Systematic study of cluster radioactivity of superheavy nuclei

Y. L. Zhang (张彦立)^{1,2,3,4,*} and Y. Z. Wang (王艳召)^{3,4,5,6,†}

¹Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing 100044, China

²Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China

³Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

⁴Institute of Applied Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

⁵China Institute of Atomic Energy, P.O. Box 275 (10), Beijing 102413, China

⁶Department of Nuclear Physics, KTH (Royal Institute of Technology), Alba Nova University Center, S-10691 Stockholm, Sweden

(Received 26 October 2017; published 26 January 2018)

The probable cluster radioactivity (CR) of ²⁹⁴118, ²⁹⁶120, and ²⁹⁸122 is studied by using the unified description (UD) formula, universal (UNIV) curve, Horoi formula, and universal decay law (UDL). The predictions by the former three models suggest that the probable emitted clusters are lighter nuclei, and the calculations within the UDL formula give a different prediction: that both the lighter clusters and heavier ones can be emitted from the parent nuclei. A further study on the competition between α decay and CR of Z = 104-124 isotopes is performed. The former three models predict that α decay is the dominant decay mode, but the UDL formula suggests that CR dominates over α decay for $Z \ge 118$ nuclei and the isotopes of ^{292-296,308-318}118, ^{284-304,308-324}120, and ³¹⁶⁻³²²122 are the most likely candidates as the cluster emitters. Because the former three formulas are just preformation models, the lighter cluster emissions can be described. However, the UDL formula can predict the lighter and heavier CR owing to the inclusion of the preformation and fissionlike mechanisms. Finally, it is found that the shortest CR half-lives are always obtained when the daughter nuclei are around the double magic ²⁰⁸Pb within the UDL formula, which indicates that shell effect has an important influence on CR.

DOI: 10.1103/PhysRevC.97.014318

I. INTRODUCTION

Nowadays, the study of superheavy nuclei (SHN) has been an attractive subject in nuclear physics. So far, the elements with atomic number $Z \leq 118$ have been synthesized in hot fusion reactions of ⁴⁸Ca beams on actinide targets or with cold fusion using ²⁰⁸Pb or ²⁰⁹Bi as targets [1–10]. For SHN, α decay is one of the most important decay modes. The structure information of SHN, such as the half-life, radius, deformation, and shell effect, can be obtained by detecting α emitters. Thus many phenomenological and microscopic models have been proposed to describe α -decay process based on the Gamow's quantum tunneling effect [11–24]. In addition to α decay, cluster radioactivity (CR), which shares a similar physical mechanism with α radioactivity, is an important phenomenon for heavy nuclei. The CR was first predicted in 1980 by Sandulescu et al. [25], and then it was confirmed by Rose and Jones in 1984 for ¹⁴C radioactivity from ²²³Ra [26]. From then on, many kinds of clusters, such as ¹⁴C, ²⁰O, ²³F, ^{22,24–26}Ne, ^{28,30}Mg, and ^{32,34}Si, have been experimentally observed in trans-lead parent nuclei of Z = 87-96 [27-31].

Recently, studies on CR of SHN have been paid attention by many researchers. Poenaru *et al.* predicted that CR is one of the important decay modes for SHN and its branching ratio is larger than that of α decay for $Z \ge 121$ nuclei by the analytical superasymmetric fission (ASAF) model [32–34]. Later, the calculations within the universal decay law (UDL) gave predictions similar to the ones of the ASAF [35]. As a matter of fact, besides the two models mentioned above, there exist many universal models or formulas to estimate the half-lives of α decay and CR, such as the unified description (UD) formula [36], the universal (UNIV) curve [37], and the Horoi formula [38]. This makes us wonder if the CR and larger branching ratio of CR relative to α decay really exist for heavier SHN if other universal models are employed. Thus, it is very necessary to use more models to work on the issue. In this article, we will investigate the competition between α decay and cluster decay of SHN by using the UD, UNIV, Horoi, and UDL formulas [39,40]. The paper is organized as follows. In Sec. II, the theoretical formulas are introduced. The numerical results and discussions are presented in Sec. III. A conclusion is given in the last section.

II. FORMULAS FOR α DECAY AND CR HALF-LIVES

The present calculations on α decay and CR half-lives are performed by using the UD, UNIV, Horoi, and UDL formulas. These formulas are written as follows:

$$\log_{10} T_{1/2}(\text{UD}) = a \sqrt{\mu} Z_e Z_d Q^{-1/2} + b \sqrt{\mu} (Z_e Z_d)^{1/2} + c,$$
(1)

$$\log_{10} T_{1/2}(\text{UNIV}) = 0.22873(\mu Z_e Z_d R_b)^{1/2} \times [\arccos \sqrt{r} -\sqrt{r(1-r)}] + 0.598(A_e - 1) + [\log_{10}(\ln 2) - \log_{10}\nu] + h, \qquad (2)$$

^{*}lilizhang908@163.com

[†]yanzhaowang09@126.com

$$\log_{10} T_{1/2}(\text{Horoi}) = (a_1 \mu^x + b_1)[(Z_e Z_d)^y Q^{-1/2} - 7] + (a_2 \mu^x + b_2),$$
(3)

$$\log_{10} T_{1/2}(\text{UDL}) = a \sqrt{\mu} Z_e Z_d Q^{-1/2} + b \left[\mu Z_e Z_d \left(A_d^{1/3} + A_e^{1/3} \right) \right]^{1/2} + c, \qquad (4)$$

where $T_{1/2}$ is the half-lives of α decay and CR, which is measured in seconds. Q in Eqs. (1)–(4) denotes the released energy in decay process and it is measured in MeV. $\mu = A_e A_d/(A_e + A_d)$ is the reduced mass. A_e and A_d represent the mass numbers of the emitted particle and daughter nucleus, respectively. Z_e and Z_d denote the charge numbers of the two fragments. In Eq. (2), $r = R_t/R_b$, R_t and R_b stand for the first and second turning points of the barrier, respectively. The two turning points are defined as $R_t = 1.2249 (A_e^{1/3} + A_d^{1/3})$ and $R_b = 1.43998Z_eZ_d/Q$. The frequency of assaults ν is taken as $10^{22.01}$ s⁻¹. These parameters $(a, b, c, h, a_1, b_1, a_2, b_2, x, y)$ are determined by fitting the experimental half-lives and Q values. The values of these parameters can be found in Refs. [34,36,38,39].

It is well known that the half-lives of α decay and CR are sensitive to the Q values, which are given by

$$Q = M_p - (M_d + M_e), \tag{5}$$

where M_p , M_d , and M_e represent the masses of the parent, daughter nucleus, and emitted particle, respectively. For most SHN, their masses have not been measured. But the unknown SHN masses can be estimated by the nuclear mass models. Equation (5) tells us that if one wants to obtain the accurate Q values, the selection of nuclear mass models is extremely important. A recent work of Wang *et al.* suggested that the WS4 mass model is the most accurate one to predict the Q_{α} values of SHN [41]. So, in this work, the WS4 mass table [42] is used. We know that the shell effects are important in determining the favorite emitted fragments and the half-lives, but Eqs. (1)–(4) are purely phenomenological models and the shell effects are included only through the Q values. So the approaches we use can be seen as approximate ones.

III. RESULTS AND DISCUSSION

First, we calculate the α decay and CR half-lives of ²⁹⁴118, ²⁹⁶120, and ²⁹⁸122 by using the UD, UNIV, Horoi, and UDL formulas. The calculated half-lives are presented in Table I. The first column indicates the parent nuclei. The emitted clusters and the corresponding daughter nuclei are listed in columns 2 and 3, respectively. Note that each kind of emitted cluster refers to the most probable one. The Q values of α decay and CR extracted from the WS4 mass table are shown in column 4. The next four columns give the calculated α decay and CR half-lives by using the UD, UNIV, Horoi, and UDL formulas, respectively. As can be seen from Table I, for the ²⁹⁴118 nucleus, the half-lives of CR become longer with the increase of the A_e values by using the UD, UNIV, and Horoi formulas. However, the present measurement upper limit of half-lives is 10^{30} s [43]. It is seen clearly from Table I that the half-lives of heavier cluster (heavier than ³²Si) emissions have exceeded the upper threshold, and these heavier CR cannot be observed

in measurement. Hence, the probable clusters emitted from ²⁹⁴118 are lighter nuclei (⁸Be, ¹²C, ¹⁶O, ²⁸Mg, ³²Si). But within the UDL formula, the half-lives of all the cluster emissions shown in Table I are less than 10³⁰s. So these clusters might be detected in experiments, which include both the lighter nuclei (⁸Be, ¹²C, ¹⁶O, ²⁸Mg, ³²Si) and heavier ones (⁶⁸Ni, ⁷⁶Zn, ⁷⁹Ga, ⁸⁰Ge, ⁸³As, ⁸⁴Se, ⁸⁵Br, ⁸⁵Kr, ⁸⁹Rb, ⁸⁹Sr, and so forth). In addition, an interesting case that the CR half-life is shorter than the corresponding α -decay half-life is found in Table I, such as 85 Kr emission. It means that the heavier CR dominates over α decay for ²⁹⁴118. Finally, the shortest half-life is found when the daughter nucleus is the double-magic nucleus ²⁰⁸Pb for the heavier CR half-lives extracted from each formula. This fact reveals that the cluster decay is strongly related to the shell effect. As for the CR of ²⁹⁶120 and ²⁹⁸122, it is seen from Table I that the results are similar to the ones of ²⁹⁴118. From the above analysis, we know that the CR half-lives within the UDL formula show significant difference from those within the UD, UNIV, and Horoi formulas. So it is not difficult to conclude that the CR half-lives are dependent on models. Meanwhile, it is obvious that within the UDL formula CR has a chance to compete with α decay for the three nuclei. In order to see whether the obvious CR exists for other SHN, it is necessary to extend the study to more SHN. In the next paragraphs, we will perform an extensive study on the competition between α decay and CR of SHN with Z = 104-124 by using the four formulas.

To gain a better insight into the competition between α decay and CR, ones usually define the branching ratio b_c of CR relative to the corresponding α decay as

$$\log_{10}b_c = \log_{10}(\lambda_c/\lambda_\alpha) = \log_{10}(T_\alpha/T_c), \tag{6}$$

where λ_c and λ_{α} denote the decay constants of CR and α decay, respectively. According to Eq. (6), we know that if $\log_{10} b_c > 0$, it represents that the CR is the dominant decay mode against α decay.

Decimal logarithm of b_c for the most probable emitted clusters versus the neutron number N of parent nuclei by the UD, UNIV, Horoi, and UDL formulas are presented in Fig. 1. From Fig. 1, we find that the $\log_{10}b_c$ values become longer with the increase of Z, which indicates that the CR becomes more evident. In addition, $\log_{10}b_c \ll 0$ is observed in Figs. 1(a)–1(c), which means that the α -decay half-lives are much shorter than the corresponding CR ones by using the UD, UNIV, and Horoi formulas. So the α decay is the dominant decay mode and it is impossible to observe the CR phenomenon in the superheavy region. However, in Fig. 1(d), $\log_{10}b_c > 0$ is observed for isotopes with $Z \ge 118$. This suggests that the CR is the main decay mode and it is very possible to observe CR in this region within the UDL formula. Finally, the kink of $\log_{10}b_c$ occurs at N = 186 in Figs. 1(a)– 1(d), which may be an indication that the region about N =184 is associated with a magic number. In fact, the magic number at N = 184 originates from the WS4 O values. If we calculate the half-lives by inputting other kinds of Q values, the neutron closure after 126 may be changed because the magic numbers are dependent on different models [44–51]. However, many theories including both phenomenological models and microscopic models suggest the strong shell effect at N = 184 TABLE I. The probable CR half-lives of ²⁹⁴118, ²⁹⁶120, and ²⁹⁸122 within the UD, UNIV, Horoi, and UDL formulas.

Parent	Emitted	Daughter	Q	<i>T</i> _{1/2} (s)			
nuclei	clusters	nuclei	(MeV)	UD	UNIV	Horoi	UDL
²⁹⁴ 118	⁴ He	²⁹⁰ Lv	12.198	4.22×10^{-4}	3.07×10^{-5}	1.60×10^{-4}	2.17×10^{-4}
	⁸ Be	²⁸⁶ Fl	23.191	1.90×10^{16}	9.19×10^{12}	7.75×10^{14}	1.21×10^{16}
	¹² C	²⁸² Cn	40.527	5.10×10^{21}	6.79×10^{16}	4.02×10^{19}	1.14×10^{21}
	¹⁶ O	²⁷⁸ Ds	57.459	9.67×10^{27}	3.08×10^{21}	1.57×10^{25}	2.48×10^{26}
	²⁸ Mg	²⁶⁶ Sg	100.134	4.11×10^{30}	1.27×10^{23}	5.18×10^{29}	8.16×10^{24}
	³² Si	262 Rf	119.316	8.53×10^{31}	1.10×10^{24}	7.58×10^{31}	3.13×10^{24}
	⁶⁸ Ni	²²⁶ Th	238.478	5.65×10^{38}	1.43×10^{35}	3.50×10^{47}	4.42×10^{14}
	⁷⁶ Zn	²¹⁸ Ra	253.586	6.80×10^{38}	9.13×10^{37}	2.57×10^{49}	3.66×10^{11}
	⁷⁹ Ga	²¹⁵ Fr	260.104	1.70×10^{39}	1.72×10^{39}	2.40×10^{50}	5.75×10^{10}
	⁸⁰ Ge	²¹⁴ Rn	271.603	1.52×10^{34}	8.24×10^{36}	6.54×10^{47}	1.61×10^{5}
	⁸³ As	²¹¹ At	278.428	7.48×10^{33}	8.79×10^{37}	2.21×10^{48}	5.69×10^{3}
	⁸⁴ Se	²¹⁰ Po	289.282	1.98×10^{29}	1.37×10^{36}	1.24×10^{46}	4.94×10^{-2}
	⁸⁵ Br	²⁰⁹ Bi	293.791	2.10×10^{30}	8.73×10^{36}	1.42×10^{47}	1.51×10^{-1}
	⁸⁶ Kr	²⁰⁸ Pb	302.052	6.64×10^{27}	1.59×10^{36}	1.34×10^{46}	1.55×10^{-4}
	⁸⁹ Rb	²⁰⁵ Tl	302.831	1.23×10^{32}	2.37×10^{39}	1.84×10^{49}	2.22×10^{-1}
	⁹⁰ Sr	²⁰⁴ Hg	308.309	4.36×10^{31}	3.49×10^{39}	2.52×10^{49}	2.59×10^{-2}
	⁹⁶ Y	¹⁹⁸ Au	305.227	3.53×10^{39}	7.76×10^{45}	7.12×10^{54}	3.00×10^{4}
	⁹⁶ Zr	¹⁹⁸ Pt	313.309	1.21×10^{36}	1.55×10^{44}	1.30×10^{53}	7.07×10^{0}
	⁹⁹ Nb	¹⁹⁵ Ir	312.012	2.97×10^{41}	1.05×10^{48}	5.16×10^{56}	1.85×10^{5}
	¹⁰² Mo	¹⁹² Os	317.721	1.59×10^{40}	6.25×10^{48}	3.03×10^{56}	1.42×10^{3}
²⁹⁶ 120	⁴ He	²⁹² Og	13.343	7.73×10^{-6}	6.02×10^{-7}	3.90×10^{-6}	4.04×10^{-6}
	⁸ Be	²⁸⁸ Lv	25.491	3.82×10^{12}	2.17×10^{9}	2.17×10^{11}	2.46×10^{12}
	^{12}C	²⁸⁴ Fl	44.148	1.91×10^{17}	4.93×10^{12}	4.15×10^{15}	4.12×10^{16}
	¹⁶ O	²⁸⁰ Cn	61.512	8.61×10^{23}	5.95×10^{17}	5.72×10^{21}	1.95×10^{22}
	³² Si	²⁶⁴ Sg	124.595	1.01×10^{29}	4.10×10^{21}	6.48×10^{29}	2.28×10^{21}
	⁴⁸ Ca	²⁴⁸ Fm	183.712	1.09×10^{31}	1.80×10^{25}	3.08×10^{36}	8.75×10^{15}
	⁶⁸ Ni	²²⁸ U	246.315	4.75×10^{37}	5.91×10^{33}	6.70×10^{46}	1.96×10^{12}
	74 Zn	²²² Th	260.014	1.47×10^{39}	3.093×10^{36}	1.88×10^{49}	1.20×10^{11}
	⁷⁷ Ga	²¹⁹ Ac	265.898	2.84×10^{40}	1.57×10^{38}	6.18×10^{50}	1.19×10^{11}
	⁸⁰ Ge	²¹⁶ Ra	277.568	1.68×10^{36}	1.04×10^{37}	7.71×10^{48}	2.95×10^{5}
	⁸³ As	²¹³ Fr	284.188	2.44×10^{36}	1.69×10^{38}	4.75×10^{49}	2.45×10^4
	⁸⁴ Se	²¹² Rn	295.765	3.95×10^{31}	1.63×10^{36}	1.62×10^{47}	7.82×10^{-2}
	⁸⁵ Br	²¹¹ At	301.050	1.39×10^{32}	6.08×10^{36}	9.58×10^{47}	7.37×10^{-2}
	⁸⁶ Kr	²¹⁰ Po	310.323	1.38×10^{29}	6.00×10^{35}	4.07×10^{46}	1.67×10^{-5}
	⁸⁷ Rb	²⁰⁹ Bi	313.544	1.11×10^{31}	9.19×10^{36}	1.46×10^{48}	$4.08~\times~10^{-4}$
	⁹⁰ Sr	²⁰⁶ Pb	321.374	1.81×10^{29}	3.21×10^{37}	5.38×10^{47}	4.48×10^{-7}
	⁹³ Y	²⁰³ Tl	321.251	5.21×10^{33}	1.72×10^{41}	7.03×10^{50}	1.73×10^{-2}
	⁹⁶ Zr	²⁰⁰ Hg	326.668	4.71×10^{33}	1.18×10^{42}	3.12×10^{51}	1.11×10^{-4}
	¹⁰³ Nb	¹⁹³ Au	319.303	8.29×10^{44}	3.38×10^{50}	8.81×10^{58}	4.09×10^{5}
	100 Mo	¹⁹⁶ Pt	330.182	3.29×10^{38}	9.08×10^{45}	1.48×10^{55}	3.56×10^{-1}
²⁹⁸ 122	⁴ He	²⁹⁴ 120	14.703	9.88×10^{-8}	9.11×10^{-9}	7.36×10^{-8}	5.26×10^{-8}
	⁸ Be	²⁹⁰ Og	27.853	1.78×10^{9}	3.19×10^{6}	1.47×10^{8}	1.78×10^{9}
	${}^{12}C$	²⁸⁶ Lv	47.820	1.96×10^{13}	2.68×10^{9}	1.18×10^{12}	4.03×10^{12}
	¹⁶ O	²⁸² Fl	65.924	6.12×10^{19}	2.84×10^{14}	1.95×10^{18}	1.23×10^{18}
	³⁰ Si	²⁶⁸ Hs	129.371	2.72×10^{25}	5.62×10^{18}	7.95×10^{26}	2.25×10^{18}
	⁴⁸ Ca	²⁵⁰ No	189.428	3.57×10^{29}	2.49×10^{24}	5.36×10^{35}	1.15×10^{14}
	⁶⁶ Ni	²³² Pu	254.864	1.25×10^{34}	2.57×10^{31}	1.22×10^{45}	3.06×10^{9}
	^{72}Zn	²²⁶ U	268.023	3.16×10^{36}	4.38×10^{34}	1.66×10^{48}	1.46×10^{9}
	⁷⁵ Ga	²²³ Pa	273.130	5.23×10^{38}	6.67×10^{36}	2.18×10^{50}	1.13×10^{10}

Parent nuclei	Emitted clusters	Daughter nuclei	Q (MeV)	$T_{1/2}(s)$				
				UD	UNIV	Horoi	UDL	
	⁸⁰ Ge	²¹⁸ Th	284.103	5.45×10^{35}	1.70×10^{37}	4.24×10^{49}	1.56×10^{5}	
	⁸¹ As	²¹⁷ Ac	291.006	2.32×10^{35}	2.12×10^{37}	7.87×10^{49}	1.72×10^{4}	
	⁸⁴ Se	²¹⁴ Ra	302.865	6.46×10^{30}	2.62×10^{36}	9.69×10^{47}	3.44×10^{-2}	
	⁸⁵ Br	²¹³ Fr	308.858	8.23×10^{30}	6.27×10^{36}	3.33×10^{48}	1.19×10^{-2}	
	⁸⁶ Kr	²¹² Rn	318.853	2.48×10^{27}	4.58×10^{35}	9.25×10^{46}	1.10×10^{-6}	
	⁸⁷ Rb	²¹¹ At	322.851	6.96×10^{28}	4.20×10^{36}	1.77×10^{48}	8.50×10^{-6}	
	⁹⁰ Sr	²⁰⁸ Po	330.997	8.17×10^{26}	1.55×10^{37}	6.80×10^{47}	8.19×10^{-9}	
	⁸⁹ Y	²⁰⁹ Bi	332.454	6.10×10^{29}	5.77×10^{37}	4.31×10^{49}	6.49×10^{-6}	
	⁹⁴ Zr	²⁰⁴ Pb	340.201	1.29×10^{28}	2.74×10^{39}	3.68×10^{49}	3.47×10^{-9}	
	⁹⁷ Nb	²⁰¹ Tl	340.292	2.35×10^{32}	3.20×10^{42}	3.51×10^{52}	5.56×10^{-6}	
	⁹⁸ Mo	²⁰⁰ Hg	345.208	1.12×10^{32}	6.11×10^{42}	5.31×10^{52}	9.31×10^{-7}	

TABLE I. (Continued.)

[46–51], which is expected to be tested experimentally in the future.

Next we will analyze the factors contributing to the different calculations by Eqs. (1)–(3) and (4). Equations (1)–(3) can be seen as the preformation models because the α -particle and cluster preformation probabilities are included. Owing to the same mechanism, the calculations by the three models are similar. As we all know that as the emitted cluster is lighter, the preformation probability of cluster inside parent nucleus is larger. Thus, the lighter CR can be predicted by the three models. But for the heavier CR of SHN, it is more similar to the cold spontaneous fission, so the preformation models are not suitable for describing the radioactivity of very heavy cluster. However, the UDL formula can be treated as both the preformation model and the fission-like model. As a result, the lighter and heavier CR of SHN can be predicted. Therefore, we may draw a conclusion that the UD, UNIV, and Horoi formulas are not suitable for predicting the half-lives of very heavy CR of SHN and the UDL formula seems more universal and reasonable. In the next paragraph, we will attempt to make

(a) UD (b) UNIV -10 log ₁₀ b₀ -30 30 176 184 192 200 168 176 184 192 168 200 С 10 (c) Horoi (d) UDL -10 -20 -30 176 184 192 200 168 192 200 168 176 184 Ν

FIG. 1. Decimal logarithm of b_c vs the neutron number N of parent nuclei within the UD, UNIV, Horoi, and UDL formulas.

predictions for the possible CR of $Z \ge 118$ within the UDL formula.

The half-lives of α decay and CR of SHN with Z = 118, 120,and 122 isotopes are given in Table II. The first column are the parent nuclei. The Q values and half-lives of α decay are given in columns 2 and 3, respectively. Columns 4 and 5 represent the most favored emitted clusters and the corresponding daughter nuclei, respectively. The Q values and half-lives of cluster decay are listed in the last two columns. It is seen from Table II that all the daughter nuclei are closed to ²⁰⁸Pb for the most probable CR. In addition, the most probable cluster emitters are the isotopes of ^{292–296,308–318}118, ^{284–304,308–324}120, and ^{290–322}122, which have the larger branching ratios and relatively shorter half-lives. Hence, these nuclides are the most likely candidates as the cluster emitters in future measurement. However, it should be pointed out that the CR half-lives of ²⁹⁰⁻³¹⁴122 are much less than 1 μ s, so it is very difficult or even impossible to observe CR phenomenon with the current facilities. We hope our predictions on α decay and CR may be useful for further experiments.

IV. CONCLUSIONS

In this article, the probable CR of ²⁹⁴118, ²⁹⁶120, and ²⁹⁸122 has been studied by using the UD, UNIV, Horoi, and UDL formulas. The calculations within the UD, UNIV, and Horoi formulas suggest that the favored emitted clusters are lighter nuclei. But the UDL formula gives a different prediction: that the most probable emitted clusters are heavier ones. Later, a further study on the branching ratios of CR relative to α decay of Z = 104-124 has been performed. The calculated results obtained by the UD, UNIV, and Horoi formulas show that the dominant decay mode of SHN is α decay. However, the UDL formula predicts that CR dominates over α decay for the $Z \ge$ 118 nuclei. Because the UD, UNIV, and Horoi formulas are seen as the preformation models, the lighter cluster emissions can be described by these formulas. But for the UDL formula, the preformation and fission-like mechanisms are all included, so the lighter and heavier CR of SHN can be well predicted. Thus, we can conclude that the UD, UNIV, and Horoi for-

TABLE II. The half-lives of α decay and the most probable CR of Z = 118, 120, and 122 within the UDL formula.

Parent nuclei	Q_{α} (MeV)	$T_{\alpha}(\mathbf{s})$	Emitted clusters	Daughter nuclei	Q_c (MeV)	T_c (s)
²⁸⁶ 118	12.915	9.67×10^{-6}	⁸⁶ Kr	²⁰⁰ Pb	303.281	7.68×10^{-4}
²⁸⁸ 118	12.616	3.57×10^{-5}	⁸⁶ Kr	²⁰² Pb	303.080	4.14×10^{-4}
²⁹⁰ 118	12.601	3.59×10^{-5}	⁸⁶ Kr	²⁰⁴ Pb	302.835	2.44×10^{-4}
²⁹² 118	12.240	1.88×10^{-4}	⁸⁶ Kr	²⁰⁶ Pb	302.669	1.24×10^{-4}
²⁹⁴ 118	12.198	2.17×10^{-4}	⁸⁶ Kr	²⁰⁸ Pb	302.052	1.55×10^{-4}
²⁹⁶ 118	11.752	1.94×10^{-3}	⁸⁸ Kr	²⁰⁸ Pb	300.843	3.80×10^{-4}
²⁹⁸ 118	12.182	2.06×10^{-4}	⁹⁰ Kr	²⁰⁸ Pb	299.372	1.67×10^{-3}
³⁰⁰ 118	11.956	5.98×10^{-4}	⁹⁴ Sr	²⁰⁶ Hg	306.681	1.24×10^{-2}
³⁰² 118	12.041	3.65×10^{-4}	⁹⁶ Sr	²⁰⁶ Hg	305.025	8.73×10^{-2}
³⁰⁴ 118	13.122	2.12×10^{-6}	⁹⁸ Sr	²⁰⁶ Hg	305.211	1.32×10^{-2}
³⁰⁶ 118	12.480	3.76×10^{-5}	102 Zr	²⁰⁴ Pt	313.080	5.03×10^{-3}
³⁰⁸ 118	11.204	2.52×10^{-2}	¹⁰⁴ Zr	²⁰⁴ Pt	312.958	1.42×10^{-3}
³¹⁰ 118	10.433	2.23×10^{0}	¹⁰⁶ Zr	²⁰⁴ Pt	311.464	7.70×10^{-3}
³¹² 118	9.761	1.70×10^{2}	¹⁰⁶ Zr	²⁰⁶ Pt	309.085	4.56×10^{-1}
³¹⁴ 118	8.383	6.42×10^{6}	¹¹¹ Nb	²⁰³ Ir	309.483	1.10×10^{2}
³¹⁶ 118	8.619	8.23×10^{5}	¹¹¹ Nb	²⁰⁵ Ir	307.317	4.82×10^{3}
³¹⁸ 118	8.413	4.40×10^{6}	¹¹³ Nb	²⁰⁵ Ir	305.209	1.44×10^{5}
³²⁰ 118	9.164	9.73×10^{3}	¹¹³ Nb	²⁰⁷ Ir	304.172	5.38×10^{5}
²⁸⁴ 120	13.990	3.95×10^{-7}	⁸⁸ Sr	¹⁹⁶ Pb	326.337	3.69×10^{-8}
²⁸⁶ 120	14.025	3.20×10^{-7}	⁸⁸ Sr	¹⁹⁸ Pb	325.580	5.24×10^{-8}
²⁸⁸ 120	13.725	1.03×10^{-6}	⁸⁸ Sr	²⁰⁰ Pb	324.624	1.08×10^{-7}
²⁹⁰ 120	13.700	1.07×10^{-6}	⁸⁸ Sr	²⁰² Pb	323.781	1.85×10^{-7}
²⁹² 120	13.467	2.69×10^{-6}	⁹⁰ Sr	²⁰² Pb	321.909	1.32×10^{-6}
²⁹⁴ 120	13.242	6.73×10^{-6}	⁸⁸ Sr	²⁰⁶ Pb	321.873	8.67×10^{-7}
²⁹⁶ 120	13.343	4.04×10^{-6}	⁹⁰ Sr	²⁰⁶ Pb	321.374	4.48×10^{-7}
²⁹⁸ 120	13.007	1.69×10^{-5}	⁹² Sr	²⁰⁶ Pb	319.945	1.47×10^{-6}
³⁰⁰ 120	13.318	3.93×10^{-6}	⁹⁴ Sr	²⁰⁶ Pb	318.694	3.55×10^{-6}
³⁰² 120	12.890	2.53×10^{-5}	⁹⁴ Sr	²⁰⁸ Pb	318.940	7.51×10^{-7}
³⁰⁴ 120	12.763	4.27×10^{-5}	⁹⁶ Sr	²⁰⁸ Pb	316.437	2.41×10^{-5}
³⁰⁶ 120	13.787	4.36×10^{-7}	¹⁰⁰ Zr	²⁰⁶ Hg	324.888	6.24×10^{-6}
³⁰⁸ 120	12.966	1.47×10^{-5}	^{102}Zr	²⁰⁶ Hg	325.346	4.95×10^{-7}
³¹⁰ 120	11.499	2.10×10^{-2}	¹⁰⁴ Zr	²⁰⁶ Hg	324.275	9.12×10^{-7}
³¹² 120	11.216	9.50×10^{-2}	¹⁰⁶ Zr	²⁰⁶ Hg	322.147	1.60×10^{-5}
³¹⁴ 120	10.759	1.30×10^{0}	¹⁰⁶ Zr	²⁰⁸ Hg	320.244	2.98×10^{-4}
³¹⁶ 120	9.192	5.13×10^{4}	¹⁰⁶ Zr	²¹⁰ Hg	316.643	2.29×10^{-1}
³¹⁸ 120	9.931	2.32×10^{2}	¹¹¹ Nb	²⁰⁷ Au	317.991	9.25×10^{0}
³²⁰ 120	9.678	1.26×10^{3}	¹¹¹ Nb	²⁰⁹ Au	315.951	2.87×10^{2}
³²² 120	9.368	1.13×10^{4}	¹¹¹ Nb	²¹¹ Au	313.952	8.63×10^{3}
³²⁴ 120	7.993	1.05×10^{9}	¹¹³ Nb	²¹¹ Au	311.675	3.69×10^{5}
³²⁶ 120	9.290	1.79×10^{4}	¹¹³ Nb	²¹³ Au	311.483	1.96×10^{5}
³²⁸ 120	8.518	8.34×10^{6}	¹¹⁵ Nb	²¹³ Au	309.060	1.34×10^{7}
²⁹⁰ 122	15.108	1.50×10^{-8}	⁹² Zr	¹⁹⁸ Pb	344.186	3.06×10^{-10}
²⁹² 122	15.015	1.98×10^{-8}	⁹² Zr	²⁰⁰ Pb	343.141	6.94×10^{-10}
²⁹⁴ 122	14.666	6.94×10^{-8}	⁹² Zr	²⁰² Pb	331.949	2.11×10^{-9}
²⁹⁶ 122	14.695	5.82×10^{-8}	⁸⁸ Sr	²⁰⁸ Po	332.257	4.05×10^{-9}
²⁹⁸ 122	14.703	5.26×10^{-8}	⁹⁴ Zr	²⁰⁴ Pb	340.201	3.47×10^{-9}
³⁰⁰ 122	14.222	3.28×10^{-7}	⁹⁴ Zr	²⁰⁶ Pb	339.656	3.25×10^{-9}
³⁰² 122	14.237	2.89×10^{-7}	⁹⁶ Zr	²⁰⁶ Pb	339.306	1.17×10^{-9}
³⁰⁴ 122	13.738	2.14×10^{-6}	⁹⁶ Zr	²⁰⁸ Pb	338.812	1.01×10^{-9}

Parent nuclei	Q_{α} (MeV)	$T_{\alpha}(\mathbf{s})$	Emitted clusters	Daughter nuclei	Q_c (MeV)	T_c (s)
³⁰⁶ 122	13.803	1.52×10^{-6}	⁹⁸ Zr	²⁰⁸ Pb	337.340	3.30×10^{-9}
³⁰⁸ 122	14.940	1.53×10^{-8}	¹⁰⁰ Zr	²⁰⁸ Pb	337.453	4.93×10^{-10}
³¹⁰ 122	13.356	5.94×10^{-6}	102 Zr	²⁰⁸ Pb	337.546	5.60×10^{-10}
³¹² 122	12.162	2.56×10^{-3}	104 Zr	²⁰⁸ Pb	334.816	3.46×10^{-9}
³¹⁴ 122	12.117	3.04×10^{-3}	104 Zr	²¹⁰ Pb	332.947	5.09×10^{-8}
³¹⁶ 122	11.659	3.22×10^{-2}	104 Zr	²¹² Pb	330.694	1.74×10^{-6}
³¹⁸ 122	10.638	1.16×10^{1}	¹⁰⁶ Zr	²¹² Pb	327.722	1.77×10^{-4}
³²⁰ 122	11.656	2.88×10^{-2}	106 Zr	²¹⁴ Pb	325.713	4.23×10^{-3}
³²² 122	11.239	2.79×10^{-1}	¹⁰⁶ Zr	²¹⁶ Pb	323.542	1.51×10^{-1}
³²⁴ 122	12.179	1.61×10^{-3}	¹¹¹ Nb	²¹³ Tl	326.378	3.25×10^{-1}

TABLE II. (Continued.)

mulas are not suitable for describing the heavier CR of SHN and the UDL formula seems more universal and reasonable. Based on the conclusion, we predict the most probable CR of Z = 118, 120, and 122 isotopes by using the UDL formula. The results show that the isotopes of $^{292-296,308-318}118$, $^{284-304,308-324}120$, and $^{316-322}122$ are the most likely candidates as the cluster emitters. Finally, the parent nuclei probably emit clusters when the daughter nuclei are close to 208 Pb, which implies that shell effect plays an important role on CR.

ACKNOWLEDGMENTS

We thank Profs. Jianzhong Gu, Shangui Zhou, Guy Royer, Ning Wang, Chong Qi, and Dr. Jianmin Dong for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grants No. 11305109 and No. 11675265), the State Scholarship Fund of China Scholarship Council (Grant No. 201708130035), and the Natural Science Foundation for Outstanding Young Scholars of Hebei Province of China (Grant No. A2018210146).

- [1] Y. T. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007).
- [2] Yu. Ts. Oganessian, F. Sh. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis *et al.*, Phys. Rev. Lett. **104**, 142502 (2010).
- [3] K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S. Goto, H. Haba, E. Ideguchi, R. Kanungo, K. Katori, H. Koura *et al.*, J. Phys. Soc. Jpn. **73**, 2593 (2004).
- [4] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).
- [5] J. H. Hamilton, S. Hofmann, and Yu. Ts. Oganessian, Annu. Rev. Nucl. Part. Sci. 63, 383 (2013).
- [6] Yu. Ts. Oganessian, Radiochim. Acta. 99, 429 (2011).
- [7] Ch. E. Düllmann, M. Schädel, A. Yakushev, A. Türler, K. Eberhardt, J. V. Kratz, D. Ackermann, L.-L. Andersson, M. Block, W. Brüchle *et al.*, Phys. Rev. Lett. **104**, 252701 (2010).
- [8] S. Hofmann, Rep. Prog. Phys. 61, 639 (1998).
- [9] Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal *et al.*, Phys. Rev. C 62, 041604 (2000).
- [10] J. Khuyagbaatar, A. Yakushev, Ch. E. Düllmann, D. Ackermann, L.-L. Andersson, M. Asai, M. Block, R. A. Boll, H. Brand, D. M. Cox *et al.*, Phys. Rev. Lett. **112**, 172501 (2014).
- [11] G. Royer, J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000).
- [12] Y. Z. Wang, Z. Y. Li, G. L. Yu, and Z. Y. Hou, J. Phys. G: Nucl. Part. Phys. 41, 055102 (2014).
- [13] V. Yu. Denisov and A. A. Khudenko, Phys. Rev. C 80, 034603 (2009).

- [14] V. E. Viola Jr. and G. T. Seaborg, Nucl. Chem. Chin. 28, 741 (1966).
- [15] R. G. Lovas, R. J. Liotta, K. Varga, and D. S. Delion, Phys. Rep. 294, 265 (1998).
- [16] J. Wauters, P. Dendooven, M. Huyse, G. Reusen, P. Van Duppen, and P. Lievens, Phys. Rev. C 47, 1447 (1993).
- [17] P. Mohr, Eur. Phys. J. A **31**, 23 (2007).
- [18] D. S. Delion and A. Sandulescu, J. Phys. G: Nucl. Part. Phys. 28, 617 (2002).
- [19] Y. Z. Wang, J. Z. Gu, J. M. Dong, and B. B. Peng, Int. J. Mod. Phys. E 19, 1961 (2010).
- [20] Y. Z. Wang, Q. F. Gu, J. M. Dong, and B. B. Peng, Int. J. Mod. Phys. E 20, 127 (2011).
- [21] Y. L. Zhang and Y. Z. Wang, Nucl. Phys. A 966, 102 (2017).
- [22] J. P. Cui, Y. L. Zhang, S. Zhang, and Y. Z. Wang, Int. J. Mod. Phys. E 25, 1650056 (2016).
- [23] S. Zhang, Y. L. Zhang, J. P. Cui, and Y. Z. Wang, Phys. Rev. C 95, 014311 (2017).
- [24] A. Sobiczewski, Z. Patyk, and S. Cwiok, Phys. Lett. B 224, 1 (1989).
- [25] A. Sandulescu, D. N. Poenaru, and W. Greiner, Sov. J. Part. Nucl. 11, 528 (1980).
- [26] H. J. Rose and G. A. Jones, Nature (London) 307, 245 (1984).
- [27] S. W. Barwick, P. B. Price, and J. D. Stevenson, Phys. Rev. C 31, 1984 (1985).
- [28] R. Bonetti and A. Guglielmetti, Rom. Rep. Phys. 59, 301 (2007).
- [29] R. Bonetti, C. Carbonini, A. Guglielmetti, M. Hussonnois, D. Trubert, and C. Le Naour, Nucl. Phys. A 686, 64 (2001).
- [30] P. B. Price, Annu. Rev. Nucl. Part. Sci. 39, 19 (1989).

- [31] A. Guglielmetti, D. Faccio, R. Bonetti, S. V. Shishkin, S. P. Tretyakova, S. V. Dmitriev, A. A. Ogloblin, G. A. Pik-Pichak, N. P. van der Meulen, G. F. Steyn *et al.*, J. Phys.: Con. Ser. 111, 012050 (2008).
- [32] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. Lett. 107, 062503 (2011).
- [33] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. C 85, 034615 (2012).
- [34] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, J. Phys. G: Nucl. Part. Phys. 40, 105105 (2013).
- [35] X. J. Bao, H. F. Zhang, J. M. Dong, J. Q. Li, and H. F. Zhang, Phys. Rev. C 89, 067301 (2014).
- [36] D. D. Ni, Z. Z. Ren, T. K. Dong, and C. Xu, Phys. Rev. C 78, 044310 (2008).
- [37] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. C 83, 014601 (2011).
- [38] M. Horoi, J. Phys. G: Nucl. Part. Phys. 30, 945 (2004).
- [39] C. Qi, F. R. Xu, R. J. Liotta, and R. Wyss, Phys. Rev. Lett. 103, 072501 (2009).
- [40] C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, M. Y. Zhang, C. Asawatangtrakuldee, and D. Hu, Phys. Rev. C 80, 044326 (2009).

- [41] Y. Z. Wang, S. J. Wang, Z. Y. Hou, and J. Z. Gu, Phys. Rev. C 92, 064301 (2015).
- [42] N. Wang, M. Liu, X. Z. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014); http://www.imqmd.com/mass/
- [43] K. P. Santhosh and B. Priyanka, Int. J. Mod. Phys. E 23, 1450059 (2014).
- [44] R. A. Gherghescu, W. Greiner, and G. Münzenberg, Phys. Rev. C 68, 054314 (2003).
- [45] R. A. Gherghescu, Phys. Rev. C 67, 014309 (2003).
- [46] G. A. Lalazissis, M. M. Sharma, P. Ring, and Y. K. Gambhir, Nucl. Phys. A 608, 202 (1996).
- [47] A. T. Kruppa, M. Bender, W. Nazarewicz, P.-G. Reinhard, T. Vertse, and S. Ćwiok, Phys. Rev. C 61, 034313 (2000).
- [48] P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016).
- [49] S. Ćwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, and W. Nazarewicz, Nucl. Phys. A 611, 211 (1996).
- [50] K. Rutz, M. Bender, T. Bürvenich, T. Schilling, P.-G. Reinhard, J. A. Maruhn, and W. Greiner, Phys. Rev. C 56, 238 (1997).
- [51] J. P. Cui, Y. L. Zhang, S. Zhang, and Y. Z. Wang, Phys. Rev. C 97, 014316 (2018).