B(E2; $5/2^-$ → $1/2^-$) in ¹⁷N and ¹⁷Ne

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

 \bigcirc (Received 8 November 2017; published 17 January 2018)

A simple model of E2 strengths previously applied to several neutron-excess light nuclei is used to investigate the $1/2^- \rightarrow 5/2^-$ transition strength in ¹⁷Ne, with the aid of mirror symmetry. The calculation is found to be in good agreement with results of a recent measurement and emphasizes a likely problem with the same transition in 17_N .

DOI: [10.1103/PhysRevC.97.014308](https://doi.org/10.1103/PhysRevC.97.014308)

I. INTRODUCTION

I recently performed an analysis [\[1\]](#page-1-0) of E2 transition strengths [\[2–7\]](#page-1-0) in several neutron-excess light nuclei. Transitions were chosen so that the J^{π} values excluded the possibility of M1 competition. The included nuclei were those with one or two sd-shell neutrons outside a p-shell core, so that a reasonable assumption was that the transitions involved only neutrons. Transitions were of the type $1d_{5/2} \leftrightarrow 2s_{1/2}$ or $(sd)^2$ ² \leftrightarrow $(sd)^2$ ₀. Given information from ^{17,18}O, a combination of weak coupling and the shell model allowed parameterfree predictions for E2 transitions in 16,17 N and 15,16 C. Results for those four nuclei are summarized in Table I and plotted in Fig. 1. Agreement between experimental and predicted strengths is reasonable for all four nuclei, but agreement is worst for ${}^{17}N$.

A realistic shell-model calculation $[8]$ for ¹⁷N also predicted a B(E2) significantly larger than the current experimental value [$exp/\text{shell-model} = 0.68(13)$], prompting me to suggest [\[1\]](#page-1-0) "a remeasurement of the $17N$ gamma width might be warranted."

II. CALCULATIONS AND RESULTS

Because of mirror symmetry, information from ¹⁷Ne should help in assessing the $17N$ problem. However, in $17Ne$, the 5/2[−] state is unbound and decays by *2p* emission, making a

TABLE I. E2 transition strengths in relevant nuclei.^a

				$B(E2) (e^2 fm^4)$	
Nucleus	J_i^{μ}	$J_f{}^n$	Calculated		Measured
			$e_n = 0.5e$	$e_n = (Z/A)e$	
^{17}N	$5/2^{-}$	$1/2^{-}$	4.02	3.52	$2.25(44)$ ^b
16 _N	$0-$	2^{-}	4.25	3.66	$4.25(5)^{b}$
${}^{16}C$	2^+	$0+$	4.05	3.00	$3.50(30)$ ^c
${}^{15}C$	$5/2^{+}$	$1/2^+$	1.40	1.03	0.98(2) ^d

a Nuclei that have one or two sd-shell neutrons outside a p-shell core [\[1\]](#page-1-0).

^bReference [\[2\]](#page-1-0).

^cSimple average of four most recent values [\[4–7\]](#page-1-0).

 ${}^{\text{d}}$ Reference [\[3\]](#page-1-0).

measurement of gamma width difficult. But, the inverse B(E2) transition strength can be deduced from Coulomb excitation measurements. Such experiments have been done. The relevant equations are

$$
2 B(E2; 1/2^- \to 5/2^-) = 6 B(E2; 5/2^- \to 1/2^-);
$$

$$
B(E2 \text{ in}^{17} \text{Ne}) = (e_p/e_n)^2 B(E2 \text{ in}^{17} \text{N}).
$$

By consideration of B(E2)'s and quadrupole moments in $17O/I^{7}F$, Lawson *et al.* [\[9\]](#page-1-0) determined effective charges of $e_p = 1.5e$, $e_n = 0.5e$ in the sd space. I use those values here. Thus, the expected B(E2; $1/2^- \rightarrow 5/2^-$) in ¹⁷Ne is 109 e^2 fm⁴ (Table [II\)](#page-1-0).

Recently, Marganiec *et al.* [\[10\]](#page-1-0) studied dissociation of relativistic ¹⁷Ne projectiles incident on targets of lead, carbon, and polyethylene, paying special attention to the excitation and decay of narrow resonant states in ¹⁷Ne. Comparison of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of these narrow states. In particular, the subsequent analysis produced a B(E2) value for $1/2^- \rightarrow 5/2^-$ of 90(18) e^2 fm⁴. Those authors stated that their B(E2) suggested that the s^2 intensity in ¹⁷Ne ground state (g.s.) was either 23^{+9} –6 or 53^{+5} –9%, where I have read the uncertainties from their graph (their Fig. 7). The

FIG. 1. Ratios of experimental to calculated E2 transition strengths $[1]$ in 15,16 C and 16,17 N are plotted vs. A. Points labeled Set 1 were obtained with a neutron effective charge of $e_n = 0.5e$; Set 2 used $e_n = (Z/A)e$, where Z and A refer to the core.

smaller of their two values is consistent with our shell-model value of 0.284 [11]. Several other works [12–14] had suggested dominance of s^2 in this state. Ozawa *et al.* [12] concluded that the experimental value of the 17 Ne interaction cross section required that the g.s. has protons mostly in the $s_{1/2}$ orbit. Timofeyuk *et al.* [13] used a three-cluster $({}^{15}O + p + p)$ generator coordinate model and concluded that the last two neutrons in $17N$ and the two external protons in $17Ne$ occupy $s_{1/2}$ states rather than $d_{5/2}$. Nakamura *et al.* [14] computed Coulomb energies for the $A = 17$, $T = 3/2$ isobaric quartet. They concluded that the "last two protons in 17 Ne (g.s.) occupy the $s_{1/2}$ orbit." However, Millener [15], in addressing the asymmetry in $\beta \pm$ decays of ¹⁷N and ¹⁷Ne, found dominance of d^2 over s^2 configurations. His s^2 occupancies were 0.15 in $17N$ and 0.22 in $17Ne$, whereas the other workers assumed the same configuration amplitudes for the mirror nuclei. Sherr and I computed the $17N/\sqrt{17}$ Ne mirror energy difference as a function of the s^2/d^2 ratio and concluded a value of 0.22 for the $s²$ occupancy [16]. These g.s. results are summarized in Table III.

An earlier study of Coulomb excitation [17] yielded an E2 strength of $124(18) e^{2} fm^{4}$ for this transition in ¹⁷Ne. Reference [10] stated that this value should be corrected to 179(26) e^2fm^4 because of an error of a factor of e^2 . The various experimental strengths are listed in Table II. Reference [10] suggested that the incorrectly large strength in Ref. [17] might have been

TABLE III. Wave function of ^{17}N and ^{17}Ne (g.s.) from various sources.

Source	$s2$ occupancy	Reference
Shell model calculation ^a	0.28 s ²	[11]
Interaction cross section	Mostly s^2	[12]
Three-cluster calculation	Predominantly s^2	$\lceil 13 \rceil$
Coulomb energies	Mostly s^2	[14]
$17N/17$ Ne mirror energy	$\beta \pm$ decays of ¹⁷ N and ¹⁷ Ne 0.15 s ² in ¹⁷ N, 0.22 in ¹⁷ Ne	[15]
difference $B(E2)$ in ¹⁷ Ne	$0.22 s2$ in both ¹⁷ N and ¹⁷ Ne $0.23^{+0.09}$ _{-0.06} or $0.53^{+0.05}$ _{-0.09}	[16] [10]

^aGave good agreement with ¹⁵N(t, p).

caused by the assumption of pure Coulomb excitation, when in fact nuclear excitation also contributes.

We note that the most recent $B(E2)$ in ¹⁷Ne is in good agreement with my prediction, whereas the earlier value (if the proposed correction is valid) disagrees. This agreement in 17 Ne increases the likelihood that the experimental B(E2) in $17N$ is too small and strengthens the argument that this gamma width should be remeasured. It appears that the old 17 N strength depends solely on a branching ratio of 0.78(3) and a single measurement of the mean life of 11(2) ps, using the recoil-distance technique [18].

III. SUMMARY

In summary, a recent measurement of B(E2; $1/2^- \rightarrow 5/2^-$) in $\frac{17}{10}$ is in good agreement with the calculation in a simple model that combines weak coupling, the shell model, and mirror symmetry. The s^2 occupancy of ¹⁷Ne (g.s.) that is deduced from the measured value is also in agreement with our earlier wave function. Results indicate that the corresponding strength in $17N$ should be remeasured.

- [1] H. T. Fortune, [Phys. Rev. C](https://doi.org/10.1103/PhysRevC.93.044322) **[93](https://doi.org/10.1103/PhysRevC.93.044322)**, [044322](https://doi.org/10.1103/PhysRevC.93.044322) [\(2016\)](https://doi.org/10.1103/PhysRevC.93.044322).
- [2] D. R. Tilley, C. M. Cheves, J. H. Kelley, S. Raman, and H. R. Weller, [Nucl. Phys. A](https://doi.org/10.1016/S0375-9474(98)00129-8) **[636](https://doi.org/10.1016/S0375-9474(98)00129-8)**, [247](https://doi.org/10.1016/S0375-9474(98)00129-8) [\(1998\)](https://doi.org/10.1016/S0375-9474(98)00129-8).
- [3] D. R. Tilley, H. R. Weller, and C. M. Cheves, [Nucl. Phys. A](https://doi.org/10.1016/0375-9474(93)90073-7) **[564](https://doi.org/10.1016/0375-9474(93)90073-7)**, [1](https://doi.org/10.1016/0375-9474(93)90073-7) [\(1993\)](https://doi.org/10.1016/0375-9474(93)90073-7).
- [4] H. J. Ong *et al.*, [Phys. Rev. C](https://doi.org/10.1103/PhysRevC.78.014308) **[78](https://doi.org/10.1103/PhysRevC.78.014308)**, [014308](https://doi.org/10.1103/PhysRevC.78.014308) [\(](https://doi.org/10.1140/epja/i2009-10804-8)[2008](https://doi.org/10.1103/PhysRevC.78.014308)[\); H. J. Ong,](https://doi.org/10.1140/epja/i2009-10804-8) Eur. Phys. J. A **[42](https://doi.org/10.1140/epja/i2009-10804-8)**, [393](https://doi.org/10.1140/epja/i2009-10804-8) [\(2009\)](https://doi.org/10.1140/epja/i2009-10804-8).
- [5] Z. Elekes *et al.*, [Phys. Rev. C](https://doi.org/10.1103/PhysRevC.78.027301) **[78](https://doi.org/10.1103/PhysRevC.78.027301)**, [027301](https://doi.org/10.1103/PhysRevC.78.027301) [\(2008\)](https://doi.org/10.1103/PhysRevC.78.027301).
- [6] M. Wiedeking *et al.*, [Phys. Rev. Lett.](https://doi.org/10.1103/PhysRevLett.100.152501) **[100](https://doi.org/10.1103/PhysRevLett.100.152501)**, [152501](https://doi.org/10.1103/PhysRevLett.100.152501) [\(2008\)](https://doi.org/10.1103/PhysRevLett.100.152501).
- [7] M. Petri *et al.*, [Phys. Rev. C](https://doi.org/10.1103/PhysRevC.86.044329) **[86](https://doi.org/10.1103/PhysRevC.86.044329)**, [044329](https://doi.org/10.1103/PhysRevC.86.044329) [\(2012\)](https://doi.org/10.1103/PhysRevC.86.044329).
- [8] E. K. Warburton and D. J. Millener, [Phys. Rev. C](https://doi.org/10.1103/PhysRevC.39.1120) **[39](https://doi.org/10.1103/PhysRevC.39.1120)**, [1120](https://doi.org/10.1103/PhysRevC.39.1120) [\(1989\)](https://doi.org/10.1103/PhysRevC.39.1120).
- [9] R. D. Lawson, F. J. D. Serduke, and H. T. Fortune, [Phys. Rev. C](https://doi.org/10.1103/PhysRevC.14.1245) **[14](https://doi.org/10.1103/PhysRevC.14.1245)**, [1245](https://doi.org/10.1103/PhysRevC.14.1245) [\(1974\)](https://doi.org/10.1103/PhysRevC.14.1245).
- [10] J. Marganiec *et al.*, [Phys. Lett. B](https://doi.org/10.1016/j.physletb.2016.05.073) **[759](https://doi.org/10.1016/j.physletb.2016.05.073)**, [200](https://doi.org/10.1016/j.physletb.2016.05.073) [\(2016\)](https://doi.org/10.1016/j.physletb.2016.05.073).
- [11] H. T. Fortune, G. E. Moore, L. Bland, M. E. Cobern, S. Mordechai, R. Middleton, and R. D. Lawson, [Phys. Rev. C](https://doi.org/10.1103/PhysRevC.20.1228) **[20](https://doi.org/10.1103/PhysRevC.20.1228)**, [1228](https://doi.org/10.1103/PhysRevC.20.1228) [\(1979\)](https://doi.org/10.1103/PhysRevC.20.1228).
- [12] A. Ozawa *et al.*, [Phys. Lett. B](https://doi.org/10.1016/0370-2693(94)90585-1) **[334](https://doi.org/10.1016/0370-2693(94)90585-1)**, [18](https://doi.org/10.1016/0370-2693(94)90585-1) [\(1994\)](https://doi.org/10.1016/0370-2693(94)90585-1).
- [13] [N. K. Timofeyuk, P. Descouvement, and D. Baye,](https://doi.org/10.1016/0375-9474(96)00004-8) Nucl. Phys. A **[600](https://doi.org/10.1016/0375-9474(96)00004-8)**, [1](https://doi.org/10.1016/0375-9474(96)00004-8) [\(1996\)](https://doi.org/10.1016/0375-9474(96)00004-8).
- [14] S. Nakamura, V. Guimaraes, and S. Kubono, [Phys. Lett. B](https://doi.org/10.1016/S0370-2693(97)01341-5) **[416](https://doi.org/10.1016/S0370-2693(97)01341-5)**, [1](https://doi.org/10.1016/S0370-2693(97)01341-5) [\(1998\)](https://doi.org/10.1016/S0370-2693(97)01341-5).
- [15] D. J. Millener, [Phys. Rev. C](https://doi.org/10.1103/PhysRevC.55.R1633) **[55](https://doi.org/10.1103/PhysRevC.55.R1633)**, [R1633](https://doi.org/10.1103/PhysRevC.55.R1633) [\(1997\)](https://doi.org/10.1103/PhysRevC.55.R1633).
- [16] H. T. Fortune and R. Sherr, [Phys. Lett. B](https://doi.org/10.1016/S0370-2693(00)01371-X) **[503](https://doi.org/10.1016/S0370-2693(00)01371-X)**, [70](https://doi.org/10.1016/S0370-2693(00)01371-X) [\(2001\)](https://doi.org/10.1016/S0370-2693(00)01371-X)
- [17] M. J. Chromik *et al.*, [Phys. Rev. C](https://doi.org/10.1103/PhysRevC.66.024313) **[66](https://doi.org/10.1103/PhysRevC.66.024313)**, [024313](https://doi.org/10.1103/PhysRevC.66.024313) [\(2002\)](https://doi.org/10.1103/PhysRevC.66.024313).
- [18] D.W. O. Rogers, N. Anyas-Weiss, J. A. Becker, T. A. Belote, S. P. Dolan, and W. L. Randolph, [Nucl. Phys. A](https://doi.org/10.1016/0375-9474(74)90494-1) **[226](https://doi.org/10.1016/0375-9474(74)90494-1)**, [445](https://doi.org/10.1016/0375-9474(74)90494-1) [\(1974\)](https://doi.org/10.1016/0375-9474(74)90494-1).