. The effective range parameters in Kl(k) are expanded
in powers of k2, whereas the real part of the function Hl(k) can
be expanded in powers of k2 as well. For the function H (η) in
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Hl(k), one has

ReH (η) = 1

12κ2
k2 + 1

120κ4
k4 + 1

252κ6
k6

+ 1

240κ8
k8 + · · · , (12)

where η = κ/k; κ is the inverse of the Bohr radius, κ �
245 MeV, and is regarded as another large scale of the theory.
This expansion is reliable in the present study for the elastic
scattering at low energies along with the effective range
expansion in Kl(k). Thus, the right-hand-side of equation,
ReDl(k), in Eq. (9) can be expanded as a power series of k2

for both Kl(k) and 2κReHl(k). Meanwhile, the left-hand side
of Eq. (9) is suppressed by the factor C2

η , due to the Gamow
factor P = exp(−2πη).

In the case of the s wave, for example, the reported phase
shift at the smallest energy, Tα = 2.6 MeV, is δ0 = −1.893◦
[7]. The factor C2

η becomes C2
η � 6 × 10−6 at k = 104 MeV

which corresponds to Tα = 2.6 MeV, and the left-hand side of
Eq. (9) numerically becomes C2

ηk cot δ0 = −0.019 MeV. The
function 2κReH0(k) is expanded as

2κReH0(k) = 1

6κ
k2 + 1

60κ3
k4 + 1

126κ5
k6 + 1

120κ7
k8 + · · ·

= 7.441 + 0.136 + 0.012 + 0.002 + · · · (MeV),

(13)

at k = 104 MeV. The numerical values in the second line of
Eq. (13) correspond to the terms appearing in the first line of the
equation in order. One can see that the power series converges
well, but the first and second terms are two and one order of
magnitude larger compared with the value estimated by using
the experimental data in the left-hand side of Eq. (9), −0.019
MeV. Thus, I regard those terms unnaturally large, and it is
necessary to introduce a new renormalization method, in which
the counter terms remove the unnaturally large terms and make
the terms in a natural size. In other words, I assume that fitting
polynomial functions are represented as a natural power series
at the low-energy region, and to maintain such polynomial
functions, large cancellations for the first and second terms
with the rl and Pl effective terms, respectively, are expected.
So I include the three effective range parameters, rl, Pl , and Ql ,
for the l = 0 channel, as the counter terms. The same tendency
can be seen in the l = 1,2 channels, whereas one needs four
effective range parameters for the l = 3 channel. Thus, I
employ the three effective range parameters, rl, Pl,Ql , for the
l = 0,1,2 channels and the four effective range parameters,

rl, Pl,Ql, Rl , for the l = 3 channel when fitting the parameters
to the phase-shift data below.3

IV. NUMERICAL RESULTS

As discussed above, I fit the three effective range param-
eters, rl, Pl , and Ql , to the phase-shift data for the l = 0,1,2
channels and the four effective range parameters, rl, Pl,Ql ,
and Rl , to those for the l = 3 channel, while al are constrained
by using the relation in Eq. (6) with the binding momenta γl .
To examine the sensitivity to the choice of data sets, I employ
three sets of the phase-shift data [7] below the resonance
energy for each partial wave, which have different energy
ranges: three data sets for l = 0 denoted by S0, S1, S2 have the
data at Tα = 2.6–3.6, 2.6–3.8, and 2.6–4.0 MeV, respectively;
those for l = 1(2) denoted by P 0, P 1, P 2 (D0,D1,D2) have
the data at Tα = 2.6–3.0, 2.6–3.1, 2.6–3.2 MeV, respectively;
and those for l = 3 denoted by F0, F1, F2 have the data at
Tα = 2.6–4.6, 2.6–4.8, 2.6–5.0 MeV, respectively.

When the parameters are fitted to the data, large cancella-
tions between the terms in powers of k2 appearing from the
Kl(k) and 2κHl(k) functions, the rl, Pl,Ql, Rl effective range
terms and the corresponding terms from the 2κHl(k) function
are expected. I denote the terms from the 2κHl(k) function
corresponding to the effective range terms as r̃l , P̃l, Q̃l, R̃l ,
and I have

r̃0 = 1

3κ
, P̃0 = − 1

15κ3
, Q̃0 = 1

126κ5
, (14)

r̃1 = 1

3
κ, P̃1 = − 11

15κ
, Q̃1 = 31

1260κ3
, (15)

r̃2 = 1

12
κ3, P̃2 = −51

60
κ, Q̃2 = 191

1008κ
, (16)

r̃3 = 1

108
κ5, P̃3 = − 47

180
κ3, Q̃3 = 5297

22680
κ,

R̃3 = − 17101

90720κ
. (17)

3In the new method of the parametrization of elastic scattering
suggested by Ramirez Suarez and Sparenberg, the Kl(k) and 2κHl(k)
functions are merged, and a new function for the parametrization is
defined as �l(E) = C2

ηk cot δl , which is parameterized by using the
Pade approximation [21].

TABLE I. Effective range parameters, r0, P0, Q0, fitted by using the data sets S0, S1, S2; values of r̃0, P̃0, Q̃0 are included in the last row.
The values of a0, ReD0G, and |Cb| for the 0+

2 state are calculated by using r0, P0, Q0. For details, see the text.

a0 (fm) r0 (fm) P0 (fm3) Q0 (fm5) ReD0G (MeV) |Cb| (fm−1/2)

S0 6.2×104 0.268514(3) − 0.0343(4) 0.0019(2) 4.2(7)×10−3 6.8(16)×102

S1 6.6×104 0.268514(3) − 0.0342(3) 0.0020(3) 4.0(5)×10−3 7.4(15)×102

S2 5.8×104 0.268513(3) − 0.0345(2) 0.0018(1) 4.4(4)×10−3 6.4(7)×102

− r̃0 (fm) P̃0 (fm3) Q̃0 (fm5) − −
− 0.268735 − 0.0349 0.0027 − −
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TABLE II. Effective range parameters, r1, P1, Q1, fitted by using the data sets P 0, P 1, P 2; values of r̃1, P̃1, Q̃1 are included in last row.
The values of a1, ReD1G, and |Cb| for the 1−

1 state are calculated by using r1, P1, Q1. For details, see the text.

a1(fm3) r1 (fm−1) P1 (fm) Q1 (fm3) ReD1G (MeV3) |Cb| (fm−1/2)

P 0 −1.8 × 105 0.4150(6) −0.577(8) 0.019(3) 2.7(8) × 102 1.9(4) × 1014

P 1 −1.6 × 105 0.4153(2) −0.574(2) 0.020(1) 3.0(3) × 102 1.8(1) × 1014

P 2 −1.3 × 105 0.4157(2) −0.569(2) 0.023(1) 3.5(3) × 102 1.6(1) × 1014

− r̃1 (fm−1) P̃1 (fm) Q̃1 (fm3) − −
− 0.4135 −0.591 0.013 − −

Those values (and variations from them for some terms) are
used as the initial input of the effective range parameters for
the parameter fitting.4

In Tables I–IV, fitted values and errors of the effective
range parameters, rl, Pl,Ql, Rl for l = 0,1,2,3 channels to
the data sets {S0,S1,S2}, {P 0,P 1,P 2}, {D0,D1,D2}, and
{F0,F1,F2}, respectively, are presented. The errors of the
fitted parameters stem from those of the phase-shift data.
Numerical values of the r̃l , P̃l , Q̃l , R̃l terms for l = 0,1,2,3
are also shown in the tables. The values of al are calculated
by using the fitted effective range parameters in Eq. (6). The
values in the second-to-last column are the real part of the
denominator ReDl(k) of the scattering amplitude at the energy
corresponding to TG

5 (i.e., at k = kG), and those in the last
column are the ANC, |Cb|, for the 0+

2 , 1−
1 , 2+

1 , 3−
1 states.

One can see that the errors of the fitted values of the effective
range parameters are small, but the fitted effective range param-
eters are largely canceled with the corresponding r̃l , P̃l , Q̃l, R̃l

terms. In the values of the real part of denominator, ReDlG, of
the scattering amplitude at k = kG, one finds significant errors:
about 9–17%, 9–30%, 16–94%, 9–10% errors, depending
on the choice of the data sets for the l = 0,1,2,3 channels,
respectively. A large uncertainty persists in the l = 2 channel.

The ANCs for the 1−
1 and 2+

1 states have intensively been
studied because those ANCs are related to the estimate of
the E1 and E2 transitions of the radiative capture process,
while those for the 0+

2 and 3−
1 states, which are also important

to estimate the cascade transitions, are recently studied in
experiment and reported first time.

For the ANC, |Cb|, for the 1−
1 state, one finds that the

result of the present study, |Cb| = (1.6 − 1.9) × 1014 (fm−1/2),

4I employ a SciPy module, curve_fit, in optimization package
when fitting the effective range parameters to the phase-shift data.

5The α energy in the laboratory frame corresponding to TG is Tα =
4
3 TG � 0.4 MeV.

is in good agreement with experimental values, (2.10 ±
0.14) × 1014, (2.00 ± 0.35) × 1014, and (2.08 ± 0.20) × 1014,
obtained by Avila et al. [41], Oulebsir et al. [42], and Brune
et al. [43], respectively, and underestimates for other exper-
imental ones, (5.1 ± 0.6) × 1014 [44] and (17.4–26.4)×1014

[45]. One also finds good agreement with theoretical estimates,
(2.22–2.24)×1014, obtained from a potential model calculation
by Katsuma [46], and 2.14(6) × 1014 and 2.073 × 1014 from
the new method of the parametrization by Ramirez Suarez and
Sparenberg [21] and by Orlov et al. [23], respectively.

For the ANC, |Cb|, for the 2+
1 state, the result of the present

study, |Cb| = (2.1–2.4) × 104 (fm−1/2), is in underestimates to
experimental values, (12.2 ± 0.7) × 104 [41], (14.4 ± 2.8) ×
104 [42], (11 ± 1) × 104 [43], (34.5 ± 0.5) × 104 [44], and
(12.2–18.2)×104 [45]. Other experimental estimates evaluated
earlier, which basically agree with the experimental values
mentioned above, can be found in Table VI in Ref. [47].
On the other hand, the result of the present study is in good
agreement with theoretical estimates, (2.41 ± 0.38) × 104 and
2.106 × 104, from the effective range analysis up to the r2 term
by Konig et al. [19] and up to the P2 term by Orlov et al.
[20], respectively, and in underestimates for the other theoret-
ical estimates, (14.45 ± 0.85) × 104 from the supersymmetric
potential model by Sparenberg [48] and (12.6 ± 0.5) × 104

from the R matrix analysis with a microscopic cluster model
by Dufour and Descouvemont [47] and 5.050 × 104 from the
new method of the parametrization by Orlov et al. [23].

For the ANCs, |Cb|, for the 0+
2 and 3−

1 states, the result of the
present study, |Cb| = (6.4–7.4) × 102 (fm−1/2) for the 0+

2 state
is in underestimate to an experimental value, (15.6 ± 1.0) ×
102 [41] and in overestimate to a theoretical value, 4.057 ×
102 [23]. Meanwhile, the result of the present study, |Cb| =
(1.2 − 1.5) × 102 (fm−1/2) for the 3−

1 state is in very good
agreement with the experimental value, (1.39 ± 0.09) × 102,
recently reported by Avila et al. [41].

To examine the convergence of the power series in terms
of k2 at k = kG, I add the effective range terms and those

TABLE III. Effective range parameters, r2, P2, Q2, fitted by using the data sets D0, D1, D2; values of r̃2, P̃2, Q̃2 are included in the last
row. The values of a2, ReD2G, and |Cb| for the 2+

1 state are calculated by using r2, P2, Q2. For details, see the text.

a2(fm5) r2 (fm−3) P2 (fm−1) Q2 (fm) ReD2G (fm−5) |Cb| (fm−1/2)

D0 10.3×103 0.155(4) − 1.12(7) 0.11(3) − 1.66(156)×10−4 2.4(3)×104

D1 6.5×103 0.152(2) − 1.16(4) 0.08(2) − 2.6(9)×10−4 2.3(2)×104

D2 4.3×103 0.149(2) − 1.21(3) 0.06(1) − 3.8(6)×10−4 2.1(1)×104

− r̃2 (fm−3) P̃2 (fm−1) Q̃2 (fm) − −
− 0.159 − 1.05 0.15 − −

014604-5



SHUNG-ICHI ANDO PHYSICAL REVIEW C 97, 014604 (2018)

TABLE IV. Effective range parameters, r3, P3,Q3, R3, fitted by using the data sets F0, F1, F2; values of r̃3, P̃3, Q̃3, R̃3 are included in
the last row. The values of a3, ReD3G, and |Cb| for the 3−

1 state are calculated by using r3, P3, Q3, R3. For details, see the text.

a3 (fm7) r3 (fm−5) P3 (fm−3) Q3 (fm−1) R3 (fm) ReD3G (fm−7) |Cb| (fm−1/2)

F0 − 1.4×103 0.0319(1) − 0.453(11) 0.317(9) − 0.141(8) 7.8(8)×10−4 1.2(1)×102

F1 − 1.5×103 0.0320(1) − 0.459(9) 0.311(7) − 0.146(6) 7.4(7)×10−4 1.3(1)×102

F2 − 1.8×103 0.0322(1) − 0.472(7) 0.301(6) − 0.156(5) 6.4(6)×10−4 1.5(1)×102

− r̃3 (fm−5) P̃3 (fm−3) Q̃3 (fm−1) R̃3 (fm) − −
− 0.0272 − 0.498 0.290 − 0.152 − −

from the 2κReHl(k) functions together. In Table V, I show
the ratios of the terms after normalizing those terms by −1/al

for l = 0,2,3 and by 1
2 (r1 − r̃1)k2

G for l = 1 because of their
dominance where the effective range parameters fitted by using
the data sets S2, P 2,D2, F2 are used. As discussed above, the
expansion parameter at TG is Q ∼ 1/3, so the k2

G, k4
G, k6

G terms
are expected to be a few tenths, a few hundredths, and a few
thousandths to the leading-order terms, respectively. One finds
good convergence of the power series for l = 0,3 at k = kG.
On the other hand, the −1/a1 term is small compared to the
1
2 (r1 − r̃1)k2

G term for l = 1 and the −1/a2 and 1
2 (r2 − r̃2)k2

G

terms are comparable for l = 2, but the higher-order terms are
well converged for l = 1,2, as expected by the counting rules
of the theory.

In Figs. 3–6, the curves of phase shift δl [(a) panels] and the
real part of denominator, ReDl(k), of the scattering amplitude
[(b) panels] for l = 0,1,2,3, respectively, are plotted as func-
tions of Tα by using the values of rl, Pl,Ql, Rl , which are fitted
by using the data sets denoted by {S0,S1,S2}, {P 0,P 1,P 2},
{D0,D1,D2}, and {F0,F1,F2}. Experimental data of the
phase shift are also included in the figures. In addition, a
filled box in the (b) panels represents the binding energy of
the excited 0+

2 , 1−
1 , 2+

1 , or 3−
1 state in each of the figures.

One finds that the curves of δl plotted by using the different
sets of the fitted parameters are in good agreement with
each other and reproduce the experimental data within the
errors, except for the large energy region, Tα = 3.0–3.2 MeV
for l = 1. One can see the significant separations of the
curves of ReDl(k) at the interpolated energy region where the
experimental data do not exist for the l = 1,2,3 channels, but
the values of ReDlG at k = kG (i.e., Tα = 0.4 MeV) for the
different sets of the parameters are still in good agreement
within the errors, as seen in the tables.

TABLE V. Ratios of the terms in the power series to −1/al for
l = 0,2,3 and to 1

2 (r1 − r̃1)k2
G for l = 1 at k = kG, where the effective

range parameters fitted by using the data sets S2, P 2, D2, F2 have
been used.

| − 1
al

| | 1
2 (rl − r̃l)k2

G| | − 1
4 (Pl − P̃l)k4

G| |(Ql − Q̃l)k6
G|

S2 1 0.276 0.012 0.004
P 2 0.154 1 0.215 0.016
D2 1 0.946 0.316 0.031
F2 1 0.195 0.023 0.002

V. RESULTS AND DISCUSSION

In the present work, I have fitted the effective range
parameters to the phase-shift data of the elastic scattering
for l = 0,1,2,3 below the resonance energies of 16O in EFT.
The excited binding energies of the 0+

2 , 1−
1 , 2+

1 , 3−
1 states of

16O are also included in the parameter fitting. Because of a
mismatch between the terms from the 2κHl(k) functions and
a term obtained from the phase-shift data, I have introduced
a new renormalization method: I assign the effective range
terms as a role of the counter terms to obtain a natural power
series for the fitting polynomial functions at the low-energy
region. Thus, I have fitted three effective range parameters,
rl, Pl,Ql , for l = 0,1,2 and four effective range parameters,
rl, Pl,Ql, Rl , for l = 3 to the phase-shift data. (Those fitted
values of the effective range parameters are used when I study
the radiative capture reaction of α and 12C in EFT in the future.)
After fitting the effective range parameters, I have calculated
the real part of the denominator, ReDlG, of the scattering
amplitude at the energy corresponding to TG and the ANCs
for the 0+

2 , 1−
1 , 2+

1 , 3−
1 states. In addition, I have interpolated

and plotted the real part of the denominator of the scattering
amplitude between the binding energy and the phase-shift data.

In fitting the effective range parameters for the all partial
waves, one finds that the errors of the fitted effective range
parameters are tiny, whereas the effective range terms are
almost exactly canceled with the terms from the 2κHl(k)
function. Thus, I obtain 9–94% errors in ReDlG depending
on the choice of the input data sets and partial waves, while
the power series in terms of k2

G in ReDl(k) well converges at
the energy corresponding to TG, as expected by the counting
rules of the theory. In the figures, though the curves of the phase
shifts plotted by using the different sets of the parameters are in
good agreement, those of ReDl(k) are significantly different
in the interpolated region between the binding energies and
the phase-shift data where no experimental data are available.
Nonetheless, ReDlG from the different sets of the parameters
are still in good agreement within the error bars.

For the ANC, |Cb|, for the 1−
1 state, I find that the result of the

present study is in good agreement with the other theoretical
estimates and the recent experimental estimates. Thus, the
estimates of |Cb| for the 1−

1 state converge both theoretically
and experimentally. For the ANC, |Cb|, for the 2+

1 state, the
result of the present study is in good agreement with the
theoretical estimates based on the effective range expansion
but it underestimates, by more than a factor of 5, compared
with those of the other theories and the experiments. As seen in
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FIG. 3. Phase shift, δ0, (a) and the real part of denominator, ReD0(k), of the amplitude (b) as functions of Tα (where k = √
1.5μTα). Curves

are plotted by using the effective range parameters, fitted from the S0, S1, S2 data sets, presented in Table I. Experiment phase-shift data are
also included in the figure. A filled box in (b) represents the excited binding energy of the 0+

2 state.

Eq. (10), such a large |Cb| can be obtained by a very small slope
of ReD2(k) at the binding energy of the 2+

1 state. That indicates
a very large scattering length and a drastic cancellation between
the r2 term and the r̃2 term. Meanwhile, as seen in Fig. 5(b), the
phase-shift data are quite distant from the bound-state energy,
while the higher-order terms are involved in the fitting. Thus, it
is hard to discriminate which curve is better than the others in
the present approach. To have accurate experimental data of the
phase shift down to, e.g., Tα = 1 or 1.5 MeV could improve the
situation. For the ANCs, |Cb|, for the 0−

2 and 3−
1 states, the first

experimental result is recently reported by Avila et al. [41].
I find that the result for the 0+

2 state is about half compared
to the experimental estimate, while the result for the 3−

1 state
is in good agreement with the experimental value. It may be
necessary to wait for a further confirmation experimentally and
theoretically for the 0+

2 and 3−
1 states.

In the present work, I have introduced a new renormalization
method from an observation of a mismatch between the terms
from the Coulomb self-energy term, the 2κHl(k) function, and
the term obtained from the phase-shift data by assuming to have
a natural power series of the fitting polynomial functions at
the low energies. A conjecture about the observation is, on one
hand, that it may be caused simply due to the severe suppression
factor, the Gamow factor, at the low energies. On the other

hand, it may stem from the assumption that the α and 12C
states are pointlike. That implies that the interaction length
scale between the α and 12C vanishes, and thus the short-range
effect should be renormalized by introducing the counter terms.
A more systematic study about the issue would be necessary
in the future.
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APPENDIX

In this Appendix, I display the UV divergent terms from the
Coulomb self-energy in terms of the J functions and discuss
the counterterms in the conventional renormalization method.
The Coulomb self-energy terms for l = 0,1,2,3 are calculated
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from the J functions defined below:

J l=0
0 (p) =

∫
d3 �q

(2π )3

d3 �q ′

(2π )3
〈�q ′|Ĝ(+)

C |�q〉, (A1)

J l=1
2,i,x(p) =

∫
d3 �q

(2π )3

d3 �q ′

(2π )3
q ′

i〈�q ′|Ĝ(+)
C |�q〉qx, (A2)

J l=2
4;ij,xy(p) =

∫
d3 �q

(2π )3

d3 �q ′

(2π )3

(
q ′

iq
′
j − 1

3
δij q

′2
)

×〈�q ′|Ĝ(+)
C |�q〉

(
qxqy − 1

3
δxyq

2

)
, (A3)

J l=3
6,ijk,xyz(p) =

∫
d3 �q

(2π )3

d3 �q ′

(2π )3

[
q ′

iq
′
j q

′
k

− 1

5
(δij q

′
k + δikq

′
j + δjkq

′
i)q

′2
]
〈�q ′|Ĝ(+)

C |�q〉

×
[
qxqyqz − 1

5
(δxyqz + δxzqy + δyzqx)q2

]
,

(A4)

where Ĝ
(±)
C is the Coulomb propagator, G

(±)
C = 1/(E − Ĥ0 −

V̂C ± iε); H0 = �p2/(2μ) is the free two-particle Hamiltonian,
μ is a reduced mass, and VC = αZ1Z2/r is the repulsive
Coulomb force.

The J functions become infinity due to the loop integrals,
and I employ the dimensional regularization in d = 4 − 2ε
space-time dimensions. The expression of the J l=0

0 (p) function
is well known and one has [13]

J l=0
0 (p) = J

l=0,div
0 − κμ

π
H (η), (A5)

where J
l=0,div
0 is the divergent part of the J l=0

0 (p) function,

J
l=0,div
0 = κμ

2π

[
1

ε
− 3CE + 2 + ln

(
πμ2

DR

4κ2

)]
, (A6)

where CE = 0.577 · · · and μDR is a scale parameter from the
dimensional regularization. In addition, κ = αZ1Z2μ, and the
H (η) function has been presented in Eq. (3). I note that J l=0,div

0
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FIG. 6. Phase shift, δ3, (a) and the real part of denominator, ReD3(k), of the amplitude (b) as functions of Tα . Curves are plotted by using
the effective range parameters, fitted from the F0, F1 F2 data sets, presented in Table IV. Experiment phase-shift data are also included in the
figure. The filled box in (b) represents the binding energy of the 3−

1 state.
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does not depend on the momentum p. Thus the divergent
term is renormalized by a counterterm, the −1/a0 term in the
effective range expansion for l = 0.

The UV divergent terms from the other J functions are
obtained as

J
l=1,div
2,i,x (p) = Ol=1

i,x (κ2 + p2)J l=0,div
0 , (A7)

J
l=2,div
4,ij,xy (p) = Ol=2

ij,xy
1
4 (κ2 + p2)(κ2 + 4p2)J l=0,div

0 , (A8)

J
l=3,div
6,ijk,xyz(p) = Ol=3

ijk,xyz
1
36 (κ2 + p2)(κ2 + 4p2)

× (κ2 + 9p2)J l=0,div
0 , (A9)

with

Ol=1
i,x =

∫
d�l̂

4π
l̂i l̂x = 1

3
δix, (A10)

Ol=2
ij,xy =

∫
d�l̂

4π

(
l̂i l̂j − 1

3
δij

)(
l̂x l̂y − 1

3
δxy

)

= 1

15

(
δixδjy + δiyδjx − 2

3
δij δxy

)
, (A11)

Ol=3
ijk,xyz =

∫
d�l̂

4π

[
l̂i l̂j l̂k − 1

5
(δij l̂k + δik l̂j + δjk l̂i)

]

×
[
l̂x l̂y l̂z − 1

5
(δxy l̂z + δxy l̂y + δyzl̂x)

]

= 1

105

[
δixδjyδkz + 5 terms

− 2

5
(δij δkxδyz + 8 terms)

]
. (A12)

To renormalize the divergent terms from the Coulomb self-
energy, which now depend on the powers of p2, one needs two
counterterms, −1/a1 and r1, in the effective range expansion
for l = 1, three counterterms, −1/a2, r2, and P2, for l = 2,
and four counterterms, −1/a3, r3, P3, and Q3, for l = 3.
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