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Microscopic analysis of shape transition in neutron-deficient Yb isotopes
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The development of nuclear collectivity in even-even 152–170Yb is studied with three types of mean-field
calculations: the nonrelativistic Hartree-Fock plus BCS calculation using the Skyrme SLy4 force plus a
density-dependent δ pairing force and the relativistic mean-field calculation using a point-coupling energy
functional supplemented with either a density-independent δ pairing force or a separable pairing force. The
low-lying states are obtained by solving a five-dimensional collective Hamiltonian with parameters determined
from the three mean-field solutions. The energy surfaces, excitation energies, electric multiple transition strengths,
and differential isotope shifts are presented in comparison with available data. Our results show that different
treatments of pairing correlations have a significant influence on the speed of developing collectivity as the
increase of neutron number. All the calculations demonstrate the important role of dynamic shape-mixing effects
in resolving the puzzle in the dramatic increase of charge radius from 152Yb to 154Yb and the role of triaxiality in
160,162,164Yb.
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I. INTRODUCTION

The collectivity or equilibrium shape of atomic nucleus and
its evolution with respect to nucleon number have been an
intensively studied subject in nuclear physics. They provide
rich information about the interplay of nuclear collectivity and
underlying shell structure. This information can be learnt from
the changes in both nuclear bulky properties and the spectro-
scopic properties of low-lying states. The nuclei with proton
number Z ≈ 70–80 and neutron number N in between the
two magic numbers 82 and 126 have attracted lots of research
interests. These nuclei generally exhibit a transition from the
spherical or weakly deformed shape to a well-deformed prolate
shape and then back to a weakly oblate shape. At some point
of the shape evolution, multiple shapes coexist at low energy
and enrich the structure of their low-lying states. Besides the
availability of rich experimental data on the low-lying states
of these nuclei, a large number of theoretical studies have also
been carried out. See, for instance, the microscopic studies
based on energy density functional (EDF) methods [1–7].

In this work, we are focusing on the development of
collectivity in neutron-deficient Yb isotopes, which has not
been comprehensively studied. Experimentally, Sprouse et al.
measured the isotope shifts of even-even 152–158,166Yb isotopes
and they found that the rms charge radius at N = 84 is surpris-
ingly larger than that at N = 82, which is quite exceptional
in the nucleus of this mass region [8]. An assumption of
strong deformation jump at 154Yb was made to explain this
strange behavior. However, this assumption was not supported
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by the latter measurements on the isotope shift and hyperfine
structure for the adjacent odd isotopes 153,155Yb [9]. The small
difference between the rms radii of 154Yb and 155Yb, together
with the small quadrupole moment of the 155Yb, indicates that
the deformation of 154Yb should be small as well. The fast
rise of the rms radius from N = 82 to N = 84 for Yb isotopes
becomes a puzzle, the understanding of which requires more
experiments. Recently, the calculation with the total Routhian
surface method has shown that the ground state of 155Yb
exhibits a triaxial shape and the low-lying states are soft in
quadrupole shapes [10]. Moreover, the structural characters
observed in 157Yb provide some hints for coexistence of three
distinct shapes: prolate, triaxial, and oblate. All of these facts
motivate us to carry out a systematic investigation of the
low-lying states in neutron-deficient Yb isotopes to understand
their evolution behaviors.

The nuclear EDF methods are the only ones that can
presently be used for nuclei throughout the chart. Modern
EDFs provide the most complete and accurate description
of structure phenomena related to the evolution of nuclear
shape and shell structure in medium-mass and heavy nuclei. To
describe nuclear spectroscopy of low-lying states, one should
go beyond the mean-field approximation to take into account
the restorations of broken symmetries and/or the configuration
mixing of intrinsic states in the framework of generator coordi-
nate method (GCM). In the past decades, the GCM combined
with the exact projection techniques has been implemented
into the modern EDF calculations [11–17]. In this kind of
study, calculations may become computationally demanding
and time-consuming, particularly when the triaxiality degree
of freedom is included in the analysis. Up to now, such kind of
study has been mostly restricted to light nuclei [14,18,19] and
some specific medium-heavy nuclei [20–23].
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As Gaussian overlap approximation of the exact GCM,
a five-dimensional collective Hamiltonian (5DCH) with
quadrupole degrees of freedom is alternatively adopted for
the description of nuclear low-lying collective states. The
vibrational mass parameters, rotational moments of inertia,
and the collective potential are determined from the self-
consistent mean-field calculations with a given EDF. This
5DCH method is much simpler in numerical calculations than
the exact GCM calculation, and has achieved great success
in description of nuclear low-lying states in a wide range of
nuclei, from the mass number A ∼ 40 to superheavy regions
including the spherical, transitional, and deformed nuclei [24–
33]. In particular, the validity of the 5DCH method has been
demonstrated by comparing with the seven-dimensional GCM
calculation for 76Kr based on a relativistic EDF [22]. In this
paper, we adopt the 5DCH for the low-lying states of Yb
isotopes with the collective parameters determined by the
mean-field solutions of both a non-relativistic Skyrme EDF and
a relativistic point-coupling EDF. Pair correlations are treated
in the Bardeen-Cooper-Schrieffer (BCS) method using either
a δ force or a separable force.

The paper is organized as follows. In Sec. II, we will
introduce briefly our method used to study the low-lying states
in neutron-deficient Yb isotopes. The results and discussions
will be presented in Sec. III. A summary is made in Sec. IV.

II. THE ENERGY-FUNCTIONAL-BASED COLLECTIVE
HAMILTONIAN METHOD

The collective excitations of a quadrupole deformed nucleus
can be mainly classified into rotational and vibrational motions.
Considering the energy scales of these two motions are not well
separated in atomic nuclei, the coupling between these two
motions is expected to be important. Therefore, the 5DCH that
describes the collective excitations of a quadrupole deformed
nucleus can be written in the form [34]

Ĥ = T̂vib + T̂rot + Vcoll. (1)

The kinetic terms for the vibrational and rotational motions
have the standard form

T̂vib = 1

2
Bβββ̇2 + βBβγ β̇γ̇ + 1

2
β2Bγγ γ̇ 2, (2)
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2
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Ikω
2
k , (3)

where ωk is the rotational frequency. The mass parameters Bββ ,
Bβγ , Bγγ , as well as the moments of inertia Ik , depend on the
Bohr parameters (β,γ ),

Ik = 4Bkβ
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and

T̂rot = 1

2

3∑
k=1

Ĵ 2
k

Ik

, (6)

with Ĵk denoting the components of the angular momentum in
the body-fixed frame of a nucleus. The quantities r = B1B2B3

and w = BββBγγ − B2
βγ determine the volume element in the

collective space.
In the EDF-based collective Hamiltonian calculations

[24,25,27], the potential Vcoll is determined in the following
way:

Vcoll(β,γ ) = Etot(β,γ ) − �Vvib(β,γ ) − �Vrot(β,γ ), (7)

with Etot(β,γ ) being the energy of the mean-field state. The
�Vvib and �Vrot are zero-point energy of vibrational and
rotational motions respectively.

The dynamics of the 5DCH is governed by the seven
functions of the intrinsic deformations β and γ : the collective
potential Vcoll, the three mass parameters (Bββ , Bβγ , Bγγ ),
and the three moments of inertia Ik . In principle, one should
calculate the inertia parameters using the formulas derived
from the GCM method, which correspond to the Peiers-
Yoccoz inertia [34]. As discussed in Ref. [22], however, the
Hill-Wheeler integral in the conventional GCM method runs
over only the collective coordinates without the corresponding
momenta. Therefore, it is generally assumed that one should
use the Thouless-Valatin inertia parameters [35], which can be
alteratively determined by the normal modes of local quasi-
particle random-phase approximation [36]. The determination
of inertia parameters in this way based on the solutions of
energy density functional methods is very complicated. To
simplify the calculation, one usually adopts the Inglis-Belyaev
formula for the rotational inertia and a similar expression for
the inertia in the vibrational degrees of freedom [26,27,37]. It
is known that the cranking formulas without the contribution
from time-odd components in the mean field generally result
in a stretched energy spectrum by a factor of 1.2–1.4.

III. RESULTS AND DISCUSSION

The Dirac equation for single-nucleon wave functions in
relativistic mean-field (RMF) approach is solved in the basis
of eigenfunctions of a three-dimensional harmonic oscillator
in Cartesian coordinate with 14 major shells, which are found
to be sufficient to obtain a reasonably converged results for the
nuclei of this mass region. The oscillator frequency is given
by h̄ω0 = 41A−1/3 (MeV), where A is the mass number. The
like-particle pairing correlations between nucleons are treated
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using either a density-independent δ force (DIDF)

Vτ (r1,r2,r′
1,r

′
2) = V pp

τ δ(r1 − r′
1)δ(r1 − r2)δ(r2 − r′

2), (8)

supplemented with a smooth energy-dependent cutoff or using
the separable pairing force proposed by Tian, Ma, and Ring
(TMR) [39]

Vτ (r1,r2,r′
1,r

′
2) = −Gδ(R − R′)

1

(4πa2)3
e−(r2+r ′2)/4a2

, (9)

where R = (r1 + r2)/2 and r = r1 − r2. The strengths V
pp
τ in

the DIDF pairing force −349.5 MeV fm3 and −330.0 MeV
fm3 for neutrons and protons, respectively, were determined
by fitting to the pairing gaps of some finite nuclei globally
[38]. The parameters in the TMR separable pairing force G =
−728 MeV fm3 and a = 0.644 fm were determined by fitting
to the pairing gap of Gogny force D1S for nuclear matter [39].

For the mean-field calculation with the nonrelativistic
Skyrme SLy4 [40] force, we adopted the computer code EV8
[41], in which the Hartree-Fock (HF) plus BCS equations
are solved by discretizing individual single-particle wave
functions on a three-dimensional Cartesian mesh. The like-
particle pairing correlations are taken into account with a
density-dependent δ force (DDDF),

Vτ (r1,r2,r′
1,r

′
2)

= V pp
τ

[
1 − ρ(r)

ρ0

]
δ(r1 − r′

1)δ(r1 − r2)δ(r2 − r′
2), (10)

with the parameters V
pp
τ = −1000 MeV fm3 and ρ0 =

0.16 fm−3 for both neutrons and protons and with a soft cutoff
at 5 MeV above and below the Fermi energy. More details can
be found in Ref. [41].

In both calculations, a set of intrinsic triaxially deformed
states with β ∈ [0.0,0.6] and γ ∈ [0◦,60◦], step size �β =
0.1 and �γ = 10◦ is adopted to determine the parameters in
the collective Hamiltonian. The Bohr deformation parameters
(β,γ ) are defined through the quantities q20 and q22,

β = 4π

3AR2
0

√
q2

20 + 2q2
22, γ = tan−1

(√
2
q22

q20

)
(11)

with q2μ = 〈r2Y2μ〉 and R0 = 1.2A1/3 fm. The 5DCH is solved
in a set of basis functions that depend on the deformation
variables β and γ , and three Euler angles [42].

Figures 1 and 2 display the potential energy surfaces of
152–158Yb isotopes in the β-γ plane from the RMF+BCS and
Skyrme HF+BCS calculations, respectively. In both cases, the
shift of the global minimum in the energy surface exhibits a
picture of shape transition from a spherical vibrator to a prolate
deformed rotor when the neutron number increases from N =
82 to N = 100. Similar to the cases for Sr and Zr isotopes
around N = 60 [29], however, the SLy4 force presents more
rapid development of collectivity, in comparison with that by
the PC-PK1 force. In particular, one finds that the deformation
energy surfaces by the SLy4 force are much stiffer around the
global minimum and exhibit more complicated structures in
most of the isotopes. The potential energy surfaces of 156Yb
and 158Yb show that their oblate and prolate energy minima are
connected with triaxiality degree of freedom. Whether there is
a coexistence of prolate, triaxial, and oblate shapes at close

FIG. 1. Mean-field energy Etot of 152–170Yb isotopes in the β-γ
plane, from the constrained RMF + BCS calculations with the PC-
PK1 parametrization for the particle-hole (ph) channel and density-
independent δ force (DIDF) for the particle-particle (pp) channel. All
energies are normalized to the absolute minimum. Each contour line
is separated by 0.5 MeV.

energy in low-lying states of these two nuclei or not requires
beyond mean-field calculations.

The energy minimum of 154Yb from the mean-field calcula-
tions using either the PC-PK1 (DIDF) or the PC-PK1 (TMR)
is located at a weakly deformed oblate shape with β = 0.1
and γ = 60◦. The difference in the squared charge radii of
the energy-minimum states in 152Yb and 154Yb is predicted
to be about 0.30 fm2 in both calculations. This value is much
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FIG. 2. Same as Fig. 1, but by the SLy4 force for the ph channel
and density-dependent δ force (DDDF) for the pp channel.

smaller than the data, 0.49 fm2. It indicates that the mean-field
calculation is not sufficient to reproduce the dramatic increase
in the rms charge radius from 152Yb to 154Yb.

Figure 3 displays the systematics of excitation energies and
electric quadrupole (E2) transition strengthes of the low-lying
states in neutron-deficient Yb isotopes, in comparison with
the data [43]. As the neutron number goes away from the
magic number N = 82, the yrast states fall down smoothly
and become members of the prolate deformed rotation band.
The systematics in both excitation energies and quadrupole
transition strengths are reproduced reasonably by our calcu-
lations. Quantitatively, the E2 transition strengths are over-

FIG. 3. Systematics of excitation energies and electric quadrupole
transition strengths for the ground-state rotational band in neutron-
deficient Yb isotopes, in comparison with the data [43].

all overestimated by ∼ 33%. Comparing the predictions by
different types of calculations with the data, one finds the
PC-PK1 (DIDF) underestimates the moment of inertia, while
the SLy4 (DDDF) overestimates it. The PC-PK1 (TMR) with
the separable pairing force predicts the excitation energies
in between and closest to the data. It is shown in Fig. 4
that the average pairing gap 〈�〉uv by the PC-PK1 (DIDF)
is overall larger than that by the PC-PK1 (TMR). The 〈�〉uv is
defined as

〈�〉uv =
∑

k fkukvk�k∑
k fkukvk

, (12)

where v2
k and �k are the occupation probability and pairing gap

of the kth single-particle state, respectively, and u2
k + v2

k = 1.
The fk is an energy-dependent smooth cutoff [15]. As a result
of the different treatment of pairing correlation, the moment
of inertia by the former is overall smaller than that by the
latter. Therefore, the energy spectrum by the PC-PK1 (DIDF) is

FIG. 4. Average pairing gaps 〈�〉uv (in MeV) for neutrons and
protons in 160Yb from the RMF calculations with either the DIDF or
the TMR force [39] for the pp channel.
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FIG. 5. The ratio R42 = Ex(4+
1)/Ex(2+

1) as a function of neu-
tron number in Yb isotopes from the 5DCH calculations with different
forces, in comparison with the data [43].

more stretched than that by the PC-PK1 (TMR), as the stronger
pairing tends to give the smaller moments of inertia.

Figure 5 displays the ratio R42 = Ex(4+
1)/Ex(2+

1) as a
function of neutron number in the Yb isotopes. The ratio R42 is
often used to characterize nuclear shape transition between an
axially deformed rotor (R42 = 3.33) and a spherical vibrational
nucleus (R42 = 2.00). We note that all the calculations exhibit
a picture of spherical-prolate shape transition when the neutron
number increases from the magic number N = 82. However,
the shape transition by the SLy4 force is too rapid, four
neutrons earlier than the data. Moreover, the ratio R42 by the
PC-PK1 (TMR) [39] exhibits a faster spherical to prolate shape
transition than that by the PC-PK1 (DIDF). It indicates that a
stronger pairing correlation between nucleons is necessary to
reproduce the more moderate development of collectivity in
the Yb isotopes.

Figure 6 shows the evolution of the excitation energies for
the states (2+

2,3+
1,4+

2,5+
1,6+

2) in the γ band. One can see
that the excitation energy of the bandhead 2+

2 state globally
decreases as the neutron number increases from 82 to 90 or
94, which depends on the details of the calculations, and then
increases again as the neutron number increases further. It can
be understood from Figs. 1 and 2 that the energy surfaces are
very soft along both β and γ directions around the energy
minima in 160,162,164Yb. As a result, the excitation energy of
the bandhead (0+

2) state also reaches the lowest value in these
nuclei among the neutron-deficient Yb isotopes, as illustrated
in Fig. 7. This is consistent with the evolution trend observed
from the available data, even though they are very limited and
the evolution is much more moderate. The excitation energy of
the 0+

2 state by the PC-PK1 (DIDF) in 162Yb is Ex = 0.894
MeV, compared with the data Ex = 1.006 MeV. For 164Yb,
this value is Ex = 1.027 MeV, compared with the data Ex =
0.976 MeV.

Electric monopole (E0) transition strength is frequently
adopted in the study of shape mixing in atomic nuclei. Gen-
erally speaking, the lower excitation energy of 0+

2 state is

FIG. 6. Systematics of excitation energies for the states in the
γ -band for the neutron-deficient Yb isotopes, in comparison with the
data [43].

observed at the isotope with a larger ρ2
E0 value. Figure 7(a)

shows that the electric monopole (E0) transition strength,
which is defined as

ρ2
E0 =

∣∣∣∣ 〈0
+
2 |er2|0+

1 〉
eR2

∣∣∣∣
2

, (13)

reaches to the minimal value in 92,94Yb. According to Ref. [44],
the E0 transition strength is correlated to the size of the defor-
mation and to the amount of mixing between configurations
corresponding to different shapes. Therefore, it provides an
indicator of shape mixing. The predicted largestE0 strengths in
92,94Yb indicate the strongest mixing between different shapes
in these nuclei among the neutron-deficient Yb isotopes.

The evolution of the isotope shifts δ〈r2〉N,82 with respect
to 152Yb and the differential isotope shifts δ〈r2〉N,N−2 =
δ〈r2〉N − δ〈r2〉N−2 as a function of neutron number N is shown
in Fig. 8. It is seen that the δ〈r2〉N,82 increases almost linearly
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FIG. 7. Electric monopole transition strength ρ2
E0(0+

2 → 0+
1)

and excitation energy of 0+
2 state as functions of neutron num-

ber in Yb isotopes from the 5DCH calculations with the PC-PK1
parametrization of covariant energy density functional, in comparison
with the data [43].

with the neutron number, but with a kink at N = 94 in the
results by the PC-PK1. This kink is shown more clearly in the
plot for the differential isotope shifts, which exhibits a peak
around N = 92 or 94. This behavior is consistent with the
evolution of the predominate shape in the ground state of the
Yb isotopes. The predicted value for the δ〈r2〉84,82 is 0.42, 0.35,
and 0.33 fm2 by the 5DCH calculations using the PC-PK1

FIG. 8. Variation of the isotope shifts with respect to 152Yb (upper
panel) and the differential isotope shifts (lower panel) δ〈r2〉N,N−2 =
〈r2〉N − 〈r2〉N−2 as a function of neutron number for the ground states
of Yb isotopes, in comparison with the data [45].

(DIDF), PC-PK1 (TMR), and SLy4 (DDDF), respectively.
Compared with the mean-field value ∼0.30 fm2, the results by
the 5DCH calculations are in better agreement with the data. In
other words, the dynamic shape mixing effects are important
to resolve the puzzle in the rapid increase of charge radii from
152Yb to 154Yb.

The low-lying states of odd-mass Yb isotopes are challenges
for the collective Hamiltonian as the treatment of Pauli-
exclusion effect between the unpaired nucleon and the core
nucleons is difficult, even though there is an attempt with
the idea of core-quasiparticle coupling [46]. To shed light
on the shape coexistence in 157Yb, we study in detail the
low-lying states of 156,158Yb instead. A nucleus with “shape
coexistence” is usually characterized with the presence of
states at similar energy but possessing distinctly different
intrinsic shapes. Figure 9 displays the low-lying energy spectra
and the E2 transition strengths of 156,158Yb from the 5DCH
calculation with the PC-PK1 (DIDF). It is shown that the
low-energy structures of 156,158Yb are similar. For 156Yb, the
second 0+ and 2+ states and the first 4+ state are almost
degenerate. The whole energy spectrum exhibits the character
of a quadrupole vibrator. We note that the reduced E2 tran-
sition matrix element in the ground-state band is not much
different from that for the series of the states 0+,2+,4+,6+ on
the left column. The B(E2 : 4+

1 → 2+
1) for 156Yb is 0.62

e2b2, slightly smaller than the twice of the B(E2 : 2+
1 →

0+
1) = 0.36 e2b2. This phenomenon is similar to the findings

in 58Ni [47] that the values of B(E2 : 0+
2 → 2+

1) = 0.27
e2b2 and B(E2 : 2+

2 → 2+
1) = 0.50 e2b2 are much smaller

than what would be expected for a harmonic vibrator. In
other words, there are larger anharmonicity effects in the E2
transition strengths than those in excitation energies. All these
features indicate that the low-energy structure of 156Yb is
dominated by quadrupole vibration collective motions with a
large anharmonicity, instead of shape coexistence. For 158Yb,
the β band is shifted upward and the E2 transition strengths
are somewhat stronger, compared to 156Yb. In other words,
from 156Yb to 158Yb, the low-energy structure is changing
from a quadrupole vibrator toward a prolate deformed rotor,
accompanying triaxialγ softness. These findings are consistent
with the potential energy surfaces shown in Fig. 1. It is
worth mentioning that parity-doublet states have been observed
experimentally in both 156Yb and 158Yb, the description of
which requires the mixing of reflection-asymmetric intrinsic
states in the calculations [48].

IV. SUMMARY

In this paper, we have studied in detail the evolution of low-
lying collective states in the even-even 152–170Yb with the EDF
based 5DCH, the parameters of which are determined with
three types of mean-field calculations. The energy surfaces,
excitation energies, electric multiple transition strengths, and
differential isotope shifts have been analyzed in comparison
with available data. The results exhibit a picture of spherical-
prolate shape transition when the neutron number goes away
from magic number N = 82. All the calculations exhibit a
picture of spherical-prolate shape transition when the neutron
number increases from the magic number N = 82. The results
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FIG. 9. Low-lying energy spectra of 156,158Yb by the 5DCH calculation with the PC-PK1 (DIDF), in comparison with available data. The
absolute value of the reduced transition matrix element 〈J ||E2||J ′〉 (in eb) is indicated on the arrows.

show that the calculation based on the SLy4 (DDDF) force
predicts the most rapid spherical to prolate shape transition,
while the PC-PK1 (DIDF) with the strongest pairing cor-
relation gives the most moderate transition. In other words,
different treatments of pairing correlations have a significant
influence on the speed of developing collectivity as the increase
of neutron number in the neutron-deficient Yb isotopes. The
results from the three calculations have shown the important
role of dynamic shape-mixing effects in resolving the puzzle in
the dramatic increase of charge radius from 152Yb to 154Yb. The
low-energy structure of 156Yb is dominated by the quadrupole
vibrational motions with a large anharmonicity, instead of

shape coexistence, while 158Yb is more like a prolate rotor
with triaxial γ softness. Moreover, the excitation energy for the
bandhead state of γ band turns out to be lowest in 160,162,164Yb,
depending on the details of the calculations.
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