B(E2; $5/2^- \rightarrow 1/2^-$) in ¹⁷N and ¹⁷Ne

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 8 November 2017; published 17 January 2018)

A simple model of E2 strengths previously applied to several neutron-excess light nuclei is used to investigate the $1/2^- \rightarrow 5/2^-$ transition strength in ¹⁷Ne, with the aid of mirror symmetry. The calculation is found to be in good agreement with results of a recent measurement and emphasizes a likely problem with the same transition in ¹⁷N.

DOI: 10.1103/PhysRevC.97.014308

I. INTRODUCTION

I recently performed an analysis [1] of E2 transition strengths [2–7] in several neutron-excess light nuclei. Transitions were chosen so that the J^{π} values excluded the possibility of M1 competition. The included nuclei were those with one or two *sd*-shell neutrons outside a *p*-shell core, so that a reasonable assumption was that the transitions involved only neutrons. Transitions were of the type $1d_{5/2} \leftrightarrow 2s_{1/2}$ or $(sd)^2_2 \leftrightarrow (sd)^2_0$. Given information from ^{17,18}O, a combination of weak coupling and the shell model allowed parameterfree predictions for E2 transitions in ^{16,17}N and ^{15,16}C. Results for those four nuclei are summarized in Table I and plotted in Fig. 1. Agreement between experimental and predicted strengths is reasonable for all four nuclei, but agreement is worst for ¹⁷N.

A realistic shell-model calculation [8] for ¹⁷N also predicted a B(E2) significantly larger than the current experimental value [exp/shell-model = 0.68(13)], prompting me to suggest [1] "a remeasurement of the ¹⁷N gamma width might be warranted."

II. CALCULATIONS AND RESULTS

Because of mirror symmetry, information from ¹⁷Ne should help in assessing the ¹⁷N problem. However, in ¹⁷Ne, the $5/2^{-}$ state is unbound and decays by 2p emission, making a

TABLE I. E2 transition strengths in relevant nuclei.^a

Nucleus		$J_{f}{}^{\pi}$	$B(E2) (e^2 fm^4)$		
	$J_i{}^\pi$		Calculated		Measured
			$e_n = 0.5e$	$e_n = (Z/A)e$	
¹⁷ N	$5/2^{-}$	$1/2^{-}$	4.02	3.52	2.25(44) ^b
¹⁶ N	0-	2-	4.25	3.66	$4.25(5)^{b}$
¹⁶ C	2^{+}	0^+	4.05	3.00	3.50(30) ^c
¹⁵ C	$5/2^{+}$	$1/2^{+}$	1.40	1.03	$0.98(2)^{d}$

^aNuclei that have one or two sd-shell neutrons outside a p-shell core [1].

^bReference [2].

^cSimple average of four most recent values [4–7]. ^dReference [3]. measurement of gamma width difficult. But, the inverse B(E2) transition strength can be deduced from Coulomb excitation measurements. Such experiments have been done. The relevant equations are

$$2 B(\text{E2}; 1/2^- \to 5/2^-) = 6 \text{B}(\text{E2}; 5/2^- \to 1/2^-);$$

B(E2 in¹⁷Ne) = $(e_p/e_n)^2 \text{B}(\text{E2 in}^{17}\text{N}).$

By consideration of B(E2)'s and quadrupole moments in ${}^{17}\text{O}/{}^{17}\text{F}$, Lawson *et al.* [9] determined effective charges of $e_p = 1.5e, e_n = 0.5e$ in the *sd* space. I use those values here. Thus, the expected B(E2; $1/2^- \rightarrow 5/2^-$) in ${}^{17}\text{Ne}$ is $109 e^2 \text{fm}^4$ (Table II).

Recently, Marganiec *et al.* [10] studied dissociation of relativistic ¹⁷Ne projectiles incident on targets of lead, carbon, and polyethylene, paying special attention to the excitation and decay of narrow resonant states in ¹⁷Ne. Comparison of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of these narrow states. In particular, the subsequent analysis produced a B(E2) value for $1/2^- \rightarrow 5/2^-$ of $90(18)e^2$ fm⁴. Those authors stated that their B(E2) suggested that the s^2 intensity in ¹⁷Ne ground state (g.s.) was either 23^{+9}_{-6} or 53^{+5}_{-9} %, where I have read the uncertainties from their graph (their Fig. 7). The

FIG. 1. Ratios of experimental to calculated E2 transition strengths [1] in ^{15,16}C and ^{16,17}N are plotted vs. A. Points labeled Set 1 were obtained with a neutron effective charge of $e_n = 0.5e$; Set 2 used $e_n = (Z/A)e$, where Z and A refer to the core.

TABLE II. Experimental and calculated values $(e^2 \text{fm}^4)$ of B(E2; $1/2^- \rightarrow 5/2^-)$ in ¹⁷Ne.

Source	Reference	B(E2)	
Calculated	Present	109	
Experimental	[10]	90(18)	
-	[17]	124(18)	
	[17] corrected by [10]	179(26)	

smaller of their two values is consistent with our shell-model value of 0.284 [11]. Several other works [12–14] had suggested dominance of s^2 in this state. Ozawa *et al.* [12] concluded that the experimental value of the ¹⁷Ne interaction cross section required that the g.s. has protons mostly in the $s_{1/2}$ orbit. Timofeyuk *et al.* [13] used a three-cluster $(^{15}O + p + p)$ generator coordinate model and concluded that the last two neutrons in ¹⁷N and the two external protons in ¹⁷Ne occupy $s_{1/2}$ states rather than $d_{5/2}$. Nakamura *et al.* [14] computed Coulomb energies for the A = 17, T = 3/2 isobaric quartet. They concluded that the "last two protons in ¹⁷Ne (g.s.) occupy the $s_{1/2}$ orbit." However, Millener [15], in addressing the asymmetry in $\beta \pm$ decays of ¹⁷N and ¹⁷Ne, found dominance of d^2 over s^2 configurations. His s^2 occupancies were 0.15 in ¹⁷N and 0.22 in ¹⁷Ne, whereas the other workers assumed the same configuration amplitudes for the mirror nuclei. Sherr and I computed the ${}^{17}N/{}^{17}Ne$ mirror energy difference as a function of the s^2/d^2 ratio and concluded a value of 0.22 for the s^2 occupancy [16]. These g.s. results are summarized in Table III.

An earlier study of Coulomb excitation [17] yielded an E2 strength of $124(18) e^2 \text{fm}^4$ for this transition in ¹⁷Ne. Reference [10] stated that this value should be corrected to $179(26) e^2 \text{fm}^4$ because of an error of a factor of e^2 . The various experimental strengths are listed in Table II. Reference [10] suggested that the incorrectly large strength in Ref. [17] might have been

TABLE III. Wave function of ¹⁷N and ¹⁷Ne (g.s.) from various sources.

Source	s^2 occupancy	Reference
Shell model calculation ^a	$0.28 \ s^2$	[11]
Interaction cross section	Mostly s^2	[12]
Three-cluster calculation	Predominantly s^2	[13]
Coulomb energies	Mostly s^2	[14]
$\beta \pm$ decays of ¹⁷ N and ¹⁷ Ne	$0.15 s^2$ in ¹⁷ N, 0.22 in ¹⁷ Ne	[15]
¹⁷ N/ ¹⁷ Ne mirror energy		
difference	$0.22 s^2$ in both ¹⁷ N and ¹⁷ Ne	[16]
B(E2) in ¹⁷ Ne	$0.23^{+0.09}_{-0.06}$ or $0.53^{+0.05}_{-0.09}$, [<u>10</u>]

^aGave good agreement with ${}^{15}N(t, p)$.

caused by the assumption of pure Coulomb excitation, when in fact nuclear excitation also contributes.

We note that the most recent B(E2) in ¹⁷Ne is in good agreement with my prediction, whereas the earlier value (if the proposed correction is valid) disagrees. This agreement in ¹⁷Ne increases the likelihood that the experimental B(E2) in ¹⁷N is too small and strengthens the argument that this gamma width should be remeasured. It appears that the old ¹⁷N strength depends solely on a branching ratio of 0.78(3) and a single measurement of the mean life of 11(2) ps, using the recoil-distance technique [18].

III. SUMMARY

In summary, a recent measurement of B(E2; $1/2^- \rightarrow 5/2^-$) in ¹⁷Ne is in good agreement with the calculation in a simple model that combines weak coupling, the shell model, and mirror symmetry. The s^2 occupancy of ¹⁷Ne (g.s.) that is deduced from the measured value is also in agreement with our earlier wave function. Results indicate that the corresponding strength in ¹⁷N should be remeasured.

- [1] H. T. Fortune, Phys. Rev. C 93, 044322 (2016).
- [2] D. R. Tilley, C. M. Cheves, J. H. Kelley, S. Raman, and H. R. Weller, Nucl. Phys. A 636, 247 (1998).
- [3] D. R. Tilley, H. R. Weller, and C. M. Cheves, Nucl. Phys. A 564, 1 (1993).
- [4] H. J. Ong *et al.*, Phys. Rev. C 78, 014308 (2008); H. J. Ong, Eur. Phys. J. A 42, 393 (2009).
- [5] Z. Elekes et al., Phys. Rev. C 78, 027301 (2008).
- [6] M. Wiedeking et al., Phys. Rev. Lett. 100, 152501 (2008).
- [7] M. Petri et al., Phys. Rev. C 86, 044329 (2012).
- [8] E. K. Warburton and D. J. Millener, Phys. Rev. C 39, 1120 (1989).
- [9] R. D. Lawson, F. J. D. Serduke, and H. T. Fortune, Phys. Rev. C 14, 1245 (1974).

- [10] J. Marganiec et al., Phys. Lett. B 759, 200 (2016).
- [11] H. T. Fortune, G. E. Moore, L. Bland, M. E. Cobern, S. Mordechai, R. Middleton, and R. D. Lawson, Phys. Rev. C 20, 1228 (1979).
- [12] A. Ozawa et al., Phys. Lett. B 334, 18 (1994).
- [13] N. K. Timofeyuk, P. Descouvement, and D. Baye, Nucl. Phys. A 600, 1 (1996).
- [14] S. Nakamura, V. Guimaraes, and S. Kubono, Phys. Lett. B 416, 1 (1998).
- [15] D. J. Millener, Phys. Rev. C 55, R1633 (1997).
- [16] H. T. Fortune and R. Sherr, Phys. Lett. B 503, 70 (2001)
- [17] M. J. Chromik et al., Phys. Rev. C 66, 024313 (2002).
- [18] D. W. O. Rogers, N. Anyas-Weiss, J. A. Becker, T. A. Belote, S. P. Dolan, and W. L. Randolph, Nucl. Phys. A 226, 445 (1974).