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Cluster and toroidal aspects of isoscalar dipole excitations in 12C
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We investigate cluster and toroidal aspects of isoscalar dipole excitations in 12C based on the shifted basis
antisymmetrized molecular dynamics combined with the generator coordinate method, which can describe 1p-1h
excitations and 3α dynamics. In the E = 10-15 MeV region, we find two low-energy dipole modes separating
from the giant dipole resonance. One is the developed 3α-cluster state and the other is the toroidal dipole mode.
The cluster state is characterized by the high-amplitude cluster motion beyond the 1p-1h model space, whereas
the toroidal dipole mode is predominantly described by 1p-1h excitations in the ground state. The low-energy
dipole states are remarkably excited by the toroidal dipole operator, which can measure the nuclear vorticity.
For compressive dipole transition strengths, a major part is distributed in the 30- to 50-MeV region for the giant
dipole resonance, and 5% of the total energy-weighted sum exists in the E < 20 MeV region.
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I. INTRODUCTION

In recent decades, research on isoscalar monopole (ISM)
and isoscalar dipole (ISD) excitations has been proceeding
remarkably through experiments with α inelastic scattering.
Recently, particular attention has been paid to low-energy (LE)
monopole and dipole strengths below the giant resonances.
Since the ISM and ISD operators corresponding to compressive
modes can directly excite intercluster motions, they are good
probes for cluster states as discussed by Yamada et al. [1]
and Chiba et al. [2]. Indeed, in nuclei such as 16O and 24Mg,
the LE-ISM and -ISD strengths are described by cluster states,
which appear separating from the collective modes of the giant
resonances.

In the progress in physics of unstable nuclei, LE-ISD
excitations have also been discussed in relation to isovector
(IV) dipole excitations (see, e.g., reviews in Refs. [3–6]
and references therein). Owing to experimental studies with
hadronic probes, information on isospin characters of LE
dipole (LED) excitations is becoming available for various
nuclei. Isoscalar (IS) giant dipole resonances (GDRs), which
correspond to the collective compressive dipole mode, have
been observed for stable nuclei in the energy region higher than
that of the IVGDRs for the proton-neutron opposite oscillation
mode. Below the ISGDRs, significant LE-ISD strengths are
known in stable nuclei [7–9]. For the ISD strengths of 16O
and 40Ca, 4%–5% of the energy-weighted sum (EWS) rule has
been observed in the E � 10 MeV region.

In order to understand the LED strengths, the toroidal dipole
(TD) mode (also called the torus or vortical mode) has been
proposed with hydrodynamical models [10,11]. The TD mode
carries vorticity and its character is much different from that of
the compressive dipole (CD) mode, which corresponds to the
ordinary ISD mode contributing to the ISGDR. The energy
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of the TD mode is expected to be lower than the ISGDR
energy because it conserves the nuclear density. Nowadays,
microscopic calculations with the quasiparticle phonon model
and random phase approximation have been obtained, and the
toroidal natures of the LED excitations in various nuclei have
been investigated [3,12–17].

For the ISD strengths of 12C measured by α inelastic
scattering, several percent of the EWS rule has been observed
in the E � 20 MeV region below the ISGDR energy [18].
Among the LE-ISD strengths, there is a peak for the 1−

1 state
at 10.8 MeV. In addition, another peak (or bump) structure
around 15 MeV exists, indicating the possible existence of an
LED mode other than the 1− state (10.8 MeV). In theoret-
ical studies of 12C, a variety of 3α-cluster states have been
suggested in excited states above the 3α threshold energy
(7.16 MeV). Microscopic 3α-cluster models [19–22] describe
a spatially developed 3α-cluster structure of the 1−

1 state.
Even though cluster models are useful for 3α-cluster states
of 12C, the models a priori assume three α clusters, and
therefore they are insufficient to study 1p-1h excitations and
unable to describe giant resonances. In order to take into
account coherent 1p-1h excitations for the giant resonances as
well as the high-amplitude cluster modes, one of the authors,
Y.K-E., has extended the antisymmetrized molecular dynamics
(AMD) [23–26] and constructed a new method, the shifted
basis AMD (sAMD) combined with the generator coordinate
method (GCM) with respect to the intercluster motion, which
we call the “sAMD + GCM” [27–29]. In the previous work
[29], we applied the sAMD + GCM to calculate the ISM and
ISD transition strengths of 12C and obtained significant LE-ISD
strengths in the E = 10-15 MeV region well separated from
the high-energy strengths for the ISGDR.

Our aim in this paper is to clarify the natures of the LE-ISD
excitations of 12C, in particular, cluster and toroidal aspects,
by reanalysis of the previous calculation. To probe the toroidal
nature, we adopt the TD operator in addition to the CD operator
for the ordinary ISD and show remarkable TD strengths for two
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LE-ISD modes: the 1−
1 mode, with the developed 3α cluster

structure; and the 1−
2 mode, dominated by 1p-1h configurations

with significant cluster-breaking. We also discuss the TD mode
from a cluster picture and its connection with 1p-1h excitations
in the shell-model limit.

The paper is organized as follows. The framework of the
sAMD + GCM for 12C is explained in Sec. II. Definitions
of ISD operators are given in Sec. III. Section IV reports
the calculated results and discusses the properties of the
LED modes. The intrinsic structure of the TD mode and its
shell-model limit are presented in Sec. VI. Finally, the paper
concludes with a summary and outlook in Sec. VII.

II. sAMD + GCM

The sAMD + GCM has been applied to ISM, ISD, and E1
excitations of light nuclei such as 10Be, 12C, and 16O [27–29].
A similar method has recently been applied to E1 and ISD
excitations of 26Ne by Kimura [30]. In the previous work, we
applied the sAMD + GCM to 12C by taking into account 3α-
cluster configurations. For the detailed procedure of the sAMD
+ GCM calculation, the reader is referred to Ref. [29].

In the AMD method, a basis wave function is given by a
Slater determinant,

�AMD(Z) = 1√
A!

A{ϕ1,ϕ2, . . . ,ϕA}, (1)

whereA is the antisymmetrizer, and ϕi is the ith single-particle
wave function written by a product of spatial, spin, and isospin
wave functions,

ϕi = φX i
χiτi, (2)

φX i
(rj ) =

(
2ν

π

)3/4

exp[−ν(rj − X i)
2], (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓, (4)

where φX i
and χi are the spatial and spin functions, respec-

tively, and τi is the isospin function fixed to be a proton
or neutron. The width parameter ν = 0.19 fm−2 is used to
minimize the ground-state energy of 12C. The AMD wave
function is specified by a set of variational parameters, Z ≡
{X1, . . . ,XA,ξ1, . . . ,ξA}, which indicate Gaussian centroids
and spin orientations of all single-particle wave functions.

In order to obtain the ground-state wave function, the vari-
ation is done after angular-momentum and parity projections
(VAP) for the 0+-projected AMD wave function as

δ

δX i

〈�|H |�〉
〈�|�〉 = 0, (5)

δ

δξi

〈�|H |�〉
〈�|�〉 = 0, (6)

� = P Jπ
MK�AMD(Z), (7)

where P Jπ
MK is the product of the angular-momentum and

parity-projection operators, P J
MKP π . We denote the op-

timized parameter set Z for the ground state Z0
VAP =

{X0
1, . . . ,X0

A,ξ1, . . . ,ξ
0
A}.

r
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1

FIG. 1. Schematic of 3α configurations in the GCM for 12C.

To take into account 1p-1h excitations on top of the obtained
ground state, we consider small variations of single-particle
wave functions of �AMD(Z0

VAP) by shifting the Gaussian cen-
troid of the ith single-particle wave function, X0

i → X0
i + εeσ ,

where ε is a small enough constant and eσ (σ = 1, . . . ,8) are
unit vectors for eight directions explained in Ref. [29]. As for
the intrinsic spin of the shifted single-particle wave function,
the spin nonflip and flip states are adopted. Consequently,
totally 16A = 192 wave functions of the spin nonflip and
flip shifted AMD wave functions are superposed. We call this
method the shifted basis AMD.

In addition to 1p-1h excitations expressed by the sAMD,
we combine the GCM with the sAMD in order to take into
account high-amplitude dynamics of three α clusters by super-
posing various 3α configurations written by the Brink-Bloch
cluster-model wave functions [31]. Practically, a 3α-cluster
configuration can be expressed with the AMD wave function
by setting the parameters at X i = Sk for four nucleons (p ↑,
p ↓, n ↑, and n ↓) in the kthα cluster (αk). Sk indicates the
αk-cluster position and is given as

S1 = −1

3
D + r

2
, (8)

S2 = −1

3
D − r

2
, (9)

S3 = 2

3
D. (10)

Here the α1-α2 and α3-α1α2 relative vectors, r and D, are
chosen to be r = (r cos θ,r sin θ,0) and D = (0,0,D), respec-
tively. θ is the angle between two vectors as shown in the
schematic in Fig. 1. We use r = {0.8,1.8, . . . ,4.8 fm}, D =
{1,2, . . . ,7 fm}, and θ = (π/8)i (i = 0, . . . ,4). Finally, in the
sAMD + GCM, we superpose all the basis wave functions of
the sAMD and 3α wave functions in addition to the original
VAP wave function [�AMD(Z0

VAP)] as done in the previous
work [29]. The final wave functions �(Jπ

k ) for the 0+
k and

1−
k states are expressed by superposition of the Jπ -projected

wave functions with coefficients determined by diagonalizing
the norm and Hamiltonian matrices.

In the sAMD + GCM method, the ground state is obtained
by the VAP, and therefore, it already contains the ground-
state correlation beyond the mean-field approximation. In
the sAMD, 1p-1h excitations in the ground state are taken
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into account by the linear combination of shifted Gaussian
wave packets, and high-amplitude cluster motion is treated
by superposition of 3α-cluster wave functions in the GCM.
In the present method, the center-of-mass motion is exactly
removed.

III. ISD OPERATORS AND TRANSITION STRENGTHS

In order to probe the vorticity of the nuclear current, two
kinds of operators have been used. One is the “toroidal mode”
originally determined by the second-order correction in the
long-wave approximation of the transition Eλ operator in an
electromagnetic field [10,32], and the other is the “vortical
mode” in Ravenhall-Wambach’s prescription [11]. Kvasil et al.
described the general treatment of the toroidal, compressive,
and vortical modes and their relation to each other [15]. They
showed that the toroidal mode is a good probe for LE-ISD ex-
citations rather than the vortical mode, though both the TD and
the vortical dipole (VD) operators can measure the vorticity.
In this paper, we mainly discuss the TD and CD transitions.
We also show the VD transitions just for comparison.

We use the TD, CD, and VD operators defined in
Ref. [15] as

MTD(μ) = −i

2
√

3c

∫
d r j (r)

[√
2

5
r2Y 12μ(r̂) + r2Y 10μ(r̂)

]
,

(11)

MCD(μ) = −i

2
√

3c

∫
d r j (r)

[
2
√

2

5
r2Y 12μ(r̂) − r2Y 10μ(r̂)

]
,

(12)

MVD(μ) = −i

2
√

3c

∫
d r j (r)

[
3
√

2

5
r2Y 12μ(r̂)

]
, (13)

where j (r) is the current density operator and YλLμ is
the vector spherical harmonics. Using the dipole operators
we analyze the toroidal nature of the dipole excitations
in the same matter as done in Ref. [33], which discusses dipole
excitations of 10Be. The detailed definition of j (r) as well as
that of the density operator ρ(r) is explained in the Appendix
in Ref. [33]. For the current density, we take into account
only the convection part of the nuclear current but omit its
magnetization (spin) part. The matrix elements for the dipole
transitions, |0+

1 〉 → |1−
k 〉, are given with the transition current

density δ j (r) ≡ 〈1−
k | j (r)|0+

1 〉 as

〈
1−

k

∣∣MTD(μ)
∣∣0+

1

〉 = −i

2
√

3c

∫
d rδ j (r)

×
[√

2

5
r2Y 12μ(r̂) + r2Y 10μ(r̂)

]
, (14)

〈
1−

k

∣∣MCD(μ)
∣∣0+

1

〉 = −i

2
√

3c

∫
d rδ j (r)

×
[

2
√

2

5
r2Y 12μ(r̂) − r2Y 10μ(r̂)

]
, (15)

〈
1−

k

∣∣MVD(μ)
∣∣0+

1

〉 = −i

2
√

3c

∫
d rδ j (r)

[
3
√

2

5
r2Y 12μ(r̂)

]
.

(16)

Note that the CD matrix element can be transformed to
an ordinary ISD matrix element (labeled IS1) by using the
continuity equation ∇ · j = − i

h̄
[H,ρ] as

〈
1−

k

∣∣MCD(μ)
∣∣0+

1

〉 = − E

10h̄c

〈
1−

k

∣∣MIS1(μ)
∣∣0+

1

〉
, (17)

MIS1(μ) ≡
∫

d rρ(r)r3Y1μ(r̂), (18)

where E is the excitation energy of the 1−
k state.

For the 0+
1 and 1−

k wave functions obtained by the sAMD
+ GCM, we calculate the transition strengths of the dipole
operators,

B̃
(
TD,CD,VD; 0+

1 →1−
k

)≡(
10h̄c

E

)2∣∣〈1−
k

∣∣∣∣MTD,CD,VD

∣∣∣∣0+
1

〉∣∣2
.

(19)

Here we define the transition strengths scaled with the factor
( 10h̄c

E
)
2

so that B̃(CD) corresponds to the IS1 strength B(IS1) =
|〈1−

k ||MIS1||0+
1 〉|2.

IV. RESULTS

A. Effective interactions

The adopted effective interactions are the same as those used
in the previous work [29]. The central force is the MV1 force
[34], consisting of two-range Gaussian two-body terms and a
zero-range three-body term. As for the parametrization of the
MV1 force, case 1 with the Bartlett, Heisenberg, and Majorana
parameters, b = h = 0 and m = 0.62, is used. In addition to
the central force, the two-range Gaussian spin-orbit term of the
G3RS force [35,36] with strengths uI = −uII = 3000 MeV
is supplemented. This set of interaction parameters describes
well the properties of the ground and excited states of 10Be
and 12C in the AMD + VAP calculations [37–39]. For matter
properties, the MV1 force with the present parameters gives the
saturation density ρs = 0.192 fm−3, saturation energy Es =
−17.9 MeV, and incompressibility K = 245 MeV.

V. ISD EXCITATIONS OF 12C OBTAINED
WITH THE sAMD + GCM

We calculate the TD, CD, and VD transitions from the
ground to the 1− states obtained with the sAMD + GCM.
The calculated transition strengths are shown in Fig. 2(a). Re-
markable TD and VD strengths are obtained for LED states in
the E = 10-15 MeV region, whereas the CD operator strengths
are mainly distributed in the high-energy part corresponding to
the ISGDR. The LE strengths are concentrated in two dipole
states; one is the 1−

1 state at 12.6 MeV, which we assign to
the experimental 1−(10.844-MeV) state, and the other is the
1−

2 state at 14.8 MeV. The 1−
2 state has a significant 1p-1h

component and is approximately described within the sAMD
model space. On the other hand, the 1−

1 state has a spatially
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FIG. 2. Strength functions of the TD, CD, and VD transitions
calculated with (a) the full sAMD + GCM, (b) the sAMD with
|Sk| � 4 fm 3α configurations, (c) the sAMD with |Sk| � 3 fm 3α

configurations, and (d) the sAMD without 3α configurations. The
strengths of discrete states are smeared by a Gaussian with the range
γ = 1/

√
π MeV.

developed 3α-cluster structure, which is a high-amplitude
cluster mode beyond the sAMD model space. This means that,
in the 1− spectra of 12C, the high-amplitude cluster mode exists
at an energy lower than the 1p-1h-dominant dipole excitation.
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FIG. 3. Energy-weighted TD, VD, and CD strengths summed
up to E = 20 MeV obtained with the sAMD, sAMD + GCM
(|Rk| � 3 fm), sAMD + GCM (|Rk| � 4 fm), and full sAMD +
GCM calculations. The ratio to the total energy weighted sum value
of the full sAMD + GCM (TEWSfull) is shown. The TEWS value of
each calculation relative to the TEWSfull is also shown.

The 3α-cluster structure of the 1−
1 state is consistent with the

3α-GCM calculation in Refs. [21] and [22].
In order to see the significance of the high-amplitude cluster

motion in the LE-ISD excitations, we perform calculations
within truncated model spaces by reducing 3α configurations.
Figures 2(b), 2(c) and 2(d) show the ISD strengths obtained
with the truncated calculations using the sAMD with |Sk| �
4 fm 3α configurations, the sAMD with |Sk| � 3 fm, and the
sAMD without 3α configurations, respectively. Note that |Sk|
is the distance of the αk-cluster center from the origin. In
the calculations, the initial state is fixed to be the 0+

1 state
obtained by the full sAMD + GCM. As shown in Fig. 2(d),
the sAMD without 3α configurations shows only one 1− state
in E < 20 MeV. The 1− state has a dominant 1p-1h component
with a remarkable TD strength and approximately corresponds
to the 1−

2 state of the full sAMD + GCM. In the sAMD result,
there is no low-lying 3α-cluster state corresponding to the 1−

1
state of the full sAMD + GCM. As 3α-cluster configurations
are added to the sAMD model space, the 3α-cluster state
appears around 20 MeV in the sAMD + GCM (|Sk| � 3 fm)
[Fig. 2(c)], comes down to 15 MeV in the sAMD + GCM
(|Sk| � 4 fm) [Fig. 2(b)], and, finally, becomes lower than the
1p-1h-dominant 1−

2 state in the full sAMD + GCM. In other
words, as the high-amplitude intercluster motion develops, the
cluster mode comes down to the lowest 1− state crossing the
1p-1h state.

Figure 3 shows the EWS of the TD, VD, and CD strengths up
to E = 20 MeV obtained in the truncated and full calculations.
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FIG. 4. EWSR ratio of the energy-weighted IS1 strengths. (a) Cal-
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√
π MeV. (b)

Experimental data measured by α inelastic scattering from Ref. [18].
Figures are from Ref. [29].

The ratio to the total energy-weighted sum of the full sAMD
+ GCM (TEWSfull) is shown. The EWS value of the LE TD
(VD) strengths is as much as 40%–50% of the TEWS almost
independently of the truncation of the 3α configurations. This
means that the sum of the LE TD strengths is approximately
described by the 1p-1h configurations within the sAMD model
space. As shown in Figs. 2(a) and 2(d), the strength of the
LE TD transition is originally concentrated at the single peak
in the sAMD, and it is split into two LED states in the full
sAMD + GCM as a result of coupling with the high-amplitude
3α-cluster mode. By contrast, the LE CD transition strengths
have only tiny percentages of the TEWS. The ratio is 2.5% in
the sAMD, and it is raised to 4%–5% by 3α configurations. This
means that about a half of the LE CD strengths is contributed
by 1p-1h configurations and the other half comes from 3α
configurations.

Figure 4 shows a comparison of the calculated IS1 strengths
with the experimental data measured by α inelastic scattering.
The calculated LE IS1 strengths are comparable to the ex-
perimental data. We assign the lowest peak for the calculated
1−

1 state to the experimental IS1 strength for the 1−
1 state

(10.84 MeV). The bump structure around E = 15 MeV in the
experimental strength function is a candidate for the calculated
1−

2 state. In the present calculation, high-energy strengths for
the ISGDR are distributed in the E = 30-50 MeV region.
The calculated ISGDR energy seems more or less higher
than the experimental ISGDR energy, though the strengths in
the E > 45 MeV region have not been measured. A reason
for the overestimation of the observed ISGDR energy might
be that the present effective interactions give a larger value
(K = 245 MeV) of the nuclear matter incompressibility than
the standard value expected from the ISM energies in heavy

nuclei. Another possible reason is the restriction of radial
behavior of the present model wave function, in which only
configurations up to 3h̄ω excited harmonic oscillator bases
are taken into account because the sAMD wave function is
expressed by shifted Gaussians with a fixed width.

VI. CLUSTER AND TOROIDAL NATURES OF
LOW-ENERGY DIPOLE EXCITATIONS

In the present calculation, two LED modes are obtained at
E = 10-15 MeV. One is the high-amplitude 3α-cluster mode,
and the other is the 1p-1h-dominant dipole excitation. We here
discuss the cluster and toroidal natures of the LED states.

A. Occupation probabilities in the shell-model expansion

Figure 5 shows the occupation probability of harmonic
oscillator quanta N in the shell-model-basis expansion with
size parameterb = 1/

√
2ν. The dominant component of the 0+

1
state is the 0h̄ω configuration, with 20% mixing of higher shell
configurations. By contrast, the occupation probability of the
0+

2 state is distributed broadly in the high shell region because
of the spatially developed 3α-cluster structure. Similarly to the
0+

2 state, the 1−
1 state shows a very broad distribution of the oc-

cupation probability due to the developed cluster structure. The
1−

2 state contains 40% 1h̄ω component, indicating dominant
1p-1h excitations with significant higher shell mixing.

B. Intrinsic structures

In the sAMD + GCM calculation, each state is expressed by
superposition of many different configurations of the shifted
AMD and 3α wave functions. For an intuitive understanding
of the LED excitations, it is useful to consider a single
Slater determinant which approximately describes the state

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  5  10  15  20

O
cc

up
at

io
n

ΔNshell

12C(0+
1)

12C(0+
2)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  5  10  15  20

O
cc

up
at

io
n

ΔNshell

12C(1-
1)

12C(1-
2)

FIG. 5. Occupation probability of harmonic oscillator quanta N

in the shell-model basis expansion of the 0+
1,2 and 1−

1,2 states obtained
with the sAMD + GCM calculation. The horizontal axis indicates the
difference �N from the minimum quanta Nmin = 8.
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of interest. We here perform a simple model analysis by
introducing model wave functions that have large overlap with
the obtained 0+

1 , 1−
1 , and 1−

2 states in order to discuss the cluster
and toroidal natures of the LED modes in the intrinsic frame.

As for the model wave functions in the present analysis,
we adopt an extended 3α (E-3α) model based on the quasi-
α-cluster model proposed by Itagaki et al. [40], in which
the α-breaking is taken into account by the cluster-breaking
parameter �. We start from the Brink-Bloch 3α-cluster wave
functions and incorporate the breaking of the two α clusters,
α1 and α2.

Let us first consider the θ = π/2 case for an isosceles
triangle 3α configuration. An E-3α wave function can be
expressed by the AMD wave function with parameters

X i = S1 + iW i (i = 1, . . . ,4), (20)

X i = S2 + iW i (i = 5, . . . ,8), (21)

X i = S3 (i = 9, . . . ,12), (22)

W i = �

(
eσ i × r

2

)
(i = 1, . . . ,4), (23)

W i = �

(
eσ i ×

(
− r

2

))
(i = 5, . . . ,8). (24)

The spin and isospin functions are fixed to be τiχi = p ↑,
p ↓, n ↑, and n ↓ for i = {1,5,9}, i = {2,6,10}, i = {3,7,11},
and i = {4,8,12}, respectively, and eσ i indicates the unit
vector for the spin orientation. � describes the α-breaking
because of the spin-orbit interaction through the imaginary
part W i of the Gaussian centroid X i , which depends on the
intrinsic spin orientation. In the � > 0 case, W i indicates
finite momenta of nucleons boosted by the spin-orbit potential.
Next, a nonisosceles triangle 3α configuration is constructed
by rotating the α1 and α2 clusters with angle π/2 − θ around
−D/3. Consequently, the E-3α wave function used here is
specified by the parameters r , D, θ , and �. We denote the
E-3α wave function �E-3α(r,D,θ,�), which is expressed by a
single Slater determinant. In the � = 0 case, the E-3α wave
function becomes equivalent to the ideal Brink-Bloch 3α-
cluster wave function without the α-breaking. This means that
the E-3α wave function adopted here contains the Brink-Bloch
3α-cluster wave function and also the 8Be + α–cluster wave
function with a distorted 8Be cluster.

We search for the E-3α wave functions that have a large
overlap with the obtained 0+

1 , 1−
1 , and 1−

2 states and regard them
as dominant configurations of the corresponding states. The
intrinsic density distributions of the dominant configurations
for the 0+

1 , 1−
1 , and 1−

2 states are shown in Fig. 6. The
0+

1 state has 85% overlap with the 0+-projected �E-3α with
r = 1 fm, D = 2 fm, θ = π/2, and � = 0.5, corresponding
to a compact isosceles triangle structure with a significant
α-breaking component. The E-3α wave function has almost
the same structure as the AMD wave function obtained by
the VAP for the 0+

1 state. The 1−
1 state has 60% overlap

with the JπK = 1−1–projected �E-3α with r = 5.8 fm, D =
5 fm, θ = π/4, and � = 0 projected onto the JπK = 1−1
state, indicating the spatially developed 3α structure given
by the Brink-Bloch 3α-cluster wave function. The 1−

2 state
is the toroidal mode originally obtained as the 1−

1 state in
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(c) E−3   :1 α −
1

+

+

(b) VAP :0

(d) E−3   :1 α −
2

1

1(a) E−3   :0

FIG. 6. Intrinsic density distributions of the dominant configu-
rations written by the E-3α wave functions for the (a) 0+

1 , (c) 1−
1 ,

and (d) 1−
2 states. The intrinsic density of the AMD wave function

�AMD(Z0
VAP) obtained with the VAP for the ground state is also

shown. The density projected onto the X-Z, Z-Y , and X-Y planes
by integrating along the axes perpendicular to the planes is shown.
Contour lines are drawn with a 0.1-fm−2 interval.

the sAMD calculation. It has a large overlap with �E-3α with
r = 1 fm, D = 2 fm, θ = 3π/8, and � = 0.5 projected onto
the JπK = 1−1 state and corresponds to a compact triangle
configuration with cluster-breaking. It has 75% overlap with
the 1p-1h-dominant TD mode of the sAMD. For the 1−

2 state
in the sAMD + GCM, the overlap is reduced to 50% because
of the coupling with the high-amplitude 3α-cluster mode. As
shown in Fig. 6, the dominant configuration of the TD mode
for the 1−

2 state shows an intrinsic structure similar to that of
the 0+

1 state except for the slight rotation (tilting) of the 2α
part.

Figure 7 shows the transition current density for the tran-
sition between the dominant configurations of the 0+

1 and
1−

2 states. The transition current density between the parity-
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FIG. 7. (a) Transition current density for 0+
1 → 1−

2 in the intrinsic
frame (at Y = 0 in the X-Z plane). The vector plot of the transition
current density for the parity-projected states of the dominant E-3α

configurations is shown. Solid red and dashed magenta lines indicate
contours for the matter densities ρ(X,0,Z) = 0.08 fm−3 of the parity-
projected initial and final states, respectively. (b) Intrinsic density
distribution of the dominant configuration for the initial state (0+

1 )
and (c) that for the final state (1−

2 ). (d) Schematic of the 0+
1 → 1−

2

excitation in the cluster picture. α1 and α2 clusters contain cluster-
breaking.

projected states of the dominant E-3α configurations,

δ j (r) = 〈
P π=−�E-3α

(
1−

2

) | j (r)|P π=+�E-3α

(
0+

1

)〉
, (25)

is shown in Fig. 7(a). Here, �E-3α(0+
1 ) and �E-3α(1−

2 ) are
the dominant E-3α configurations of the 0+

1 and 1−
2 states,

respectively. The intrinsic densities without the parity projec-
tion of the initial and final configurations are shown again
in Figs. 7(b) and 7(c). The transition current density clearly
shows a toroidal nuclear current with the K = 1 feature in
the prolately deformed intrinsic system and describes the
remarkable TD strengths for the 0+

1 → 1−
2 transition. In a

cluster picture, the toroidal current is understood by the rotation

of the 2α subsystem as shown in the schematic in Fig. 7(d).
This means that the 2α-cluster rotation induces TD-dominant
dipole excitation. Note that the 2α subsystem in the initial
and final states consists of not ideal α clusters but somewhat
dissociated ones expressed by the α-breaking parameter � =
0.5 as mentioned previously.

A similar mechanism was found in 10Be as discussed in
Ref. [33]. In the case of 10Be, the system can be approxi-
mately understood through the 6He + α clustering, and the
TD-dominant dipole excitation in the 1−

1 state is described by
the rotation of the 6He cluster. An interesting difference from
10Be is that a high-amplitude cluster mode exists below the TD
mode in the dipole excitations of 12C.

C. TD mode in the shell-model limit

As discussed previously, the TD mode can be understood
as the rotational excitation of the 2α subsystem. Instead of
the cluster picture, it is worthwhile to discuss features of the
TD mode in terms of 1p-1h excitations. Indeed, the 1−

2 state
contains 40% 1h̄ω component as the dominant configuration,
though it has significant mixing of higher shell components
because of the coupling with the 3α-cluster state. We here
consider the 1p-1h representation of the TD mode by taking a
shell-model limit of the E-3α wave functions for the dominant
configurations.

As explained previously, the ground state is approximately
described by �E-3α , with r = 1 fm, D = 2 fm, θ = π/2,
and � = 0.5 projected onto the Jπ = 0+ state, whereas the
dominant component of the TD mode is described by �E-3α ,
with r = 1 fm, D = 2 fm, θ = 3π/8, and � = 0.5 projected
onto the JπK = 1−1 state. By taking the limit of

√
νr 
 1

and
√

νD 
 1, we can map the dominant configurations to 0h̄
and 1h̄ω configurations in the shell-model limit for the ground
state and the TD mode, respectively. For simplicity, we discuss
the shell-model limit of the Kπ -projected configuration in the
intrinsic frame.

The shell-model limit of the E-3α wave function is rep-
resented by four-nucleon (4N: two protons and two neu-
trons) configurations around the SU(3)-limit 2α core with the
|000〉4|001〉4 configuration. Here |nxnynz〉 means the single-
particle state in the harmonic oscillator potential with the size
parameter b = 1/

√
2ν. For single-particle states around the

|000〉4|001〉4 core, we use the following notation:

|p+ 3
2
〉 = 1√

2
(|100〉 + i|010〉)|↑〉, (26)

|p+ 1
2
〉 = 1√

2
(|100〉 + i|010〉)|↓〉, (27)

|p− 1
2
〉 = 1√

2
(|100〉 − i|010〉)|↑〉, (28)

|p− 3
2
〉 = 1√

2
(|100〉 − i|010〉)|↓〉, (29)

|sd+ 1
2
〉 = |002〉|↑〉, (30)

|sd− 1
2
〉 = |002〉|↓〉. (31)
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For the Kπ = 0+–and Kπ = 1−–projected states of the
ground state (g.s.) and the TD mode, the 4N configurations
in the shell-model limit are written as

P +
K=0�4N (g.s.) = λ4

+|p+ 3
2
p− 3

2
p+ 3

2
p− 3

2
〉|ppnn〉

+ λ2
+λ2

−|p+ 3
2
p− 3

2
p+ 1

2
p− 1

2
〉

×(|ppnn〉 + |nnpp〉 + |pnnp〉 + |nppn〉)
+ λ4

−|p+ 1
2
p− 1

2
p+ 1

2
p− 1

2
〉|ppnn〉, (32)

P −
K=1�4N (TD)

= λ4
+(|p+ 3

2
sd− 1

2
p+ 3

2
p− 3

2
〉+|p+ 3

2
p− 3

2
p+ 3

2
sd− 1

2
〉)|ppnn〉

+ λ2
+λ2

−(|p+ 3
2
sd− 1

2
p+ 1

2
p− 1

2
〉 + |p+ 3

2
p− 3

2
p+ 1

2
sd+ 1

2
〉)

×(|ppnn〉 + |nnpp〉 + |pnnp〉 + |nppn〉)
+ λ4

−(|p+ 1
2
sd+ 1

2
p+ 1

2
p− 1

2
〉+|p+ 1

2
p− 1

2
p+ 1

2
sd+ 1

2
〉)|ppnn〉,

(33)

where λ+ : λ− = (1 + �) : (1 − �). For simplicity, we here
assume r/

√
ν 
 D/

√
ν 
 1 and a θ value small enough to

omit spin-flip excitations. It is shown that the shell-model
limit for the ground state is not a simple paring state but
a linear combination of correlating nn, pp, and np pairs in
p+3/2p−3/2 and p+1/2p−1/2. Spin and isospin configurations
are strongly correlated with each other because of the α-like
correlation. The coefficients of the p+3/2p−3/2p+3/2p−3/2,
p+3/2p−3/2p+3/2p−3/2, and p+1/2p−1/2p+1/2p−1/2 terms are
determined by the α-breaking parameter �. The � = 1
case corresponds to the uncorrelated 4N state with the pure
p+3/2p−3/2p+3/2p−3/2 configuration around the 2α core. The
TD mode is expressed by 1p-1h excitations of p−1

−3/2sd−1/2

and p−1
−1/2sd+1/2 on top of the ground-state configuration.

They are coherent 1p-1h excitations, changing the oscillator
quanta n⊥ ≡ nx + ny and nz as �n⊥ = −1 and �nz = +2,
and contribute to the remarkably strong TD transition.

VII. SUMMARY AND OUTLOOK

We have investigated the cluster and toroidal natures of the
ISD excitations in 12C based on the sAMD + GCM calculation.
In the E = 10-15 MeV region, we have found two LED modes.
One is the spatially developed 3α-cluster state and the other
is the TD mode. The TD mode is dominantly described by
coherent 1p-1h excitations in the ground state. The cluster state
comes down to an energy lower than the TD mode because of
the high-amplitude cluster motion.

For CD (ordinary ISD) excitations, the transition strengths
are mainly distributed in the high-energy region for the ISGDR,
whereas 5% of the TEWS exists at E < 20 MeV, consistent
with the experimental data. In the experimental data on the CD
strengths, the bump structure at E ∼ 15 MeV is a candidate for
the 1−

2 state of the 1p-1h-dominant TD mode. The LED states
are strongly excited by the TD operator. In the present calcula-
tion, two modes, the cluster and TD modes, are coupled to each
other. As a result of the coupling, the TD strengths for the 1−

1
and 1−

2 states are the same order. Unfortunately, there is no es-
tablished method to experimentally observe the TD strengths.

We have discussed the feature of the TD mode from the
cluster picture based on the model analysis by analyzing
dominant configurations in the single-Slater expression. In
the analysis, the transition current density clearly shows the
toroidal nature of the TD mode induced by the rotation of
the 2α-like deformed subsystem. We have also discussed the
connection of the rotational excitation of the cluster with 1p-1h
excitations by taking the shell-model limit of the dominant
configurations. The TD mode can be understood as the co-
herent 1p-1h excitations in the ground state, in which spin
and isospin configurations are highly correlated because of the
α-type four-body correlation.
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