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The tensor contribution can be directly incorporated in the cluster model in a simplified way. In conventional α

cluster models, the contribution of the noncentral interactions exactly cancels because of the antisymmetrization
effect and spatial symmetry of α clusters. The mixing of breaking components of α clusters to take into account
the spin-orbit and tensor effects is needed. Previously, we proposed a simplified method to include the spin-orbit
effect, and also for the tensor part, a simplified model to directly take into account the contribution of the tensor
interaction (called SMT) was introduced; however, the contribution of the tensor interaction was quite limited.
Here we improve SMT, which is called iSMT. Using newly proposed iSMT, the contribution of the tensor
interaction in 4He is more than −40 MeV, four times larger than the previous version. The method is applied to
four-α cluster structure of 16O. In 16O, the tensor contribution is also large, and this is coming from the finite size
effect for the distances among α clusters with a tetrahedral configuration.
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I. INTRODUCTION

The binding energy per nucleon of 4He is quite large in light
mass region and α particles are considered as good building
blocks for the nuclear structure. Cluster models, especially the
α cluster models, are based on this idea, and they have been
widely used for the description of molecular structure of nuclei
[1,2]. One of the well-known examples is the so-called Hoyle
state [3]; formation of 12C from three 4He nuclei (α clusters)
is a key process of the nucleosynthesis. The second 0+ state
at Ex = 7.6542 MeV plays a crucial role, which is the second
excited state of 12C and located just above the threshold energy
to decay into three 4He nuclei. The existence of a state that has
the character of three α clusters just at this energy is really an
essential factor in the synthesis of various elements in stars.
Such three-α-state is described by various cluster models, and
among them, the Tohsaki-Horiuchi-Schock-Röpke (THSR)
wave function is a powerful tool to describe gaslike cluster
states with spatial extension [4]. Based on the shell-model
picture, which is standard in nuclear structure physics, we often
need large model space to describe cluster states. Since some of
the nucleons are spatially correlated around the nuclear surface,
the cluster states are difficult to be described with a framework
in which the wave function of each nucleon is expanded around
the origin. Therefore, the cluster structures are challenges of
the shell models, including modern ab initio ones [5–7].

Nuclear systems have characteristic features that noncentral
interactions play a crucial role; however, in most of the cluster
models, the spin-orbit and tensor interactions do not contribute
inside α clusters and also between α clusters because of the
antisymmetrization effect and spatial symmetry of α cluster.
In cluster models, each α cluster is often defined as a simple
(0s)4 configuration at some spatial point, and α cluster is a spin
singlet system, which is free from the noncentral interactions.
Concerning the spin-orbit interaction, this is known to be quite

important in explaining the observed magic numbers. The
jj -coupling shell model, which is the standard model for the
nuclear structure, is based on this picture.

Our goal is to pave the way to generally describe the nuclear
structure, including shell and cluster structures simultaneously.
Here, contrary to the standard approaches, we start with the
cluster model side and try to include shell correlations. This
is because our approach requires much less computational
efforts compared with the case starting with the shell model
side. To include the spin-orbit contribution starting with the
cluster model, we proposed the antisymmetrized quasicluster
model (AQCM) [8–16], which allows smooth transition of
α cluster model wave function to jj -coupling shell model
one. In AQCM, this transition can be controlled by only two
parameters: R representing the distance between α clusters
and �, which characterizes the transition of α cluster(s) to
jj -coupling shell model wave functions and quantifies the role
of the spin-orbit interaction. We call the transformed α clusters
in this way quasiclusters. As it is well known, the conventional
α cluster models cover the model space of closure of major
shells (N = 2, N = 8, N = 20, etc.), and in addition, the
subclosure configurations of the jj -coupling shell model, p3/2

(N = 6), d5/2 (N = 14), f7/2 (N = 28), and g9/2 (N = 50)
can be described by our AQCM. In this way, the cluster and
jj -coupling shell model wave functions can be described on
the same footing, and the spin-orbit interaction, which is the
rank one noncentral interaction, can be successfully taken into
account in the cluster model.

However, the rank two noncentral interaction, the tensor
interaction, is more complicated to be treated in the cluster
model. The tensor interaction has two features, the first-order
type and the second-order type. The first-order one is rather
weak and characterized by the attractive effect for a proton
(neutron) with the j -upper orbit of the jj -coupling shell model
and a neutron (proton) with j -lower orbit, or repulsive effect
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for the j -upper (j -lower) two protons or two neutrons [17].
This effect can be included just by switching on the tensor
interaction in the Hamiltonian, after transforming cluster
wave function to jj -coupling shell model one using AQCM
mentioned above. The second-order effect of the tensor is much
stronger. According to the ab initio calculations, the (negative)
contribution of the tensor interaction in 4He is quite large, more
than −65 MeV [18], and this is even more important than
the central interaction. Here, it is found that the two particle
two hole (2p2h) excitation to higher shells, especially to the
p shell, is quite important. According to the tensor optimized
shell model (TOSM) calculations [19–23], the p orbits of this
2p2h states must have very shrunk shape compared with the
normal shell model orbits, and this means that mixing of very
high momentum components is quite important.

This second-order effect of the tensor interaction is more
difficult to be treated in the cluster model, and we need an
additional framework; we have proposed a simplified model
to directly take into account the contribution of the tensor
interaction (SMT) [24]. The tensor contribution was estimated
in 4He, 8Be, and 12C, and the relation to the clustering was
quantitatively discussed. However, the contribution of the
tensor interaction was rather limited, about −10 MeV in the
α cluster, and improvement of the model was needed. In
our previous SMT, we started with an α cluster with a (0s)4

configuration and expressed deuteronlike excitation of a proton
and neutron to higher shells by shifting the values of the
Gaussian center parameters of these two particles. However,
shifting the positions of Gaussian center parameters may
not be enough for the purpose of mixing higher momentum
components of 2p2h configurations, and this could be the
reason. In the present article, we introduce improved version
of SMT, which is iSMT. Here, imaginary part of Gaussian
center parameters is shifted in stead of the real part. The
imaginary part of Gaussian center parameter corresponds to
the expectation value of momentum for the nucleon. The tensor
interaction has the character which is suited to be described in
the momentum space, and this method is considered to be more
efficient in directly mixing the higher momentum components
of 2p2h configurations.

The purpose of the present work is to incorporate the 2p2h
nature of the tensor contribution in the cluster model in a
simplified and more efficient way compared with the previous
SMT. We improve SMT and newly propose iSMT. First, we
apply it to 4He and next discuss that the clustering of four α’s
is closely related to the tensor effect in 16O. There have been
fundamental discussion for the appearance of cluster structure
in the 1960s; one-pion exchange potential (OPEP) vanishes
in the direct terms when each α cluster is described as a
(0s)4 configuration, and this is the reason why inter-cluster
interaction is weak. However, it is important to show that
clustering is still important, even if the model space is extended
and the tensor contributions in each α cluster is taken into
account. We discuss that the clustering is enhanced because of
the tensor interaction in 16O.

Recently, many other attempts of directly taking into ac-
count the tensor part of the interaction in microscopic cluster
models have begun. For instance, by combining unitary cor-
relation method (UCOM) and Fermionic molecular dynamics

(FMD) [25–27], or using antisymmetrized molecular dynamics
(AMD) [28], cluster structure has been extensively studied.
In UCOM, the tensor contribution can be taken into account
by unitary transforming the Hamiltonian, where two-body
correlator is introduced in the exponent of the unitary operator.
If we expand this power based on the cluster expansion method,
in principle, the Hamiltonian contains may-body operators up
to A (mass number) body, thus the truncation of the model
space is required. Our strategy is slightly different. Although
the framework is phenomenological, we do not perform the
unitary transformation of the Hamiltonian, and we introduce
an effective model wave function to directly take into account
the tensor effect.

For the central part of the interaction, we use the Tohsaki
interaction, which has finite-range three-body terms [29]. This
interaction is a phenomenological one and designed to repro-
duce the α-α scattering phase shift. Also it gives reasonable
size and binding energy of the α cluster, which is rather difficult
in the case of the zero-range three-body interaction, and the
binding energy is less sensitive to the choice of size parameter
of Gaussian-type single particle wave function. Furthermore,
the saturation property is reproduced rather satisfactorily.

II. THE MODEL

A. Hamiltonian

The Hamiltonian (Ĥ ) consists of kinetic energy (T̂ ) and
potential energy (V̂ ) terms,

Ĥ = T̂ + V̂ , (1)

and the kinetic energy term is described as one-body operator,

T̂ =
∑

i

t̂i − Tcm, (2)

and the center of mass kinetic energy (Tcm), which is constant,
is subtracted. The potential energy has central (V̂central), spin-
orbit (V̂spin-orbit), tensor (V̂tensor), and the Coulomb parts.

For the central part of the potential energy (V̂central), the
Tohsaki interaction is adopted [29], which consists of two-body
(V (2)) and three-body (V (3)) terms:

V̂central = 1

2

∑
i �=j

V
(2)
ij + 1

6

∑
i �=j,j �=k,i �=k

V
(3)
ijk , (3)

where V
(2)
ij and V

(3)
ijk consist of three terms with different range

parameters,

V
(2)
ij =

3∑
α=1

V (2)
α exp

[−(�ri − �rj )2/μ2
α

](
W (2)

α + M (2)
α P r

)
ij
, (4)

V
(3)
ijk =

3∑
α=1

V (3)
α exp

[ − (�ri − �rj )2/μ2
α − (�ri − �rk)2/μ2

α

]

× (
W (3)

α + M (3)
α P r

)
ij

(
W (3)

α + M (3)
α P r

)
ik
. (5)

Here, P r represents the exchange of spatial part of the wave
functions of interacting two nucleons. In this article, we use
F1′ parameter set [15], which was designed to avoid small
overbinding of 16O when the original F1 parameter set is
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adopted. The difference of F1 and F1′ is only for the three-body
Majorana exchange parameter for the shortest range.

For the spin-orbit part, G3RS [30], which is a realistic
interaction originally determined to reproduce the nucleon-
nucleon scattering phase shift, is adopted:

V̂spin-orbit = 1

2

∑
i �=j

V ls
ij , (6)

V ls
ij = Vls

[
e−d1(�ri−�rj )2 − e−d2(�ri−�rj )2]

P (3O) �L · �S. (7)

For the strength, Vls = 1800 MeV has been suggested to
reproduce the various properties of 12C [15], and we use this
value.

Up to this point, the interaction is the same as in Ref. [15],
and the main purpose of the present article is to switch on
the tensor interaction. For the tensor part, we use Furutani
interaction [31]. This interaction nicely reproduces the tail
region of one pion exchange potential, and the comparison
is shown as Fig. 1 in Ref. [24].

B. Wave function

The single particle wave function has a Gaussian shape [1],

φi =
(

2ν

π

) 3
4

exp[−ν(r i − Ri)
2]ηi, (8)

where ηi represents the spin-isospin part of the wave function,
and Ri is a parameter representing the center of a Gaussian
wave function for the ith particle. The size parameter ν is
chosen to be 0.25 fm−2 for 4He (0.20 fm−2 for 16O). In Brink-
Bloch wave function, four nucleons in one α cluster share
a common and real value for the Gaussian center parameter.
Hence, the contribution of the spin-orbit and tensor interactions
vanishes.

The wave function of the total system � is antisymmetrized
product of these single particle wave functions,

� = A{ψ1ψ2ψ3 · · · ·ψA}, (9)

where A is a mass number. The projections onto parity and an-
gular momentum eigenstates can be performed by introducing
the projection operators P J

MK and P π , and these are performed
numerically in the actual calculation.

Based on generator coordinate method (GCM), the super-
position of different Slater determinants can be done,


 =
∑

i

ciP
J
MKP π�i. (10)

Here, {�i} is a set of Slater determinants, and the coefficients
for the linear combination, {ci}, are obtained by solving the
Hill-Wheeler equation [1].

C. SMT and iSMT

Here we explain how we can incorporate the tensor ef-
fect starting with the α cluster model. Previously, we have
introduced SMT [24]. In SMT, we started with an α cluster
with a (0s)4 configuration and changed it for the purpose of
including the tensor contribution. For the (0s)4 configuration,
the Gaussian center parameter [ �R in Eq. (8)] for the spin-up

proton ( �Rp↑), spin-down proton ( �Rp↓), spin-up neutron ( �Rn↑),
and spin-down neutron ( �Rn↓) were all set to zero. In SMT,
we mimicked deuterons, where a proton and a neutron have
aligned spin orientation and spatially displaced in this spin
orientation. For 4He, we transformed it to two deuterons with
spin up and down; we shifted the Gaussian center of the spin-up
proton to the z direction, which forms a deuteron together
with the spin-up neutron at the origin, and we also shifted the
spin-down neutron to the −z direction, which forms a deuteron
with the spin-down proton at the origin. The Gaussian center
parameters were introduced in the following way:

�Rp↑ = d�ez, �Rn↑ = 0,

�Rp↓ = 0, �Rn↓ = −d�ez, (11)

where d is a distance parameter and �ez is a unit vector for
the z direction. We prepared Slater determinants with different
d values and superposed them based on GCM. The adopted
d values in Ref. [24] were 0, 0.7, 1.4, 2.1, · · · 7.0 fm (11
Slater determinants in total). When d is 0, the basis state
corresponds to the (0s)4 configuration. With increasing d
values, 2p2h excitation to higher shell mixes, but we can
show that components of one particle one hole (1p1h) also
mixes when we expand the power of the exponents of the
single-particle wave function in Eq. (8).

However, using this previous version of SMT, the con-
tribution of the tensor interaction was rather limited, about
−10 MeV in the α cluster. Shifting the positions of Gaussian
center parameters may not be enough for the purpose of mixing
higher momentum components of 2p2h configurations, and
this could be the reason why the effect of the tensor interaction
was rather limited. According to TOSM, the higher-nodal
orbits of the 2p2h states must be introduced to have very shrunk
shape compared with the normal shell model orbits. In Fig. 1,
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FIG. 1. Fourier transformation of thep orbit (one dimension). The
horizontal axis is the wave number k (fm−1). The dotted line is is for
the normal p orbit with the standard size parameter (b = 1.4 fm), and
the solid line is the one used in TOSM with a shrunk size parameter
(b = 0.6 × 1.4 fm).
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Fourier transformation of one dimensional p orbit is shown.
The p orbit on the x axis before the Fourier transformation is
proportional to x exp[−νx2], and ν = 1/2b2. The horizontal
axis is the wave number k (fm−1). The dotted line is for
the normal p orbit after the Fourier transformation with the
standard size parameter (b = 1.4 fm), and the solid line is the
one used in TOSM (solid line) with a shrunk size parameter
(b = 0.6 × 1.4 = 0.84 fm). After the Fourier transformation,
the shrinkage in the coordinate space changes to the extension
in the the momentum space; the solid line is distributed in much
larger |k| region compared with the dotted line. The root mean
square of k is 1.46 (fm−1) and 0.87 (fm−1) for the solid and
dotted line, respectively.

In the present article, we introduce improved version of
SMT, which is iSMT. Here, imaginary part of Gaussian center
parameters is shifted in stead of the real part. Using the
single particle wave function [Eq. (8)], we can show that
the expectation value of the momentum of the nucleon is
proportional to the imaginary part of the Gaussian center
parameter,

〈 �p〉 = 2νh̄Im( �R). (12)

In the present calculation, ν is chosen as 0.25 fm−2 for 4He,
thus the imaginary part of the Gaussian center parameter and
the wave number have the relation of

〈�k〉 = 0.5 × Im�[R(fm)] (fm−1). (13)

In iSMT, the Gaussian center parameters are introduced in
the following way:

�Rp↑ = di�ez, �Rn↑ = 0,

�Rp↓ = 0, �Rn↓ = −di�ez. (14)

According to Fig. 1, the shrunk wave function of TOSM
contains the components of the wave number k up to 3–4 fm−1.
Using the relation shown in Eq. (13), k = 4 fm−1 corresponds
to 8 fm for the imaginary part of the Gaussian center parameter.
Therefore, the d values are taken as 0, 1, 2, . . . 10 fm (11 Slater
determinants). The expectation value of the momentum for
d = 10 fm is 5 fm−1. In addition, we prepare the basis states,
where neutron spin-up is shifted instead of neutron spin-down:

�Rp↑ = di�ez, �Rn↑ = −di�ez,

�Rp↓ = 0, �Rn↓ = 0, (15)

and d values are 1, 2, . . . 10 fm (10 Slater determinants).
Eventually, we superpose these 21 Slater determinants in total
based on GCM. Note again that when d is 0, the basis state
corresponds to the (0s)4 configuration, and with increasing
d values, 2p2h excitation to higher shell mixes, but 1p1h
also mixes, which is shown by expanding the power of the
exponents of the single particle wave functions shown in
Eq. (8).

III. RESULTS

A. 4He

We start with 4He. The energy convergence for the ground
state of 4He described based on iSMT is shown in Fig. 2 as
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FIG. 2. Energy convergence for the ground state of 4He described
based on iSMT as a function of number of basis states.

a function of number of basis states. Here iSMT is a linear
combination of 21 GCM basis states; the basis state “1” is (0s)4

configuration, and in 2–11 (12–21), the imaginary part of the
Gaussian center parameters for the spin-up proton and spin-
down (spin-up) neutron are shifted as in Eq. (14) [Eq. (15)],
where d values are 1, 2, 3, . . . 10 fm. At “1” on the horizontal
axis, the tensor interaction does not contribute, and the energy
gets lower by more than 20 MeV with increasing the number
of the GCM basis states.

In Table I, we compare the energies of 4He calculated using
the (0s)4 configuration, conventional SMT, and newly intro-
duced iSMT. Here total, T , V 2, V 3, V ls , V t , and V Coul mean
the expectation value of the total energy, kinetic energy, two-
body interaction, three-body interaction, spin-orbit interaction,
tensor interaction, and Coulomb interaction, respectively. The
tensor contribution of iSMT is −41.56 MeV, which is more
than four times compared with the previous version. The
kinetic energy of iSMT increases from the value for the (0s)4

configuration by about 25 MeV in the positive direction, and

TABLE I. Energies of 4He calculated using the (0s)4 configura-
tion, conventional SMT, and newly introduced iSMT. In the column
SMT′, basis states where Gaussian center parameters of spin-up
neutron is shifted in stead of spin-down neutron are added to SMT.
Here total, T , V 2, V 3, V ls , V t , and V Coul mean the expectation values
of the total energy, kinetic energy, two-body interaction, three-body
interaction, spin-orbit interaction, tensor interaction, and Coulomb
interaction, respectively. All units are in MeV.

(0s)4 SMT iSMT SMT′

Total −27.50 −32.85 −50.64 −37.25
T 46.65 53.14 71.96 55.40
V 2 −79.38 −83.75 −88.65 −81.29
V 3 4.41 6.22 6.18 5.07
V ls 0.0 0.11 0.57 0.37
V t 0.0 −9.40 −41.56 −17.62
V Coul 0.81 0.84 0.87 0.83
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FIG. 3. Amplitude for the linear combination of the basis states
[ci in Eq. (10)] for 4He described based on iSMT. The amplitude for
the (0s)4 configuration (basis state 1) is normalized to 1.

this is because of the mixing of higher momentum compo-
nents. Here we can see that the contribution of the two-body
interaction increases by about 9 MeV in the negative direction.
Compared with the so called ab initio calculations, the tensor
contribution is still small, but we can include the effect to
the level of −40 MeV (our central part of the interaction is
phenomenological one without short range core, thus precise
comparison with ab initio calculations is rather difficult).

To directly compare SMT and iSMT with the same number
of basis states, we introduce SMT′, whose results are shown
in the column SMT′. In SMT′, real part of Gaussian center
parameters are shifted as in SMT [Eq. (11)], and in addition
to the 11 basis states of SMT, 10 basis states where (the real
parts of) Gaussian center parameters of the spin-up neutron
are shifted in stead of the spin-down neutron are added as in
iSMT. The tensor contribution is −17.62 MeV, almost twice
the value of SMT, but this is much smaller than in iSMT.

The amplitude for the linear combination of the basis states
[ci in Eq. (10)] for 4He described based on iSMT is shown
in Fig. 3. These amplitudes are obtained after superposing 21
basis states of iSMT. The basis state “1” on the horizontal
axis corresponds to the (0s)4 configuration, and in the basis
states 2–11 (12–21), the imaginary part of the Gaussian center
parameters for the spin-up proton and spin-down (spin-up)
neutron are shifted as in Eq. (14) [Eq. (15)]. In principle,
the amplitudes can be complex numbers; however, here we
obtained real numbers after diagonalizing the Hamiltonian.
These coefficients are considered to contain the information
for the nodes of each resultant single particle wave function.
For instance, if we superpose two Gaussians with different
central positions and opposite signs for the amplitudes, we
can create one-node orbit. However, in this study, we shift
the Gaussian center parameters of two particles in each basis
state, thus the direct correspondence between the amplitude
of each basis state and the resultant single particle orbit is
not clear. Nevertheless, in Fig. 3, “1” on the horizontal axis

TABLE II. Physical quantities of 4He calculated using conven-
tional SMT and newly introduced iSMT. Here n, one-body ls, and
(0s)4 mean the expectation values of principal quantum number, one-
body spin-orbit operator, and the component of (0s)4 configuration,
respectively. In the column SMT′, basis states where real parts of
Gaussian center parameters of spin-up neutron are shifted in stead of
spin-down neutron are added to SMT.

SMT iSMT SMT′

n 0.21 0.85 0.37
one-body ls −0.012 −0.053 −0.040
(0s)4 0.96 0.89 0.94

correspond to the amplitude of (0s)4 configuration, which is
normalized to 1. In the basis “2,” the dominant component is
still the (0s)4 configuration; however new components, where
(a) two particles are excited to the p shell and (b) one particle
is excited to the sd shell, are mixed (here we focus on the
positive parity states). The negative sign for the coefficient of
basis state “2” indicates the reduction of the (0s)4 component.
As for the mixing of two particle excitation to the p shell, in
principle even higher shells are already mixed, but the shift of
Gaussian center parameters is not yet large in “2” and at this
stage we have only two Slater determinants to be superposed,
thus the dominant excitation may be the lowest order one,
which is the excitation to the p shell. As for the excitation
of one particle to the sd shell, in the present case of 4He,
other three nucleons occupy s-orbit, and the component of
excitation of one nucleon to d-orbit vanishes after the angular
momentum projection to 0+. However, if the core nucleus
has more complicated configuration such as the tetrahedron
configuration of four α clusters in 16O, which will be discussed
later, the excitation to the d-orbit also contributes even after the
angular momentum projection to 0+, since the core nucleus can
have the components of finite angular momentum. The basis
state “3” with larger shift for the Gaussian center parameters
has the amplitude with positive sign. The amplitude and the
sign are considered to be determined so as to optimize the
mixing ratio of three components, (0s)4, 2p2h to p orbit,
and 1p1h to higher s orbit. With increasing number of basis
states, the shift of the Gaussian center parameters gets larger.
Thus, although the absolute value of the amplitude becomes
smaller, the particle-hole excitation to even higher shells is
mixed. From “12,” spin-up neutron is shifted in stead of spin-
down neutron. Although the absolute value of the amplitude
is smaller, the basic tendency is the same as the spin-down
neutron case.

In Table II, we show the squared overlaps between the
obtained ground state of 4He with the tensor contribution and
the (0s)4 configuration. The value is 0.89 in the case of new
iSMT. Using the old version, SMT, the value is 0.96. Thus,
the mixing of particle-hole configurations is much enhanced in
iSMT, and the matrix element of tensor interaction is four times
stronger in iSMT as already mentioned. However, according
to the TOSM+UCOM calculation [22], this value is 0.89, and
more particle-hole configurations should be mixed. This is the
reason why our matrix element of tensor is still −40 MeV level
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and not −60 MeV level in ab initio calculations. It is considered
that more complex configurations should be mixed.

In Table II, the expectation values of the principal quantum
number n of the harmonic oscillator are also shown. The value
increased from 0.21 in SMT to 0.85 in iSMT. Thus more
particle configurations are mixed in iSMT. It is worthwhile
to mention that 90% of the wave function is the simple (0s)4

configuration, and when the remaining 10% of the wave func-
tion is the 2p2h excitation to the p shell, the expectation value
of the principal quantum number should be 0.2. Therefore, the
expectation value of 0.85 means that the excitation of nucleons
to much higher shells are mixed. The values of SMT′ are also
listed, and they are just in between SMT and iSMT.

In Table II, we also list the expectation values of one-
body spin-orbit operator,

∑
i li · si . The α cluster model wave

function gives zero for this operator, and the components of
nucleons in the jj -coupling shell model gives finite values.
For instance, a nucleon in p3/2, p1/2, d5/2, d3/2, and f7/2

gives the eigen values of 0.5, −1.0, 1.0, −1.5, and 1.5,
respectively. Here, the negative expectation value is obtained
for 4He, and this indicates that the excitation of nucleons to
j -lower orbit, including p1/2, is important (however, note that
if the same amount of (p3/2)2 and (p1/2)2 components are
mixed, the expectation value of one-body spin-orbit opera-
tor becomes also negative because of the difference of the
eigen values).

B. 16O

The same procedure can be applied to 16O and we can
discuss the relation between the tensor contribution and the
clustering effect. Here, 16O is introduced as a tetrahedral con-
figuration of four-α clusters, and one of the clusters is deformed
using iSMT to include the tensor contribution. In the previous
case of 4He, the transformation of iSMT in Eqs. (14) and (15)
are applied to an α cluster at the origin of the coordinate space;
however here the origin of this transformation is moved to the
spatial position of one of α clusters. The 0+ state energy of
16O with a tetrahedral configuration of four-α clusters as a
function of distance between α-α is shown in Fig. 4. The solid
and dotted lines show the results with and without the tensor
interaction. We can confirm that with the tensor interaction,
the clustering is even enhanced. The decrease of the energy
after switching on the tensor interaction is only 5.7 MeV at
the α-α distance of 0.1 fm. Here the contribution of the tensor
interaction in the Hamiltonian is only −10.2 MeV. The tensor
contribution is suppressed at small relative distances (the wave
function corresponds to the closed shell configuration of the
p shell at the zero-distance limit). This is because, the 2p2h
excitation from the lowest s shell to the p shell is forbidden,
even though the excitation from the p shell to sd shell is
allowed. With increasing the α-α distance, the decrease of the
energy due to the tensor interaction is enhanced. The decrease
is about 20 MeV around the lowest energy point, and the matrix
element of the tensor interaction is −32.7 MeV at the α-α
distance of 2 fm. Therefore, it can be concluded that the tensor
interaction has a certain effect for the stability of clusterized
configurations. In Refs. [32,33], it has been suggested that
tensor contribution is suppressed in 16O, since 2p2h excitation
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FIG. 4. Energy curve for the 0+ state of 16O with a tetrahedral
configuration of four-α clusters as a function of the α-α distance. The
solid and dotted line show the results with and without the tensor
interaction.

from the lowest s shell to the p shell is forbidden at the
shell model limit. This is true; however, tensor contribution
turns out to be large in 16O because of the clustering effect of
four α’s.

Similarly to 4He, for 16O, the expectation value of the
one-body spin-orbit operator as a function of α-α distance
is shown in Fig. 5. The value is almost constant between
0.5 and 0.6. Even at the zero limit for the α-α distance, the
value is almost constant. At this limit, four alpha cluster wave
function corresponds to the doubly closed configuration of
the p shell, and all the single particle orbits up to p shell
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FIG. 5. Expectation value of the one-body spin-orbit operator∑
i li · si for 16O as a function of the α-α distance.

014304-6



IMPROVED VERSION OF A SIMPLIFIED METHOD FOR … PHYSICAL REVIEW C 97, 014304 (2018)

0 1 2 3

12

14

16

0

1

2

3

4

α−α

P
rin

ci
pa

l q
ua

nt
um

 n
um

be
r 

n

16O

distance (fm)

FIG. 6. Principal quantum number n of harmonic oscillator for
16O as a function of the α-α distance. The dotted line shows
the value for the tetrahedron configuration of four α clusters,
and the solid line shows the one after introducing iSMT. The
difference between these two shows the effect of iSMT (dashed line),
which corresponds to the right vertical axis.

are occupied. Thus, here, the iSMT transformation works to
describe the particle-hole excitation from p shell to unoccupied
higher shell, owing to the antisymmetrization effect. Contrary
to 4He, the expectation value of one-body spin-orbit operator
has a positive sign, since both the reduction of the p1/2

component and increase of d5/2 component contribute in the
positive direction. With increasing α-α distance, the particle-
hole excitation from the lowest s shell to p shell starts working;
however the contribution to the one-body spin-orbit value is
small as shown in the 4He case.

The expectation value of the principal quantum number is
shown in Fig. 6. Here, the dotted line shows the value for
the tetrahedron configuration of four α clusters, and the solid
line shows the one after introducing iSMT. The difference
between these two shows the particle-hole excitation related
to the tensor interaction (dashed line), which corresponds to
the right vertical axis. Again the particle-hole excitation is not
zero at the zero limit of the α-α distance, and the difference
of two lines increase around the α-α distance of 1–2 fm. This
is because particle-hole excitation from the lowest s shell to
higher shells, which is important in 4He, becomes possible.

Finally, the squared overlap between the result of iSMT
and tetrahedron configuration of four α clusters for each α-α
distance is shown in Fig. 7. The squared overlap decreases with
increasing α-α distance and becomes almost constant around
the distance of 2 fm. There the squared overlap is around 0.9,
which means the breaking of four-α cluster model is about
10%, similarly to the case of 4He.

In the present case, this 2p2h tensor effect is already
renormalized in the central part of the effective interaction as
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FIG. 7. Squared overlap of 16O between the result of iSMT and
tetrahedron configuration of four α clusters for each α-α distance.

in many conventional models, and the result gives very large
overbinding. In the next step, the modification of the central
part of the two-body and three-body interactions to reproduce
the binding energies of many nuclei including this kind of
tensor effect will be carried out.

IV. SUMMARY

It has been shown that the tensor contribution can be
incorporated in the cluster model in a simplified way. In con-
ventional α cluster models, the contribution of the noncentral
interactions cancels because of the antisymmetrization effect
and spatial symmetry of each α cluster, and the mixing of
the breaking components of α clusters to take into account the
spin-orbit and tensor effects is needed. Previously we proposed
a simplified method to include the spin-orbit effect, and also
for the tensor part, a simplified method to take into account the
tensor contribution in the cluster model (SMT) was introduced.
Here we improved SMT, which is called iSMT, where the
imaginary part of Gaussian center parameters of nucleons
in one α cluster was shifted in stead of the real part. The
imaginary part of Gaussian center parameter corresponds to
the expectation value of momentum for the nucleon. The tensor
interaction has the character which is suited to be described in
the momentum space, and this method is considered to be more
efficient in directly mixing the higher momentum components
of 2p2h configurations.

Using newly proposed iSMT, the contribution of the tensor
interaction in 4He is more than −40 MeV, four times larger than
the previous version. The method was applied to four-α-cluster
structure of 16O. In 16O, the tensor contribution is suppressed
at the limit of small relative distance corresponding to the
closed shell configuration of the p shell. With increasing the
α-α distance, the decrease of the energy due to the tensor
interaction is enhanced; about 20 MeV around the lowest
energy point. Therefore, it can be concluded that the tensor
interaction has a certain effect for the stability of clusterized
configurations.
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In the present case, this 2p2h tensor effect is already
renormalized in the central part of the effective interaction
as in many conventional models, and the result gives very
large overbinding. As a future work, we modify the central part
of the two-body and three-body interactions to reproduce the
binding energies of many nuclei including this kind of tensor
effect.
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