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Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear
energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical
correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably
small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently,
precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or
dense matter may lose predictive power.
Purpose: Beginning with the observation that the Fermi momentum kF , i.e., the cubic root of the density, is a
key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion
can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear
structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality
but not overtrained.
Method: For the EDF, we fit systematically polynomial and other functions of ρ1/3 to existing microscopic,
variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior
of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters’
naturalness and the quality of resulting extrapolations.
Results: A statistical analysis confirms that low-order terms such as ρ1/3 and ρ2/3 are the most relevant ones in
the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron
matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we
propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly,
upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic results, to
which it has not been fitted. It also predicts a neutron-star mass-radius relation consistent with observations. The
coefficients display naturalness.
Conclusions: Having been already determined for homogeneous matter, a functional of the present form can be
mapped onto extended Skyrme-type functionals in a straightforward manner, as we outline here, for applications
to finite nuclei. At the same time, the statistical analysis can be extended to higher orders and for different
microscopic (ab initio) calculations with sufficient pseudodata points and for polarized matter.
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I. INTRODUCTION

Among the most successful and widely used models for
nuclear structure are the Skyrme force [1] and the relativis-
tic mean field (RMF) [2] models, which provide the basis
for a nuclear energy-density functional (EDF) theory. They
have been applied in the description of many known stable
and exotic nuclei and the nuclear equation of state (EoS).
Most traditional RMF and Skyrme force or functional models
are fitted to properties of experimentally accessible nuclei.
Consequently, it has been recognized that they are good at
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reproducing the properties of nuclei in the valley of stability,
but if one approaches to extremes such as neutron or proton
drip lines, or densities much higher or lower than the saturation
density where precise experimental data are not available,
extrapolations must be made with care. New experiments on
exotic nuclei, as well as astronomical observations, help to
constrain the set of reliable functionals. For instance, recent
observations of 2M� neutron stars [3,4] exclude the nuclear
models giving the maximum mass smaller than that value.

To meet the current challenges, new classes of function-
als are being proposed, for example those inspired by the
density-matrix expansion [5,6]. Extensions and revisions are
informed by nuclear-matter constraints [7,8], new insights
from chiral effective field theory (EFT) [9–11] and resum-
mation techniques [12,13], and by more stringent stability
requirements [14]. New optimization procedures and data sets
have been employed within the UNEDF project [15–18]. New,
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additional interaction terms and forms are introduced for more
flexibility and precision [19–21]. The feasibility of describing
simultaneously finite nuclei and homogeneous nuclear matter
is continually assessed [22,23].

Indispensable in all nonrelativistic approaches has been the
density-dependent term. In the original model by Skyrme [24]
and the seminal work by Vautherin and Brink [25] and
other early efforts a repulsive three-nucleon contact force was
introduced. It counters the attractive two-body interaction and
generates saturation. In time-even systems, this three-nucleon
force is found equivalent to a two-body term whose coupling
strength depends linearly on the local density. In subsequent
parametrizations the linear dependence was replaced with a
fractional-power dependence such as ρ1/3 or ρ1/6 to describe
more precisely the compression modulus. The Gogny (finite-
range) parametrizations are also augmented with such a term.
The power of the density dependence is considered as a
parameter to be fitted or put in by hand. Nowadays, for more
precision, more than one density-dependent term is considered
too, often chosen arbitrarily [8,20,26]. Such extensions can
produce precise fits, but risk overfitting the parameters, which
then may lack predictive power as a consequence. So how
can we get any guidance regarding the physical values for the
density dependence?

In fact, there exist analytical considerations for interacting
Fermi systems that offer clues. In the Brueckner theory for
homogeneous nuclear matter, when strong interactions be-
tween nucleons are comprised of short-range repulsion and
medium-range attraction, the nuclear potential energy per
particle is precisely the sum of powers of the Fermi momentum
kF [27] (i.e., powers of ρ1/3), beginning with k3

F . In a pionless
EFT for dilute Fermi systems [28] the energy density of the
system up to next-to-next-to-leading order is obtained as a
polynomial in terms of kF also beginning with k3

F . Within
chiral perturbation theory in the three-loop approximation it
has been shown that the saturation regime of nuclear matter
is governed by the lowest-order terms, k3

F and k4
F [29]. In

other words, the cubic root of the density arises naturally in
the expression of the energy per particle in the form of kF .
Not only does it arise naturally, but it cannot be neglected.
We conclude that the fractional-power density dependence,
which is indispensable and empirically justified in Skyrme
and even Gogny parametrizations but considered dubious in its
interpretation [30], in fact arises from a true, though unknown,
Hamiltonian within quantum many-body theory and within
EFTs. One simply considers the functional as a black box, and
the generating potential within Hartree-Fock approximation as
a pseudopotential, which is close to the spirit of the Hohenberg-
Kohn and Kohn-Sham theorems.

The above observations lead us to write the nuclear EDF
as a polynomial in ρ1/3. Such an expansion was explored
tentatively in Refs. [26,31] with the goal of removing the
correlations between the effective mass and the compressibil-
ity. It was explored again in Ref. [19], where the flexibility
of a generalized functional was demonstrated. Our point of
view is somewhat different. We aim explicitly to determine
the relevant terms for describing nuclear matter in a wide
range of densities relevant for nuclei and neutron stars. At
this initial stage we are not concerned with spectroscopic

precision and therefore we restrict ourselves to homogeneous
matter. We test to what extent a few low-order terms suffice for
realistic results and whether it is possible to establish restricted
ranges for the parameters’ values already from homogeneous
matter, which could be used for precision fits at a later stage.
Applications of a resulting functional in nuclei are being
explored in parallel [32,33] and the related methodology will
be outlined in Sec. V.

The paper is organized as follows. In Sec. II we elaborate
on the reasoning that leads to the present functional form.
In Sec. III we present the form of the proposed functional
and explain the fitting procedure. In Sec. IV we present our
results and demonstrate a power hierarchy, which justifies the
power expansion to low order, especially for symmetric matter,
and the coefficients’ naturalness. As a first application, we
solve the Tolman-Oppenheimer-Volkoff (TOV) equations and
obtain the mass-radius relation of neutron stars. A summary
and perspectives are given in Sec. V.

II. WHY POWERS OF kF

Some of the observations in this section, especially as
regards EFT, will rightly appear speculative. Let us therefore
make our point clear from the beginning: Taking indications
from effective theories (as elaborated below), in this paper
we assume that we can write the potential energy per particle
as a low-order expansion in kF . It would be very interesting
to establish such an expansion, as it would eliminate the
uncertainty regarding the most important powers in the density
dependence of the EDF. If in our subsequent analysis (Sec. IV)
we find no numerical evidence for such a low-order expansion
(for example, if the ρ term gives interchangeable fits with, say
ρ1/3), our assumption is of course rendered moot. However,
it turns out this is not the case. Especially for symmetric
nuclear matter, it turns out that the expansion might converge
fast. Let us therefore present the physical reasoning, which
leads us to expect that a low-order expansion might work
for nuclear matter within the regime of interest, i.e., within
an order of magnitude below or above the saturation density
�0 ≈ 0.16 fm−3. We certainly hope that the interested reader
will find inspiration to explore and refine the present ideas in
more depth and will find our numerical results useful in such
a pursuit.

Following a textbook example on nuclear matter [27], let
us assume a local interaction between nucleons with repulsive
hard core and a longer-range attractive part (of finite depth
V0) of ranges rc and ra , respectively. The contribution of the
repulsive core to the potential energy per particle is given by
Brueckner theory as a sum of terms proportional to (kF rc)3,
(kF rc)4, etc. [27], and converging slowly for kF rc ≈ 1. The
contribution of the attractive part to the energy per particle
is given in closed analytical form involving trigonometric
functions and integrals of kF rc and kF ra [27], which can also
be expanded in ascending powers of kF ,

Ea = −V0k
3
F

3π

(
r3
a − r3

c

) − 9V0

2π

∞∑
m=2

(−1)m+1

sm

× [(kF ra)2m+1 − (kF rc)2m+1], (1)
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where the denominator

sm = (2m − 1)!(2m + 4)(2m + 2)(2m + 1)2/22m+1

increases quickly with increasing m. In this picture, the even
powers of kF arise from the repulsive part only.

The importance of the k3
F and k4

F terms for obtaining the
empirical saturation regime of symmetric matter was shown
explicitly in Ref. [29] within the three-loop approximation
of chiral perturbation theory. In the very particular case of
extremely dilute Fermi systems, the expression for the energy
per particle has been obtained, e.g., in Ref. [28] as a polynomial
expansion in kF , where the expansion coefficients depend on
the scattering lengths and the effective ranges, plus logarithmic
functions, arising from three-fermion forces. That is in fact
an analytical form we will explore in this work, but with the
expansion coefficients treated as free parameters. (In the end
we conclude from our fits that the inclusion of a logarithmic
term is not a necessity.) At this point we must expose our
reasoning for accepting a dilute regime as a starting point for
our investigation.

Notwithstanding the preceding arguments for a polynomial
expansion, saturated matter is arguably not at all dilute:
The effective range of the interactions is of the order of
the interparticle distance, while the bare scattering length is
much longer. On the other hand, arguments can be made for
considering near-saturated matter dilute with respect to certain
physics of relevance. Such would be the case within an effective
theory without pions but only heavier mesons. Since pion is a
pseudoscalar meson, its mean field does not appear in nuclear
matter unless the matter density is high enough to allow pion
condensations [34]. In addition, the expectation value of the
one-pion-exchange potential vanishes in nuclear matter. Thus
pionic contributions to the energy density are through loops
and multipion exchanges, and one may postulate that their
average effect is a modification of the couplings and masses
among nucleons and heavy mesons. Since the Fermi momenta
in the measurable nuclear systems and even in neutron stars
are smaller than the next heavy-meson mass, namely mρ

(approximately 775 MeV, or 4 fm−1), one may treat mρ as
a large scale and envision an effective Lagrangian in powers of
kF /mρ . Of course, neglecting pions, a precise matching with
nature at threshold region is neither possible nor meaningful.
Instead, one would have to fit the Lagrangian coefficients to
data and confirm the accuracy of the approach for describing
dense matter a posteriori. Our approach originates in this idea.
For this reason we will examine the naturalness of our fitted
coefficients with respect to a kF /mρ expansion. Let us add
that in the RMF models nuclear saturation is obtained from
the balance between the attractive force by the exchange of σ
mesons and the repulsive force by ω mesons, while pions are
not explicitly included. The ρ meson is added to reproduce (or
control) the asymmetric nuclear matter properties better than
the conventional σ and ω RMF models. The success of RMF
as well as Skyrme models may imply that the major properties
of dense nuclear matter are controlled by short-range forces.

We now comment on the density-matrix expansion
(DME) [35], which is popular in recent optimizations of
the nuclear EDF. The DME skips some low-order powers
of ρ1/3. This could be because it considers only statistical

correlations in the expression for the two-body density matrix,
namely the exchange term determined by the off-diagonal one-
body density matrix, but it neglects an irreducible two-body
dynamical correlation. The correlation function vanishes when
the wave function is a single Slater determinant (free Fermi
gas) but constitutes a significant correction in the presence of
short-range correlations, which can be treated within a variety
of quantum many-body methods [36]. We are not actually
proving here that the correlation function will generate the
missing terms of ρ1/3, but our observation that such terms do
arise in EFT and Eq. (1) may motivate further investigations.

III. METHODOLOGY

A. Form of the energy-density functional

The present ansatz for the energy per particle, except the
Coulomb energy, in the case of a homogeneous system of
nucleons with proton density ρp and neutron density ρn, reads

E(ρ,δ) = E(ρ,δ)

A
= T (ρ,δ) +

3∑
i=0

ci(δ)ρ1+i/3

+ cln(δ)ρ2 ln[ρ fm3], (2)

where we have introduced the total density ρ = ρn + ρp and
the asymmetry δ = (ρn − ρp)/ρ. The free-Fermi-gas kinetic
energy per particle is given by the standard expression [7,25]

T = Tp + Tn ,

Tp,n = 3

5

h̄2

2mp,n

x5/3
p,n(3π2ρ)2/3 (3)

with xp,n ≡ ρp,n/ρ. We motivated the form of Eq. (2) in Sec. II.
We are interested in determining the most relevant terms in
this expansion and whether any hierarchy can be inferred. At
present we examine up to the i = 3 term, but in general higher-
order powers can be considered and explored as well.

We may rewrite Eq. (2) as

E = T +
3∑

i=0

Ei + Eln, (4)

where the dependence on the density ρ and the asymmetry δ of
various terms should be understood. The E3 and Eln terms are
in effect a single term c′

3ρ
2 ln[ρ/ρx], if we define an unknown

reference density value ρx . For purely practical reasons and
without loss of generality we prefer to work with two separate
terms.

We proceed to specify the asymmetry dependence of the
potential energy, E − T . We stress that the dependence we
adopt does not affect our fits at all. It only enters our final
comparison with the results of chiral EFT in asymmetric
matter, which have large error bands, and the modeling of
the neutron-star mass-radius relation, which is not precisely
determined either. For our comparisons we therefore assume
the standard quadratic dependence, which is generally adopted,
for example, within the generalized liquid drop model [37,38]
and in recent analytical parametrizations of the chiral EFT
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TABLE I. Correspondence of the terms in Eq. (4) to conventional
Skyrme-functional terms and to powers of Fermi momentum.

Eq. (4) Skyrme functional Power of Fermi momentum

T kinetic en. k2
F

E0 t0 k3
F

E1 t3, a = 1/3 k4
F

E2 t1,t2; t ′
3, a′ = 2/3 k5

F

E3 t ′′
3 , a′′ = 1 k6

F

Eln special k6
F ln kF

results [39,40]. Then we can write

ck(δ) = αk + δ2βk; k = i or k = ln. (5)

There certainly exist open issues regarding the asymmetry
dependence of the nuclear EoS [11], but they lie beyond the
scope of the present paper.

The functional can be rewritten in the form of a Skyrme
functional, with the terms assigned as in Table I, which shows
explicitly the powers of the Fermi momentum corresponding
to each term. We note the presence of more than one density-
dependent term in such a corresponding Skyrme functional: a
fractional-power one (E1), a linear one (E3), and optionally a
second fractional-power one (contributing to E2) and a linear-
logarithmic one (Eln), which should be considered together
with the linear one. The presence of more than one density-
dependent term renders this form more flexible than the tradi-
tional Skyrme functionals. A Skyrme-type pseudopotential can
be reverse engineered through the correspondence of Table I
and used in Hartree-Fock calculations, once the partition of
c2 into purely density-dependent and a momentum-dependent
terms is constrained [32,33]. Indeed, generalized Skyrme func-
tionals with more than one density-dependent coupling have
been explored in Refs. [19,21]. The differences in our case are
that the terms are not arbitrarily chosen and that we determine
the parameters in homogeneous matter before applications to
nuclei. We note finally that the present functional accommo-
dates the empirical fractional-power density dependence of the
nuclear symmetry energy, with power a = 0.72 ± 0.19 [41].

If our tentative effective-theoretical arguments in Sec. II
have any merit, the expansion coefficients should display
naturalness with respect to the expansion variable kF /mρ .
Noting that, at zero temperature, ρ = ν

6π2 k
3
F , where ν = 4 for

symmetric nuclear matter (SNM) and ν = 2 for pure neutron
matter (PNM), we write

Ei(ρ,δ) = ci(δ)ρ1+i/3

=
[(

ν

6π2

)1+i/3

ci(δ)m2+i
ρ

]
mρ

(
kF

mρ

)3+i

. (6)

We note that kF /mρ � 1/3 for saturated SNM. We will
examine whether the dimensionless parameters

cdim
i (δ) =

(
ν

6π2

)1+i/3

ci(δ)m2+i
ρ (7)

are of the same order of magnitude.

B. Fitting method

Having defined the form of the functional, we proceed to
determine and analyze the unknown parameters. For nuclear-
structure applications, one may follow the usual procedure of
fitting to nuclear properties as well as saturation properties of
nuclear matter. As already elaborated, our objective is differ-
ent: we are interested in validating and analyzing our ansatz in
homogeneous matter first. Also important is to not fit all five
parameters blindly, but examine which are the most important
ones, whose values do not depend strongly on the fitting pro-
cedure and may retain some physical content. We thus inspect
the fits of all possible combinations of one to five parameters.

The most appropriate set of pseudodata for our purposes
would include both symmetric and asymmetric matter. There-
fore we use the Akmal-Pandharipande-Ravenhall variational
results, which are based on the Argonne V18 and Urbana
potentials and available for both SNM and PNM [42]. This
set of pseudodata will be denoted as APR. For the purpose
of confirming our statistical fit analysis, the fitting has been
repeated with the Friedman-Pandharipande (FP) pseudodata
set [43], within the same density domain as the fit to the
APR set. The FP calculations were based on the Argonne V14
potential. The APR data are considered an improvement over
the FP data, because APR took into account the most accurate
two- and three-nucleon interaction until those days, relativistic
boost interaction, and the phase transition in the high-density
region. Therefore they constitute our main set.

We fit the functional form to the SNM data to obtain the
parameters ci(0) and then to the PNM data to obtain ci(1). We
will test our results against the chiral EFT results of Ref. [39],
which we will denote as DSS, available for δ = 1,0.9,0.8,0.7.
The necessary interpolation to asymmetric matter is possible
via Eq. (5). No fits are performed to the DSS data. We will
also compare with the SLy4 Skyrme functional, which was
partly constrained by microscopic results for homogeneous
matter [44].

For the fits to the APR (or FP) set, and separately for SNM
and PNM, we proceed as follows: We make use of all available
pseudodata points (ρj ,Dj ) for a given asymmetry value δ =
0,1. We perform a least-squares fit by minimizing

χ2(δ) =
∑

j

exp{−βρj/�0}
(E(ρj ) − Dj

T (ρj )

)2

; β � 0 (8)

with �0 = 0.16 fm−3. A dependence of the data-points set
{j} and related values on δ is implied. For the fits we use
the multiparameter regression routine of the GNU Scientific
Library [45]. We next proceed to explain the above choice for
the cost function.

The division of the cost function in Eq. (8) with the kinetic
energy allows us to increase the weight of the comparatively
small and disfavored contributions of E(ρj ) − Dj at lower den-
sities, without introducing arbitrary weight functions. Some
further weighting is necessary nonetheless, owing to the nature
of the data: As pointed out in Ref. [42], the pseudodata show a
discontinuity at some value of density near 0.2 or 0.3 fm−3. The
authors recommend and use a different parametrization for the
low-density phase (LDP) and the high-density phase (HDP).
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A phase transition at similar density is discussed in Ref. [46].
Indeed, we have found that an unweighted fit to the pseudodata
provides an overall good description of the data, but does
not reproduce as precisely as desired the saturation point (cf.
Table III). On the other hand, neglecting the HDP altogether
would not be sufficient for constraining the higher-order terms
of the expansion (there are few low-density data) and is not
recommended for an application to neutron stars (cf. Fig. 3).
In order to examine specifically the saturation region and the
dilute-density regime, we can further adjust the weight put on
it via the parameter β introduced in Eq. (8). For meaningful
comparisons between results with different values of β it is
then pertinent to introduce the normalized quantity

χ2
n (δ) = χ2(δ)

⎡
⎣∑

j

exp{−βρj/�0}
⎤
⎦

−1

(9)

to remove a trivial decrease of χ2 as β is increased.
Elements of information theory can be utilized to cor-

roborate the stiffness or sloppiness of the model parameters,
see, e.g., Ref. [47] for a recent application in nuclear density
functional theory. We will undertake a brief analysis of this type
in the Supplemental Material [48], where basic definitions are
also given.

C. Application in neutron stars

As a first application we will consider the mass and radius
of neutron stars. For this purpose we will solve the TOV
equations, which for given central density read

dp

dr
= −G(M(r) + 4πr3p/c2)(ε + p)

r(r − 2GM(r)/c2)c2
,

dM

dr
= 4π

ε

c2
r2, (10)

where r is the radial distance from the center, M(r) is the
enclosed mass of a neutron star within r , and p and ε represent
pressure and energy density respectively.

We will solve the above equations for the energy-density
parametrizations obtained from our fits. Acceptable function-
als should allow for neutron star masses to reach the value
of two solar masses [3,4] and produce mass-radius relations
within the currently accepted constraints deduced from x-ray
burst data [49].

IV. FITTING ANALYSIS, RESULTS, AND APPLICATION

A. Fitting analysis

Fits have been performed for the 31 possible combinations
of one, two,..., or five nonzero constants from the set {ck(δ)}
(δ = 0,1). Table II lists the values of the normalized cost func-
tion χ2

n for a few selected combinations of fitted parameters
and β = 0,1/2,1. For completeness, results for all examined
combinations of parameters and additionally for β = 3/2 are
provided in the Supplemental Material [48].

First we discuss the successive inclusion of nonzero param-
eters, shown in the first row of each block of results, namely
data rows 1, 3, 9, 12. It is of course a trivial result that, as we
include more and more parameters, the fits get better. However,
a saturation of the fit quality is observed in the case of SNM
when three parameters are included (stable χ2), as long as the
lowest-order term c0 is included.

A hierarchy of terms, where the lower-order ones are more
important than the higher-order ones, is inferred from the
present results.

(i) Generally speaking, for a given number of parameters,
the sets that include the k = 0 term give better fits
than those that do not. There are a few exceptions and
mostly for low β.

TABLE II. χ 2
n values for the indicated fits (selections of β and non-zero ck) of expression (2) to the APR pseudodata in SNM and PNM.

An extended version of this table is given in the Supplemental Material [48].

β = 0 β = 1
2 β = 1

SNM PNM SNM PNM SNM PNM

k = 0 1.595335 0.397036 0.930742 0.171609 0.490650 0.071632
k = 1 1.801776 0.346198 1.527834 0.223333 1.089477 0.138133

k = 0,1 0.013044 0.022028 0.003866 0.007482 0.001151 0.001566
k = 0,2 0.009356 0.005804 0.012267 0.001864 0.009435 0.000719
k = 0,3 0.041156 0.002160 0.047771 0.003059 0.035831 0.003220
k = 1,2 0.085297 0.005936 0.108696 0.009991 0.090303 0.010973
k = 1,3 0.175982 0.014031 0.216418 0.022334 0.183405 0.023312
k = 2,3 0.342376 0.031821 0.440564 0.048252 0.398009 0.050970

k = 0,1,2 0.005009 0.003287 0.002588 0.001781 0.001016 0.000529
k = 0,2,3 0.006453 0.002055 0.004070 0.001540 0.001284 0.000636
k = 1,2,3 0.021528 0.005183 0.018591 0.005162 0.008571 0.003018

k = 0,1,2,3 0.001616 0.000163 0.001731 0.000188 0.001015 0.000138
k = 0,1,2,

(
7
3

)
0.001420 0.000115 0.001597 0.000136 0.001016 0.000112

k = 0,1,2,
(

8
3

)
0.001268 0.000098 0.001472 0.000106 0.001009 0.000092

k = 0,1,2,ln 0.001314 0.000094 0.001510 0.000107 0.001011 0.000092
k = 0,1,2,

(
1
6

)
0.002277 0.000462 0.002072 0.000415 0.000977 0.000221
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(ii) In the majority of cases, if we replace the k = 1
term with the k = 3 term we get noticeably higher
χ2

n values. This result is in concordance with the
preference for Skyrme functionals with a fractional-
power, rather than linear, density dependence.

(iii) If we use only two parameters, the sets of two low-
order parameters produce better fits than the sets of
two higher-order parameters. For example for β = 1
one may arrange the sets from the best to worst as
follows: For SNM, k = (0,1), (0,2), (0,3), (1,2), (1,3),
(2,3), (3,ln).1 For PNM the order is the same except
that k = (0,2) is better than (0,1).

(iv) In fact for smaller β the k = 3 term in PNM seems
more efficient. The inclusion of a linear dependence in
Skyrme functionals might be recommended especially
for dense-matter applications. We note that the discon-
tinuity of the data may contaminate the systematics of
the low-β fits.

(v) For three parameters, we found that the smallest χ2
n

are generally obtained without the logarithmic term.

Let us evaluate further the necessity for higher-order terms.
For this we consider fitting the k = 0,1,2 terms along with one
more term whose form may be ρ2 (k = 3), ρ2 ln[ρ fm3] (log-
arithmic term), ρ7/3 (next-order term to k = 3), ρ8/3 (approx-
imate symmetry-energy dependence within Dirac-Brueckner-
Hartree-Fock [50]), or ρ1/6 (popular in Skyrme functionals). (A
systematic inclusion and examination of higher-order terms,
such as ρ7/3, ρ8/3, is deferred to future work.) The results
in the last rows (last block) of Table II demonstrate that the
quality of the fit is almost unaffected by the choice of fourth
term. An interesting exception is that the popular ρ1/6 term
generally gives a worse fit. The most precise fit is of course
provided by five terms. However, the resulting values for the
coefficients ci are found radically different from those obtained
with four parameters or fewer. From the above we can infer
that two (SNM) or three (PNM) terms are essential, that the
role of a fourth high-order term is simply to refine the fits,
and last but not least, that a fifth term cannot be constrained
by the pseudodata, i.e., it may lead to overfitting, which is not
desired.

The above conclusions are supported by an analysis of
the Hessian spectrum, which is briefly discussed in the Sup-
plemental Material [48]. In that analysis one again observes
the different behavior of SNM and PNM. For SNM three
parameters seem to be sufficient, but for PNM the parameters
are generally stiffer, and the same trend is observed in both
APR and FP parametrizations. It will be interesting to examine
the PNM thoroughly with more terms and statistical analyses,
and on richer sets of pseudodata. This will be the subject of
future work. Because of the above observations, and to avoid
overfitting, a fifth term (high-order or logarithmic) is omitted
in what follows. For our initial applications the present fits are
already of good quality.

1We do not discuss sets that include the k = ln term without the
k = 3 term, because they imply an arbitrary reference density ρx =
1 fm−3.
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FIG. 1. Representative results (β = 1/2) of fits with two, three,
or four parameters, as indicated, along with the APR pseudodata, the
DSS results from chiral EFT and the SLy4 functional. Shown is the
potential energy per particle divided by the density as a function of
ρ1/3, in SNM and PNM.

In Fig. 1, representative results of fits for the EoS are shown,
along with the APR pseudodata, the DSS results from chiral
EFT, and the SLy4 functional. The almost-linear trend with
respect to ρ1/3, especially for SNM, is evident. The effect of
including higher-order terms appears indeed minimal in SNM.
In the case of PNM, the fit with four parameters not only
reproduces well the pseudodata (APR), but also the results
of chiral EFT (DSS), to which it has not been fitted, and
at low density, where no pseudodata exist. This result is not
trivial [13], as the comparison with traditional functionals
shows, for example SLy4 in Fig. 1.

B. Resulting functionals, naturalness, and application

Having verified the relevance and quality of the low-order
fits and having set the number of desired parameters to four,
we now proceed to determine specific parametrizations, to use
as starting points to applications.

In what follows we choose as our main set of results the
four-parameter low-order form, with k = 0,1,2,3. Table III
shows the resulting values of ck(0) and ck(1) for β = 0,0.5,1.
The values obtained for the properties of nuclear matter at
saturation density are also shown. For the fitted parameters,
the saturation properties are reasonable, but not precisely equal
to the known or adopted values, which is not surprising: The
pseudodata near saturation are few and the set includes a kink
at higher densities. However, it is straightforward to make
adjustments to the SNM parameters so as to obtain any desired
set of values of SNM properties. In fact, one can do away
with the pseudodata of SNM and adjust the parameters ci(0) to
chosen SNM properties by solving simple algebraic equations.
If this procedure produces similar parameters as the fitting,
for the low-order terms, the present expansion ansatz will
be validated further. For the purpose of demonstration, we
presently explore two options, as follows.
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TABLE III. Coupling constants in SNM [ck(0)] and PNM [ck(1)] in units MeV fm3+k obtained from fits with the indicated β values to the
APR pseudodata and corresponding bulk-matter properties: saturation density �0 in fm−3; energy per particle at saturation E0, incompressibility
K∞, symmetry energy J , and slope parameter L in MeV. The values for the functional that was adapted to SNM saturation properties are shown
in the last block (“ad”, see text). For all the sets, J and L are not input values but obtained results.

β Matter c0 c1 c2 c3 �0 E0 K∞
J L

SNM −863.36 1945.05 −2060.20 1129.96 0.178 −15.4 215
0

PNM −483.96 1433.54 −2119.68 1385.22 34.2 55.9

SNM −753.98 1389.20 −1171.03 678.87 0.177 −15.8 2341
2 PNM −451.91 1254.32 −1812.62 1221.33 34.4 56.0

SNM −613.13 620.22 154.72 −46.05 0.171 −16.1 247
1

PNM −408.56 991.76 −1323.81 937.96 34.0 54.9

SNM −648.72 676.25 200.92 −98.73 0.160 −16.0 240
ad-1

PNM −451.91 1254.32 −1812.62 1221.33 32.8 47.9

SNM −664.52 763.55 40.13 0.00 0.160 −16.0 240
ad-2

PNM −411.13 1007.78 −1354.64 956.47 33.5 50.5

The first option is to adjust the SNM parameters to a satura-
tion density �0 = 0.16 fm−3, binding energy per nucleon E0 =
−16.0 MeV, incompressibility K∞ = 240 MeV, and nucleon
effective mass m∗/m = 0.7. The effective mass in this case is
calculated by assuming that the c2 term is entirely of the form
ρT , which is of course a nonbinding and arbitrary choice for
the sole purpose of the present demonstration: The portion of c2

term coming from nonlocal terms (t1,t2) cannot be determined
from data on unpolarized homogeneous matter.2 The resulting
coefficients for SNM are shown in the two rows labeled “ad-1”
of Table III. They do not deviate much from the fitted values. In
fact, their similarity to the values obtained with β = 1 shows
that the variable β properly puts more weight on the lower-
density data than the high-density regime. For the PNM we
presently chose the same coefficients as the fit with β = 1/2,
so as to retain some weight on the high-density regime.

The second option is to simply set c3(0) = 0 and determine
the other three parameters from the above values for �0,E0,K∞.
This time we make no assumption for the effective mass,
which remains unconstrained. Note that c3(0), being a sloppy
parameter, changes sign when β is varied. The value of c3(0) =
−0.00 (to that precision) is in fact obtained for a fit with
the acceptable weight function β = 0.97273. The resulting
parameters, as well as the PNM parameters corresponding
to β = 0.97273, are also listed in Table III, labeled “ad-2”.
The agreement of ci with i = 0, 1 for all the last three sets of
parameters corroborates the robustness of our approach.

We should stress that, for all sets, the J and L values are not
input values, but obtained. The values are within the currently
proposed constraints [7,51].

The lowest-order coefficients c0,1 do not vary drastically
with β. We have found that the values are also similar
to those obtained with just the two-parameter k = 0,1 fits,
i.e., they are rather robust, as expected. Furthermore, it is
easily verified that, for the obtained parameters, we have the

2Explorations in finite nuclei are in progress [32,33].

hierarchy

|E0| > |E1| > |E2| > |E3| (11)

within the density regime up to about 1 fm−3 for SNM [33]
and up to about 0.05 fm−3 for PNM, beyond which point we
have |E1| > |E0|. Thus our physical reasoning holds up very
well in SNM, while PNM deserves further investigation in the
future.

Nonetheless, the dimensionless parameters, which we de-
fined in Eq. (7), do display naturalness. For SNM we obtain,
for the ad-2 set:

cdim
0 = −3.6, cdim

1 = 6.6, cdim
2 = 0.6

and for PNM

cdim
0 = −1.1, cdim

1 = 3.4, cdim
2 = −5.9, cdim

3 = 5.3.

In Fig. 2, the results of various fits for the EoS are shown,
along with the APR pseudodata, the APR parametrization of
the low-density phase (LDP), the DSS results from chiral
EFT and the SLy4 functional. In particular, Fig. 2(a) shows
the energy per particle in SNM and PNM for the first four
parametrizations from Table III. The last one, ad-2, is omitted
because it gives almost indistinguishable results from ad-1.

The discontinuity of the pseudodata around ρ = 0.3 fm−3,
which necessitated the weighted fits, is evident. The fitted
functionals describe well not only the pseudodata, but also
the DSS results, which are not used in the fitting. Figure 2(b)
shows clearly the excellent description of the DSS results for
all four values of asymmetry. An important observation is that
our fits with different β yield very similar results, i.e., they
are not particularly sensitive to the details of the fit. Although
not shown, in order to not overload the figure, the same trend
would be visible in Fig. 2(b).

The mass-radius relation for neutron stars obtained with
the parametrizations of Table III is shown in Fig. 3. The cor-
responding values for the maximum mass and interior density
is provided in the caption. All parametrizations predict values
consistent with current constraints from observations [3,4]. We
have verified that the SNM-adapted set along with the PNM
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FIG. 2. Results of various fits are shown, for the energy per
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pseudodata, the APR parametrization of the low-density phase (LDP),
the DSS results from chiral EFT and the SLy4 functional. The fits of
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parametrization with SNM parameters adapted to the saturation point,
labeled “ad-1” in Table III. Results with the “ad-2” set would be almost
indistinguishable on the figure.

parameters from the β = 1 fit also produces results within the
desired constraints. The results demonstrate that our approach
has produced reasonable behavior for dense matter (to the
extent that such is expected without explicit inclusion of new
degrees of freedom) and stable performance, regardless of the
details of the fit. At this point, in Fig. 3 we have not explored
the capabilities of the functionals in the case of clusterized
matter in the crust, given that only homogeneous matter has
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M
(M
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β = 0

β = 1/2
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β = 1/2, SNM adapted

FIG. 3. Mass and radius relation of neutron stars for the models
of Table III. The two horizontal bands represent the minimum of
maximum mass of neutron stars [3,4]. The central region shows the
allowed area of mass and radius of neutron stars analyzed from x-
ray burst data [49]. The corresponding values for the central baryon
density and the maximum mass (�c,M) in units of (fm−3,M�) are
(1.135, 2.20) (β = 0), (1.140, 2.18) (β = 1/2), (1.165, 2.10) (β = 1),
(1.135, 2.14) (β = 1/2, adapted to the saturation point of SNM).

been constrained so far. (For the crust, we interpolate to the
SLy4 EoS.) However, small deviations in the description of
the crust are not expected to affect strongly the mass and
radius of the neutron stars, within the current observational
constraints. Again an important observation is the robustness
of the results with respect to the choice of β value, i.e., the
details of the fit. Thus we can trust that our approach offers a
solid parametrization for further applications. In particular, we
consider the ad-2 parametrization in Table III a good starting
point for further work, because of its realistic SNM properties,
and because, unlike ad-1, it does not assume any value for the
effective mass.

We conclude that the power expansion of the nuclear EDF
in Fermi momentum can provide an excellent description of
symmetric and asymmetric nuclear matter in a large range of
densities. In the future it is hoped that realistic, converged
results will be derived within EFT, with which to compare
our results, or which will allow a thorough new study of PNM.

V. SUMMARY AND PROSPECTS

We propose and explore a nuclear EDF written as a power
expansion of the Fermi momentum. As such it is no less general
than any available functional in analytical form. Although it
can be viewed as an extended Skyrme EDF, the proposed form
is not arbitrary and can be extended further to higher powers
systematically.

Examining up to cubic terms, with the help of fits to micro-
scopic calculations and a statistical analysis, we have verified
the importance and robustness of low-order powers, especially
in SNM and selected a working functional form. As a starting
point for further applications and especially in finite nuclei we
consider the ad-2 set of Table III because of its realistic SNM
properties and because of the freedom it allows in determining
the effective mass. The resulting functional reproduces the
known or adopted properties of saturated nuclear matter, dense
matter, and neutron stars (pending an extension to clusterized
matter), as well as microscopic calculations for dilute matter,
to which it was not fitted.

The present paper opens up different directions for further
studies, some of which are currently underway,

(i) The proposed EDF can be recast in the form of a
traditional Skyrme functional with gradient terms, for
a variety of applications in finite nuclei. Our approach
is to consider the obtained parameters ci already fixed
in homogeneous matter and proceed to determine only
the free parameters, which cannot be constrained from
unpolarized homogeneous matter. Minimally, these
parameters are the portion of nonlocal vs. density-
dependent terms (the sum being fixed for each power of
kF ) and the spin-orbit force. The portion of momentum
dependence in c2 is related to the parameters t1,t2.
They can both be determined, at least to a first ap-
proximation, from the ground-state energies and radii
of closed-shell nuclei, as done in Refs. [32,33] with
very promising results.

(ii) In the future, one can consider also pseudodata from
ab initio calculations of polarized matter.
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(iii) So far for our applications we have determined the
parametrizations ad-1 and ad-2 with specific values for
the SNM properties, in particular K∞ = 240 MeV. It
will be interesting to vary this value to obtain a family
of functionals. In the same spirit, one may also fix J,L,
and so on without relying on pseudodata. One may also
use different pseudodata sets.

(iv) Combinations of higher-order terms in kF can also be
explored in detail. Terms beyond c2 may also be as-
sumed to arise from momentum-dependent couplings
in part.

We observed that the PNM shows different behavior from
SNM: the hierarchy of terms is not as clear as for SNM. A
convergence of the expansion for PNM is not evident from

the present work. We find this observation worthy of future
investigation in more fundamental ways.
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