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Parity-violating photon circular polarization in p + d → 3He + γ with pion-less
effective field theory
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The nonleptonic weak interaction in the few-nucleon system at very low energies is studied with the calculation
of the photon circular polarization in the pd → 3Heγ reaction (P pd

γ ). For very low energies, one may treat the pion
as heavy and integrate it out from the QCD symmetry-based model-independent effective field theory, leaving
only short-range strong interactions which are introduced in term of pionless effective field theory formulation. We
investigate a complete set of the parity-violating electromagnetic transitions in the pd → 3Heγ process. In this
paper the interferences of strong, electromagnetic, Coulomb, and parity-violating weak interactions are presented
with the calculation of a full set of appropriate diagrams at the leading order. We have obtained energy-dependent
P pd

γ results as a function of the laboratory energy values 0.5 � ELab � 3 MeV in terms of the low-energy coupling
constants. The contributions of the initial S- and P -wave proton-deuteron systems have been considered to make
the final 3He ground state in this energy region.
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I. INTRODUCTION

The analysis of purely leptonic and semileptonic weak
interaction in isolation are well understood. However in the
nucleus, the effects of nonperturbative strong interactions
between quarks from those generated by the weak interaction
cannot be disentangled [1]. At low energies, lattice QCD or
effective field theories have been suggested to pursue the
problem leading to preliminary rigorous predictions.

The parity-violating (PV) observable in heavy nuclei is most
probably the result of weak interactions among only two or
three constituent nucleons and this physics cannot presently be
studied because of the complicated strong interaction physics
involved. Therefore, the goal of independent measurements
and theoretical efforts is to constrain the nonleptonic weak
interaction in the few-body systems. At very low energies the
model-independent pionless effective field theory [EFT(π/)],
that systematically incorporates the symmetries of QCD,
provides the powerful theory to understand the physics of
strong, electromagnetic [2–4], and Coulomb interactions in a
consistent manner [5,6] for the few-body system. Further, the
symmetries of standard model at the leading order (LO) intro-
duce nucleon-nucleon (NN ) PV Lagrangian with five PV low-
energy constants (LECs) that parametrize the weak interaction
physics in terms of nucleon degree of freedom [7]. We intend
to use the model-independent EFT(π/) approach to disentangle
nonperturbative strong interactions from those generated by
the weak interaction in the few-body systems such as 3He and
reliably produce the nonleptonic weak interaction observable.
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In the present paper, we calculate photon circular polar-
ization in the pd → 3Heγ process, P

pd
γ , with the EFT(π/)

approach at LO. The parity-conserving (PC) [5] and PV
amplitudes of the pd → 3Heγ process are presented with the
incoming proton energies which are limited by the perturbative
treatment of Coulomb effects and the EFT(π/) breakdown scale.
In the laboratory energy range ELab � 0.5 MeV the initial
2S 1

2
and 4S 3

2
channels of the proton-deuteron system can be

converted to the final 2S 1
2

state of the 3He nucleus using the
appropriate combinations of the E1 and PV interactions. Also,
the mixing of the M1 and PV interactions can change the
initial 2P 1

2
,2P 3

2
,4P 1

2
, and 4P 3

2
states of the proton-deuteron

system to the final 3He ground state. The electromagnetic
(EM) transitions can amplify the observable P

pd
γ with all

the PV-EM transitions and its reversed combinations e.g.,
2S 1

2
−→PV 2P 1

2
−→E1 2S 1

2
or 4P 3

2
−→M1 4P 1

2
−→PV 2S 1

2
. In the pres-

ence of the Coulomb interaction, we show that the PV effect is
modified due to the diagrams connecting the different PV two-
body transitions and Coulomb interaction. To obtain the well-
converged results we have extrapolated our results to λ (mass
of the photon) → 0. We use the full set of complicated LO di-
agrams consisting of simultaneous interferences among weak,
strong short-range, Coulomb long-range, and electromagnetic
interactions to evaluate the P

pd
γ . We calculate the photon circu-

lar polarization observable as a function of laboratory energy
with three different cutoff momentums: 400, 600, and 900
MeV. Theoretical uncertainty for our results is provided with
the cutoff variation of P

pd
γ between 400 and 900 MeV, which

indicates no significant cutoff dependence in the final values.
The values of PV LECs are not fixed by the symmetries of

QCD but must be constrained by future measurements. The
lack of five experimental measurements for PV observables is
the main obstacle to pin down the five PV coupling constants
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of LO Lagrangian. The PV asymmetries such as the polarized
photon induced process on the triton or 3He at, e.g., an
upgraded HIGS facility (HIGS2) [8] and new measurement at
HIGS2 for the photo-induced PV asymmetries on the deuteron
[8] to the desired precision of 10−8 would provide more
independent determinations of the PV LECs.

The structure of our paper is as follows. We present the
effective Lagrangian for the pd → 3Heγ process in Sec. II.
PV formalism for the pd scattering is introduced in Sec. III.
Section IV discusses the derivation of the PV amplitude for the
pd → 3Heγ reaction. The numerical calculation and the re-
sults of the photon circular polarization P

pd
γ are also presented

in Sec. V. Finally, we summarize the paper in Sec. VI.

II. EFFECTIVE LAGRANGIAN FOR
THE PV pd → 3Heγ PROCESS

The effective Lagrangian for the PV pd capture reaction
can be classified as the PC: LPC and PV: LPV sectors

L = LPC + LPV. (1)

The LPC contains the strong (Ls), Coulomb (Lph), and electro-
magnetic (LEM) interactions,

LPC = Ls + Lph + LEM, (2)

that are introduced in detail in the following.

A. Strong interaction

The strong interaction in the pd system using the EFT(π/) formalism based on dibaryon auxiliary fields is given by the
Lagrangian [9,10]

Ls = N †
(

iD0 +
�D2

2mN

)
N + dA†

s

[
�s − c0s

(
iD0 +

�D2

4mN

+ γ 2
s

mN

)]
dA

s

+ di†
t

[
�t − c0t

(
iD0 +

�D2

4mN

+ γ 2
t

mN

)]
di

t − (ysd
A†
s (N †P AN ) + ytd

i†
t (N †P iN ) + H.c.

)
+ mNH (E,�)

6
N †(y2

t

(
di

t σi

)†(
d

j
t σj

)− [ytys

(
di

t σi

)†(
dA

s σA

)+ H.c.
]+ y2

s

(
dA

s τA

)†(
dB

s σB

))
N + · · ·, (3)

where Dμ is the covariant derivative which acts on the nucleon
(N ) and dibaryon fields (di

t and dA
s ) with the ∂μ + ie 1+τ3

2 Aμ

and ∂μ + ieCAμ relations, respectively. Aμ and e are the
external field and the electron charge. We have C = 2, 1, and
0 for the proton-proton, proton-neutron, and neutron-neutron
dibaryons. mN represents the nucleon mass and y2

t,s = 8π
m2

Nρt,s

are two PC coupling constants for the singlet and triplet
channels with the effective ranges ρt,s . The parameters �s/t

and c0s/t are given by matching the EFT(π/) NN -scattering
amplitude to the effective range expansion (ERE) of the
scattering amplitude of two nonrelativistic nucleons around
the iγs/t , where γt = 45.702 MeV is the binding momentum
of the deuteron and γs = 1

as
with as as the singlet scattering

length.
The operators

P i = 1√
8
σ2σ

iτ2, P A = 1√
8
σ2τ2τ

A, (4)

with τA (σi) as isospin (spin) Pauli matrices, project the NN
system to the 3S1 and 1S0 states, respectively. The three-
nucleon force is also introduced by H (E,�), where E and
� denote the total energy and the cutoff momentum.

B. Coulomb interaction

The Coulomb contribution which is dominant for small
momentum transfers enters ∼ αmN

p
where p is the momentum

transfer and α denotes the fine structure constant [11–14]. With

respect to the Coulomb potential

Vc = α

p2
, (5)

one cannot assume that the scale of all momenta is set by
the deuteron binding momentum γt and we have to introduce a
new momentum scale p, where p � Q for the power counting
[13]. Thus, we simultaneously have an effective theory with
two small expansion parameters Q

�̄
and p

αmN
.

The Lagrangian of the kinetic and gauge fixing terms of the
photons is

Lph = −1

4
FμνF

μν − 1

2ξ
(∂μAμ − ημην∂

νAμ)2,

ημ = timelike unit vector. (6)

Therefore the static photon propagator is given by

i�ph(p) = i

p2 + λ2
, (7)

where the infrared divergences in the photon propagator will
be handled by inserting a photon mass λ. The final results
are obtained using an extrapolation when λ → 0. In fact, by
choosing a mesh-point distribution dense around the Coulomb
peak, it is possible to numerically take the zero-screening limit
λ [11]. We work in the region ELab � 0.5 MeV, so the Coulomb
parameter αmN

p
is of order 1

3 and nonperturbative treatment of
Coulomb effects is not necessary.
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C. Electromagnetic interaction

The E1, M1, and E2 transitions contribute to the pd →
3Heγ amplitude at the low-energy regime. With respect to the
experimental facts for the pd → 3Heγ reaction [15,16], the
contribution of the E2 transition is small compare to the M1
transition at the low energy. We introduce the EM interaction as

LEM = LE + LB, (8)

where at the leading order, the electric interaction of a photon
with a single nucleon is introduced by the Lagrangian

LE = e

2mN

N †
(

1 + τ3

2

)
( �P + �P ′) · �ε∗

γ N, (9)

with �P and �P ′ as the momenta for the incoming and outgoing
nucleons. Also, �εγ denotes the three-vector polarization of the
produced photon.

Also, the Lagrangian of the M1 interaction is constructed
by considering the nucleon and dibaryon operators coupling to
the magnetic field �B,

LB = e

2mN

N †(k0 + k1τ
3)�σ · �BN + eL1

mN
√

ρtρs

d
j †
t d3

s Bj

− 2eL2

mNρt

iεijkd
i†
t d

j
t Bk + H.c., (10)

where k0 = 1
2 (kp + kn) = 0.4399 and k1 = 1

2 (kp − kn) =
2.35294. kp (kn) denotes the proton (neutron) magnetic mo-
ment. The coefficients L1 = −4.427 ± 0.015 fm and L2 =
−0.4 fm, which have been fixed using the cross section of
the np → dγ at thermal energy and the deuteron magnetic
moment μM , enter at next-to-leading order (NLO) [17]. So
only the first term of Eq. (10) is sufficient for our leading-order
calculations.

D. Leading-order PV interaction

The PV interaction connects the states with the different
parity and the same total angular momentum. So at the lowest
order for the PV interaction, we have 3S1 → 1P1, 3S1 → 3P1,
and 1S0 → 3P0 two-body transitions. Therefore, the leading-
order two-body PV Lagrangian with dibaryon formalism can
be written as

LPV = −[g3S1−1P1di†
t NT i(

←−∇ σ2τ2 − σ2τ2
−→∇ )iN

+ g
1S0−3P0
�I=0 dA†

s NT i(
←−∇ σ2σiτ2τA − σ2σiτ2τA

−→∇ )iN

+ g
1S0−3P0
�I=1 ε3ABdA†

s NT (
←−∇ σ2σiτ2τB − σ2σiτ2τB

−→∇ )iN

+ g
1S0−3P0
�I=2 IABdA†

s NT i(
←−∇ σ2σiτ2τB − σ2σiτ2τB

−→∇ )iN

+ g
3S1−3P1εijkdi†

t NT (
←−∇ σ2σkτ2τ3 − σ2σkτ2τ3

−→∇ )jN

+ H.c. + · · · ], (11)

where I = diag(1,1,−2) is a diagonal matrix in isospin
space and g(x−y) denotes the weak dibaryon-nucleon-nucleon
(dNN) coupling constant for the PV two-body transitions
between x (3S1,

1S0) and y (1P1,
3P0,

3P1) partial waves. �I
represents the isospin changing in the PV vertex. To sim-
plify, we use the notation suggested in Ref. [4] in which

g
3S1−1P1 , g

1S0−3P0
�I=0 , g

1S0−3P0
�I=1 , g

1S0−3P0
�I=2 , and g

3S1−3P1 have been
replaced by g1, g2, g3, g4 , and g5, respectively. We note that

the g4 corresponding to the g
1S0−3P0
�I=2 term dose not contribute

in the pd system because of isospin values of the proton and
deuteron.

III. PV pd SCATTERING AMPLITUDE

We introduce one of the major building block of the PV
pd → 3Heγ transition, namely the PV pd scattering in this
section. All LO diagrams of the PV pd scattering are shown
in Fig. 1. In this figure the circle with a cross indicates the
possible two-body PV transitions

3S1 ↔ 1P1,
3S1 ↔ 3P1,

1S0 ↔ 3P0, (12)

which mix the S- and P -wave channels at the lowest order. The
dashed rectangle and dashed oval also represent the PV- and
PC-scattering amplitudes, respectively. For the three-nucleon
system, the possible lowest-order transitions which change the
parity and conserve the total angular momentum are

2S 1
2

↔ 2P 1
2
, 2S 1

2
↔ 4P 1

2
,

4S 3
2

↔ 2P 3
2
, 4S 3

2
↔ 4P 3

2
. (13)

We emphasize that the three-body S states 2S 1
2

and 4S 3
2

are

introduced by X, and Y is assigned as the symbol of the 2P 1
2
,

2P 3
2
, 4P 1

2
, and 4P 3

2
channels.

In the cluster-configuration space, the contribution of the
diagrams in Fig. 1 can be written as [18]

tLO, PV(X/Y → Y/X; E,k,p) = APV[X/Y → Y/X; E,k,p]

− 1

2π2

∫ �

0
dq q2

{
APV[X/Y → Y/X; E,q,p]D(LO)

(
E − q2

2mN

,q

)
tLO, PC(X/Y ; E,k,q)

+ t†LO, PC(Y/X; E,q,p)D(LO)

(
E − q2

2mN

,q

)
APV[X/Y → Y/X; E,k,q]

}
+ 1

4π4

∫ �

0
dq1 q2

1

∫ �

0
dq2 q2

2

{
t†LO, PC(Y/X; E,q2,p)D(LO)

(
E − q2

2

2mN

,q2

)
×APV[X/Y → Y/X; E,q1,q2]D(LO)

(
E − q2

1

2mN

,q1

)
tLO, PC(X/Y ; E,k,q1)

}
, (14)
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FIG. 1. The PV-scattering diagrams at LO. A single line represents a nucleon and a double line is a dibaryon propagator. The wavy line
denotes the exchanged photon. The circle denotes the PV dNN vertex. A dashed oval indicates the PC-scattering amplitudes at LO. The dashed
rectangular represents the PV-scattering amplitude. Time-reversed diagrams are not displayed.

where APV represents the contributions of the PV kernels in the
first row of Fig. 1. We can present the function APV[X/Y →
Y/X; E,k,p] as

APV[X/Y → Y/X; E,k,p] =
4∑

i=1

APV
i [X/Y → Y/X; E,k,p],

(15)

where the APV
1 and APV

2 kernels are for the contributions of the
first and second diagrams in the first row of Fig. 1. Moreover,
the time-reversed amplitudes of these diagrams (not shown in
Fig. 1) are introduced by APV

3 and APV
4 , respectively. The APV

1,2,
APV

3,4 functions for all possible transitions in the J = 1
2 and 3

2
channels have been evaluated in Ref. [18].

In Eq. (14), the second term denotes the contribution of the
diagrams which include one PC-scattering amplitude, and the
third term corresponds to the diagrams in the third line with
the scatterings in both sides. tLO, PC(X/Y ; E,k,p) is the LO
PC pd-scattering amplitude in the X/Y channel, where X =
2S 1

2
, 4S 3

2
, and Y = 2P 1

2
, 2P 3

2
, 4P 1

2
, 4P 3

2
. The LO PC-scattering

amplitudes are given using [5]

t (L)
q (E,k,p) =

⎡⎣t
(L)
q, t→t (E,k,p) 0 0

0 0 0
0 0 0

⎤⎦, (16)

with

t
(L)
q, t→t (E,k,p) = −2ytt

[
K (L)

s (E,k,p) − 1

2
K (L),PC

c (E,k,p)

]
+ ytt

π2

∫ �

0
d q q2

[
K (L)

s (E,q,p) − 1

2
K (L),PC

c (E,q,p)

]
D

(LO)
t

(
E − q2

2mN

,q

)
t

(L)
q, t→t (E,k,q), (17)

and ⎡⎢⎢⎢⎣
t

(L)
d, t→t t

(L)
d, s1→t t

(L)
d, s2→t

t
(L)
d, t→s1

t
(L)
d, s1→s1

t
(L)
d, s2→s1

t
(L)
d, t→s2

t
(L)
d, s1→s2

t
(L)
d, s2→s2

⎤⎥⎥⎥⎦ (E,k,p)

=

⎧⎪⎪⎨⎪⎪⎩
ytt

[
K (L)

s + K (L),PC
c + δL

0
2H (�)

�2

] −yts

[
K (L)

s + δL
0

2H (�)
3�2

] −yts

[
2K (L)

s + δL
0

4H (�)
3�2

]
−yts

[
K (L)

s + δL
0

2H (�)
3�2

] −yss

[
K

(L)
s

3 − K
(L),PC
c

3 − δL
0

2H (�)
9�2

]
yss

[ 2K (L)
s

3 + δL
0

4H (�)
9�2

]
−yts

[
2K (L)

s + δL
0

4H (�)
3�2

]
yss

[ 2K (L)
s

3 + δL
0

4H (�)
9�2

]
yss δL

0
8H (�)

9�2

⎫⎪⎪⎬⎪⎪⎭
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+ 1

2π2

∫ �

0
d q q2

⎧⎪⎨⎪⎩
−ytt

[
K (L)

s + K (L),PC
c + δL

0
2H (�)

�2

]
yts

[
3K (L)

s + δL
0

2H (�)
�2

]
yts

[
3K (L)

s + δL
0

2H (�)
�2

]
yts

[
K (L)

s + δL
0

2H (�)
3�2

]
yss

[
K (L)

s − K (L),PC
c − δL

0
2H (�)

3�2

] −yss

[
K (L)

s + δL
0

2H (�)
3�2

]
yts

[
2K (L)

s + δL
0

4H (�)
3�2

] −yss

[
2K (L)

s + δL
0

4H (�)
3�2

] −yss δL
0

4H (�)
3�2

⎫⎪⎬⎪⎭
×D(LO)

(
E − q2

2mN

,q

)⎡⎢⎢⎣
t

(L)
d, t→t t

(L)
d, s1→t t

(L)
d, s2→t

t
(L)
d, t→s1

t
(L)
d, s1→s1

t
(L)
d, s2→s1

t
(L)
d, t→s2

t
(L)
d, s1→s2

t
(L)
d, s2→s2

⎤⎥⎥⎦(E,k,q), (18)

where the subscripts q and d denote the quartet and dou-
blet states, respectively. The subscripts t , s1, and s2 are for
dibaryons in the triplet, singlet, and pp part of singlet states.
K (L)

s and K (L)
c are the kernels with the strong and Coulomb

interactions, respectively, with L denoting the scattering in the
L-wave channel. The complete form of these kernels and the
other symbols have been introduced in Ref. [5].

The D(LO) represents the matrix propagator of the dibaryon
auxiliary fields as

D(LO)(E,q) =

⎡⎢⎣D
(LO)
t (E,q) 0 0

0 D(LO)
s (E,q) 0

0 0 D(LO)
s,pp (E,q)

⎤⎥⎦,

(19)

where the LO propagators for the 3S1, 1S0, and pp part of the
1S0 dibaryon are given by

D
(LO)
t/s (E,q) = 4π

mN y2
t/s

1

γt/s −
√

q2

4 − mNE − iε

,

D(LO)
s,pp (E,q) = 4π

mN y2
s

1
1
aC

+ αmNH̃0
(

αmN

2q ′
) , (20)

with

α = e2

4π
∼ 1

137
, q ′ = i

√
q2

4
− mNE − iε, (21)

H̃0(η) = ψ(iη) + 1

2iη
− log(iη). (22)

In the above equation, the function ψ is the logarithmic deriva-
tive of the � function. Moreover, ac denotes the scattering
length in the pp channel.

IV. PV AMPLITUDE OF THE pd → 3Heγ PROCESS

In this section, we focus on the PV amplitude of the pd →
3Heγ process. We concentrate in the region ELab � 0.5 MeV
because in this regime the Coulomb parameter αmN

p
is of

order 1
3 , and therefore the Coulomb effects can be treated

perturbatively. We use the Lagrangian in Eq. (11) for the PV
interaction to calculate the EM matrix elements that contribute
in the pd → 3Heγ process at ELab � 0.5 MeV.

For ELab � 0.5 MeV, we must calculate the PV E1 and
M1 transitions in the pd → 3Heγ process. The diagrams
that contribute in the PV pd radiative capture are shown
schematically in Figs. 2 and 3. The diagrams in Fig. 2 are the PC
diagrams that multiplied by the PV scattering, and the diagrams

in Fig. 3 indicate the PV diagrams with the half-off-shell
PC scattering. In Fig. 3 the dashed oval indicates the PC
nucleon-dibaryon scattering amplitudes which are obtained
using Eqs. (16) and (18) and the dashed half-oval is the
normalized 3He wave function at LO which is denoted by
t

(LO)
3He

as Ref. [5]. The dashed rectangular in Fig. 2 is the PV
pd-scattering amplitude of diagrams shown in Fig. 1. The
dashed rectangular with the dashed line around it in Fig. 3
represents the PV pd scattering depicted in Fig. 1 without
participation of the diagrams which have the full PC pd
scattering on the right-hand side.

The incoming 2S 1
2

and 4S 3
2

states of the proton-deuteron

system can be changed to make the final 2S 1
2

3He state using
the combination of E1 and PV interactions. Also, the mixing of
M1 and PV interactions can convert the initial 2P 1

2
,2P 3

2
,4P 1

2
,

and 4P 3
2

channels of the proton-deuteron system to the final 3He
ground state. So, we generally have two E1 PV transitions,

2S 1
2

→2 S 1
2
, 4S 3

2
→2 S 1

2
, (23)

and four M1 PV transitions which make the final 3He ground
state

2P 1
2

→2 S 1
2
, 2P 3

2
→2 S 1

2
,

4P 1
2

→2 S 1
2
, 4P 3

2
→2 S 1

2
. (24)

For the diagrams in Fig. 2, we have the PV E1 and M1
transitions as

X −→PV Y −→E1 2S 1
2
,

Y −→PV X −→M1 2S 1
2
. (25)

With respect to the fact that the electric transition does not
change the relative spin of particles and also the magnetic
transition does not change the orbital angular momentum, all
the E1 and M1 transitions which create the 2S 1

2
state are

2P 1
2

−→E1 2S 1
2
, 2P 3

2
−→E1 2S 1

2
,

2S 1
2

−→M1 2S 1
2
, 4S 3

2
−→M1 2S 1

2
. (26)

So, we finally have six possible transitions for the diagrams
in Fig. 2 from the incoming S and P waves to the final 3He
ground state as

2S 1
2

−→PV 2P 1
2

−→E1 2S 1
2
, 4S 3

2
−→PV 2P 3

2
−→E1 2S 1

2
,

2P 1
2

−→PV 2S 1
2

−→M1 2S 1
2
, 4P 1

2
−→PV 2S 1

2
−→M1 2S 1

2
,

2P 3
2

−→PV 4S 3
2

−→M1 2S 1
2
, 4P 3

2
−→PV 4S 3

2
−→M1 2S 1

2
. (27)
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S1 S2 S3 S4 C

FIG. 2. The first set of the diagrams for the PV pd → 3Heγ process at LO. The dashed rectangular with solid line around it denotes
the contribution of all PV pd-scattering diagrams depicted in Fig. 1. The C diagram indicates the Coulomb effect that only appears in the
pd → 3Heγ transition. The dashed half-oval is the normalized 3He wave function at LO. The wavy line which exits from the nucleon denotes
the emitted photon and H is the leading-order three-body force.

In order to calculate the diagrams in Fig. 2, we need six PV pd-
scattering amplitudes, tLO, PV(X/Y → Y/X), corresponding
to the transitions in Eq. (27).

If we use this procedure for the diagrams in Fig. 3, then 10
possible transitions,

2S 1
2

−→E1 2P 1
2

−→PV 2S 1
2
, 4S 3

2
−→E1 4P 1

2
−→PV 2S 1

2
,

2P 1
2

−→M1 2P 1
2

−→PV 2S 1
2
, 4P 1

2
−→M1 2P 1

2
−→PV 2S 1

2
,

2P 3
2

−→M1 2P 1
2

−→PV 2S 1
2
, 4P 3

2
−→M1 2P 1

2
−→PV 2S 1

2
,

2P 1
2

−→M1 4P 1
2

−→PV 2S 1
2
, 2P 3

2
−→M1 4P 1

2
−→PV 2S 1

2
,

2P 3
2

−→M1 4P 1
2

−→PV 2S 1
2
, 4P 3

2
−→M1 4P 1

2
−→PV 2S 1

2
, (28)

will be possible for PV proton capture on deuteron. Taking
the transitions in Eq. (28) into the calculation, the dashed

rectangular with dashed line around it as noted by
t̃LO, PV(X/Y → Y/X) should be considered for the appropriate
incoming and outgoing channels.

So the PV amplitude for the pd → 3Heγ transition is
obtained using the relation

W PV(X/Y ; Ei,k) = W PV
I (X/Y ; Ei,k) + W PV

II (X/Y ; Ei,k),

(29)

where W PV
I (X/Y ; Ei,k) and W PV

II (X/Y ; Ei,k) are the ampli-
tudes of the first and second sets of the PV diagrams that shown
in Figs. 2 and 3, respectively.

Now we initially introduce the evaluation of the diagrams
in Fig. 2 and then explain about those of Fig. 3. In the cluster
configuration space, the contribution of all diagrams in Fig. 2
for the incoming X/Y channel can be written as

W PV
I (X/Y ; Ei,k) =− 1

2π2

∫ �

0
dq q2

⎡⎣ 4∑
j=1

Sj (Y/X; Ei,k)+C(Y/X; Ei,k)

⎤⎦D(LO)

(
Ei − q2

2mN

,q

)
tLO,PV(X/Y → Y/X; Ei,k,q),

(30)

where the Sj (X/Y ; Ei,k) with j = 1, . . . ,4 represents the contribution of the “Sj ” diagram in Fig. 2. The k is the incoming

momentum, Ef = −B3He with B3He is the 3He binding energy, and Ei = E = 3k2

4mN
− γ 2

t

mN
indicates the center-of-mass (c.m.)

energy of the incoming pd system. Also, C(X/Y ; Ei,k) denotes the contribution of the diagram “C”, which is constructed using
the additional diagrams in the second line of Fig. 2. The detailed derivations of Sj (X/Y ; Ei,k) and C(X/Y ; Ei,k) functions have
been presented in our previous paper [5].

For the incoming X/Y channel, the contribution of the diagrams in Fig. 3 can be written as

W PV
II (X/Y ; Ei,k) = R(X/Y ; Ei,k) − 1

2π2

∫ �

0
dq q2 R(X/Y ; Ei,q)D(LO)

(
Ei − q2

2M
,q

)
tLO,PC(X/Y ; Ei,k,q), (31)

with

R(X/Y ; Ei,k) =
30∑

j=1

Rj (X/Y ; Ei,k), (32)

where the 3×3 matrix function Rj denotes the contribution of
the diagram “Rj ” in Fig. 3. The detailed calculation for one of
the most important diagrams, R16, for all the incoming partial
waves is depicted in Appendix.
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R30R29R28R27R26R25

R23

R1 R3 R4R2 R7

R15 R16

R24R20 R21

R5

R10 R14R8 R9
R12R11

R17 R18 R19

R22

R11

R6

FIG. 3. The second set of the diagrams for the PV pd → 3Heγ process at LO. The circle with a cross and wavy line is the PV photon-
dibaryon-nucleon-nucleon (γ dNN ) vertex. The dashed rectangular with dashed line around it denotes the PV pd scattering depicted in Fig. 1
without participation of the diagrams which have the full PC pd scattering on the right-hand side.

Finally, the physical amplitude of all diagrams in Figs. 2
and 3 can be written as

WPV(X/Y ; Ei,k) = W PV(X/Y ; Ei,k)

⎛⎝√
ZLO

0
0

⎞⎠, (33)

whereZLO is the normalization factor of the incoming deuteron
wave function at LO [5].

V. NUMERICAL RESULTS

To calculate the outgoing photon circular polarization in the
p d → 3He γ process, one needs the PC and PV amplitudes of
the pd capture process. The detailed derivations of the LO
PC calculations for the pd-scattering amplitude, 3He wave
function, and, finally, the p d → 3He γ transition amplitude
have been previously presented in Ref. [5].
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TABLE I. The PV observables which have been recently studied using the EFT(π/) formalism. The available measured values of these
observables are summarized in the third column.

Observables EFT(π/) relations Experiment

P np
γ [3] [−28.699 g1 + 14.024 (g2 − 2 g4)]×103 (1.8 ± 1.8)×10−7 [23]

Anp
γ [3] [4.102 g5]×103 (−0.60 ± 0.21)×10−7 [24]

(−0.15 ± 0.47)×10−7 [25]
1
ρ

d�np

dl
[22] [4.5 (2g5 + g1) − 18.5 (g2 − 2 g4)] rad MeV−2

1
ρ

d�nd

dl
[22] [8.0 g5 + 17.0 g1 + 2.3(3g2 − 2 g3)] rad MeV−2

P nd
γ [4] [ 0.26 g1 − 0.23 g2 + 0.15 g3 − 1.08 g5]×103

and
γ [26] [−0.51 g1 + 0.83 g2 − 0.47 g3 + 1.36 g5]×103

And
γ [26] [1.36 g1 − 1.50 g2 + 0.94 g3 − 4.47 g5]×103

P pd
γ (this work) [0.17 g1 − 0.49 g2 + 0.47 g3 − 2.00 g5]×103

The PV E1 and M1 transition amplitudes of the proton
radiative capture on a deuteron are required to obtain the
contributions of the diagrams in Figs. 2 and 3. In the previous
section we derived the LO EFT(π/) amplitudes of the diagrams
presented as the first set in Fig. 2. The PV pd-scattering
amplitude is an essential building block for the amplitudes
of the first set of PV diagrams and has been fully derived
in Ref. [18]. The contributions of the second set of the PV
p d → 3He γ diagrams which are shown in Fig. 3 can be
obtained after evaluating the R(X/Y ; Ei,k) matrix function.
The final results of the second set of PV diagrams are given by
adding the contribution of the half-off-shell PC pd-scattering
amplitude multiplied by the R(X/Y ; Ei,k) matrix element.

In order to compute the PC and PV amplitudes of the
p d → 3He γ process, we initially obtain the PC pd-scattering
amplitude by solving numerically the Faddeev equations with

the Hetherington-Schick method [19–21] in a Mathematica
code with an arbitrary cutoff momentum �. Also we obtain
the PV pd-scattering amplitude of the diagrams in Fig. 1, with
the same cutoff momentum � as used in the PC-scattering
amplitude. In the last step, we calculate the contribution of
the PC and PV amplitudes by solving numerically the loop-
momentum integrations with the Gaussian quadrature weights
and the same cutoff momentum as the other steps.

The photon circular polarization is given by

Pγ = σ+ − σ−
σ+ + σ−

, (34)

where σ+ and σ− are the cross section for the photons with
right and left helicity, respectively.

After summing over the spin and polarization of the proton
and deuteron, we have

P pd
γ = 2

Re
[∑

U=1,3,5 W PC†
(U )W PV(U ) + 2

∑
U=2,4,6 W PC†

(U )W PV(U )
]∑

U=1,3,5 |W PC(U )|2 + 2
∑

U=2,4,6 |W PC(U )|2 , (35)

with W PC(U ) and W PV(U ) as the PC and PV amplitudes of
p d → 3He γ process for the incoming channel U , where
U = 1, . . . ,6 are instead 2S 1

2
, 4S 3

2
, 2P 1

2
, 2P 3

2
, 4P 1

2
, and 4P 3

2
,

respectively.
In order to obtain the exact EFTP

pd
γ value, the five PV LECs

introduced in the Lagrangian (11) must be exactly determined.
In other words, without the fixed values for the PV LECs,
the final relations of any few-body observables are obtained
as a function of these five unknown coupling constants. We
expect the fact that the magnitude of the PV coupling constants
to be of the order ∼10−10 MeV− 3

2 [22]. This is an order-
of-magnitude estimation and may be off by factors of 10 or
more.

Here as an example, the calculated result for P
pd
γ at ELab =

Ep = 9k2

8mN
= 2.048 MeV is evaluated in terms of the PV LECs

as

P pd
γ =

[
0.17 g(3S1−1P1) − 0.49 g

(1S0−3P0)
(�I=0)

+0.47 g
(1S0−3P0)
(�I=1) − 2.00 g(3S1−3P1)

]
×103. (36)

The Coulomb effect in the results of Eq. (36) can be inves-
tigated by switching off the Coulomb interaction in the final
P

pd
γ result. The value of the outgoing circular polarization on

the p d → 3He γ process for ELab = 2.048 MeV without any
Coulomb interaction is calculated as

P pd
γ =

[
0.20 g(3S1−1P1) − 0.60 g

(1S0−3P0)
(�I=0)

+ 0.58 g
(1S0−3P0)
(�I=1) − 2.21 g(3S1−3P1)

]
×103. (37)

The above results indicate that the Coulomb interaction intro-
duces some corrections, about 10–20%, in the coefficients of
the PV LECs. These small Coulomb effects rely on the pertur-
bative Coulomb corrections at the k ∼ 40 MeV corresponding
to ELab = 2.048 MeV as we expected from the power counting
introduced in Sec. II B. We can see from the coefficients of
g(x−y) in Eqs. (36) and (38) that the dominant contribution
comes from the g(3S1−3P1) LEC.

By considering the estimated values of the PV coupling
constants of the order ∼10−10 MeV− 3

2 , the values of P
pd
γ in
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TABLE II. The determined values of the PV coupling constants
g(x−y). The PV coupling constants values in the second and third rows
are the estimations based on the evaluation by Moeini Arani [26] and
the extraction from Vanasse [27], respectively. All values are in units
of MeV− 3

2 .

g(3S1−1P1) g
(1S0−3P0)
(�I=0) g

(1S0−3P0)
(�I=1) g

(1S0−3P0)
(�I=2) g(3S1−3P1)

2.78×10−12 4.71×10−9 2.41×10−9 2.35×10−9 1.29×10−11

9.88×10−12 6.81×10−12 6.67×10−13 1.99×10−12 3.63×10−11

Eqs. (36) and (38) are estimated as∣∣P pd
γ

∣∣ ∼ 10−6 − 10−7. (38)

In the past years, the EFT(π/) formalism has been applied to
study the parity violation in the two- and three-body systems.
We present the relations for the PV observables on the few-
body systems which have been investigated with the EFT(π/)
approach in terms of PV LECs in the Table I. As shown in the
third column of Table I, the values of the photon asymmetry
with respect to the neutron polarization A

np
γ and the circular

polarization of the outgoing photon on np → dγ P
np
γ have

been previously reported. The uncertainties of these mea-
surements denote that the available experimental data are not
accurate. There are no experimental data on the neutron-proton
spin rotation d�np

dl
and the neutron-deuteron spin rotation

d�nd

dl
. The experimental data for the circular polarization of

γ emission P nd
γ and the asymmetry of the outgoing photon

with respect to the neutron (deuteron) polarization and
γ (And

γ )
on the n d →3 H γ have not been reported to this point. In
order to determine PV LECs, we need to increase the accuracy
of existing measurements and to introduce new experiments
for measuring the neutron spin rotation on a variety of targets,
the circular photon polarizations for the unpolarized beam
(neutron or proton) and target (deuteron), and the polarized
photon induced processes on the deuteron, triton, and helium.

In the present circumstance with no available experimental
data Moeini Arani and Bayegan have introduced the PV

TABLE III. The results for the photon circular polarization of the
p d → 3He γ at LO are shown at the energy 0.5 � ELab � 3 MeV
with � = 600. The results in the second and third columns are
obtained based on the set of the g(x−y) estimated in Refs. [26] and [27],
respectively. The numbers in the parentheses in the second column
indicate the results for P pd

γ when the Coulomb effect is switched off.
These results are presented in units of 10−6.

ELab(MeV) P pd
γ

Based on Ref. [26] Based on Ref [27]

0.57 −2.80 (−3.02) 0.23
0.80 −2.10 (−2.32) 0.16
1.12 −1.68 (−1.90) 0.12
1.53 −1.40 (−1.64) 0.09
2.04 −1.21 (−1.47) 0.07
2.65 −0.94 (−1.10) 0.05
3.00 −1.09 (−1.37) 0.04

0.5 1.0 1.5 2.0 2.5 3.0
3.0

2.5

2.0

1.5

1.0

ELab MeV

10
6 P
Γp
d

FIG. 4. Variation of the P pd
γ according to the proton laboratory

energies from 0.5 to 3 MeV between � = 400 and 900 MeV based
on the g(x−y) presented in the second row of Table II.

coefficients values by matching the five EFT(π/) relations
for the PV observables A

np
γ , P

np
γ , 1

ρ
dφnp

dl
, 1

ρ
dφnd

dl
, and P nd

γ to
the DDH “best values” estimates for these observables [26].
Vanasse has also obtained a different values for five PV LECs
g(x−y) [27]. These two estimated values for theg(x−y) are shown
in Table II.

According to the values of the PV coupling constants g(x−y)

presented in Table II, we obtain the P
pd
γ for the energy values

in the ELab � 0.5 MeV region. Our evaluated results are
depicted in Table III where the numbers in the parentheses
in the second column indicate the results for P

pd
γ when the

Coulomb effect is switched off. We have also presented the P
pd
γ

values based on the g(x−y) extracted from Ref. [27] in the third
column of Table III. The difference between the values of P

pd
γ

according to two different values of the PV coupling constants
in Refs. [26,27] can be assessed by the future experimental
data.

The variation of the P
pd
γ at the proton laboratory energies

from 0.5 to 3 MeV based on the g(x−y) values in the second
row of Table II has been presented in Fig. 4. The thickness of
the plot indicates the cutoff variation, which runs from 400 to
900 MeV. The results of the cutoff variation for P

pd
γ between

� = 400 and 900 MeV based on the g(x−y) in the second row
of Table II are also shown in Table IV. We emphasize that the
photon circular polarization in the p d → 3He γ transition is
not experimentally reported up to now. The other theoretical
efforts have not been experimentally confirmed yet. However,
we can see the order of our EFT(π/) results agrees with the order
of other electroweak observables for the few-body systems.

TABLE IV. The results for the cutoff variation of P pd
γ between

� = 400 and 900 MeV based on the PV coupling constants indicated
in Table II.

ELab(MeV) 0.57 0.80 1.12 1.53 2.04 2.65 3.00

Abs[1 − P
pd
γ (�=400)

P
pd
γ (�=900)

] 0.066 0.050 0.045 0.038 0.037 0.035 0.030
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without extrapolation

with extrapolation

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1.0883

1.0882

1.0881

1.0880

1.0879

1.0878

Λ MeV

10
6 P
Γp
d

FIG. 5. The variation of the P pd
γ according to photon mass for the

proton laboratory energy of 2.65 MeV with � = 600 MeV based on
the values of five PV LECs in the second row of Table II. Dashed line
represents the results with extrapolating and the solid line indicates
the results without the extrapolation method.

In Sec. II B, the exchanged-photon propagator has been
considered with a small photon mass to regulate the infrared
divergences occurred within the integrations over the loop
momenta. To obtain the physical results, we have to calculate
the correct values when the photon mass goes to zero. For this
purpose, we use the extrapolating method to find our results
when λ → 0. Figure 5 represents the comparison between the
results of P

pd
γ according to the photon mass at the proton

laboratory energy of 2.65 MeV with � = 600 MeV. Dashed
line represents the results with the extrapolation and the solid
line indicates the results without any extrapolating in the final
results. The results without using the extrapolating method
grow up rapidly when the photon mass goes to zero because of
the infrared divergences. We generally consider the function
F (x) =∑∞

n=0 anx
n to interpolate the results of the P

pd
γ from

λ = 0.4 to 0.6 MeV. Despite the fact that the exact values of

P
pd
γ for 0.4 � λ � 0.6 MeV behave nearly linear, the best

fit to these results is obtained using the functional form of
f (λ) = a0 + a1λ + a2λ

2 to extract the physical P
pd
γ value at

λ = 0. The error introduced by the extrapolation to λ → 0
compared to the EFT theoretical error is negligible.

VI. CONCLUSION AND OUTLOOK

Taking into account the appropriate effective Lagrangian
which constructed by Ls , Lph, LEM, and LPV, the photon
circular polarization is accurately introduced in terms of
the PV LECs for the pd → 3Heγ reaction. The observable
comes from the interferences among weak, strong short-range,
Coulomb long-range, and electromagnetic interactions in the
0.5 � ELab � 3 MeV energy region. The values of these LECs
must be extracted from reliable experiments or QCD lattice
calculations. In order to understand the complexity of PV in
heavy nuclei, the five PV LECs will have to be determined and
the model-independent EFT(π/) nonleptonic weak interaction
calculations to be reliably tested in few-nucleon systems.

APPENDIX: THE CONTRIBUTION OF THE R16

AMPLITUDE OF THE SECOND PV SET DIAGRAMS

One of the important diagrams in Fig. 3 is the diagram
R16. So, as an example, we introduce the derivations of
the amplitude of the diagram R16(U ; Ei,k), where U is the
incoming channel (U = 1, . . . ,6). The Ei and k are the same
as the text. The contribution of all other diagrams are calculated
with the same procedure and we do not report them here. The
final results for the E1 and M1 transitions are obtained after
applying the appropriate projection operators as Ref. [22] for
the initial and final states.

1. E1 transition

The amplitude of the diagram R16 in Fig. 3 before projecting
to the arbitrary incoming and outgoing channels is obtained as

r
(E1)
16 (Ei,k) = eyt

2mN

t
(LO)†
3He (k)D(LO)

(
Ef − k2

2mN

,k

)∫
d4q

(2π )4

1

q0 − q2

2mN
+ iε

1

Ei − k2

2mN
− q0 − (k+q)2

2mN
+ iε

× 1

Ef − k2

2mN
− q0 − (k+q)2

2mN
+ iε

(�k + �q) · ε∗
γ

⎡⎢⎢⎣
−2i√

2
g5ε

imj (�k + 2�q)m −2√
2
g2δ

A
3 (�k + 2�q)j −2√

2
g2δ

A
3 (�k + 2�q)j

−1√
2
g1δ

B
3 (�k + 2�q)i 0 0

−1√
2
g1δ

B
3 (�k + 2�q)i 0 0

⎤⎥⎥⎦,

(A1)

where the indices i, j , m are related to the initial, final, and intermediate spin states and indices A and B are related to the initial
and final isospin states in the PV Lagrangian. It is necessary to know the pole positions of Eq. (A1) in the complex plane. So, we
have three following poles

q0 = q2

2mN

− iε, q0 = Ei − k2

mN

− q2

2mN

−
�k · �q
mN

+ iε, q0 = Ef − k2

mN

− q2

2mN

−
�k · �q
mN

+ iε, (A2)
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obtained from being zero the denominator of the nucleon propagators. With respect to the poles in Eq. (A2) and doing the
integration over energy, the r

(E1)
16 (Ei,k) becomes

r
(E1)
16 (Ei,k) = −eyt

8
√

2π2(Ef − Ei)
t

(LO)†
3He (k)D(LO)

(
Ef − k2

2mN

,k

)∫ �

0
q2 dq

∫ 1

−1
d(cos θ )

×
(

1

mN Ei − k2 − q2 − �k · �q − 1

mN Ef − k2 − q2 − �k · �q

)
(�k + �q) · ε∗

γ

×

⎡⎢⎣2ig5ε
imj (�k + 2�q)m 2g2δ

A
3 (�k + 2�q)j 2g2δ

A
3 (�k + 2�q)j

g1δ
B
3 (�k + 2�q)i 0 0

g1δ
B
3 (�k + 2�q)i 0 0

⎤⎥⎦. (A3)

The projected E1 amplitude of the diagram R16 for the initial 2S 1
2

state, in the cluster-configuration space, is given by

R16
(

2S 1
2
; Ei,k

) = eyt

24
√

2π2(Ef − Ei)
t

(LO)†
3He (k)D(LO)

(
Ef − k2

2mN

,k

)∫ �

0
q2 dq

∫ 1

−1
d(cos θ )

×
[

(�k + �q) · (�k + 2�q)

mN Ei − k2 − q2 − �k · �q − (�k + �q) · (�k + 2�q)

mN Ef − k2 − q2 − �k · �q

]

×

⎛⎜⎝4g5 −2g2 0

−g1 0 0

0 0 0

⎞⎟⎠t†[�εd · �ε∗
γ + i �σ · �εd × �ε∗

γ ]N. (A4)

Also, for the initial 4S 3
2

state, the contribution of this diagram is given by

R16
(

4S 3
2
; Ei,k

) = eyt

24
√

6π2(Ef − Ei)
t

(LO)†
3He (k)D(LO)

(
Ef − k2

2M
,k

)∫ �

0
q2 dq

∫ 1

−1
d(cos θ )

×
[

(�k + �q) · (�k + 2�q)

mN Ei − k2 − q2 − �k · �q − (�k + �q) · (�k + 2�q)

mN Ef − k2 − q2 − �k · �q

]

×

⎛⎜⎝−2g5 0 0

−g1 0 0

0 0 0

⎞⎟⎠t†[2�εd · �ε∗
γ − i �σ · �εd × �ε∗

γ ]N. (A5)

2. M1 transition

In this section, we calculate the contribution of the M1 transition of the diagram R16 as we have done in the previous section.
The unprojected M1 amplitude of the diagram R16 is evaluated using the relation

r
(M1)
16 (Ei,k) = eyt

2mN

t
(LO)†
3He (k)D(LO)

(
Ef − k2

2mN

,k

)∫
d4q

(2π )4

1

q0 − q2

2mN
+ iε

1

mN Ei − k2

2mN
− q0 − (k+q)2

2mN
+ iε

× 1

Ef − k2

2mN
− q0 − (k+q)2

2mN
+ iε

⎛⎜⎝s11 s12 s13

s21 s22 s23

s31 s32 s33

⎞⎟⎠, (A6)

where

s11 = 1√
2

[−2g1k0(�k + 2�q)i
(
Bj − 2B2δ

j
2

)+ ig5k1(�k + 2�q)mεimn
(
2i�nεkjnBk − 2B2δ

j
2

)]
,

s12 = s13 = 1√
2

[2ig2(�k + 2�q)ik1δ
A
3 (εkjiBk − 2ε2jiB2],

s21 = s31 = 1√
2

[−ig5k1δ
B
3 εimn(�k + 2�q)m

(
2δk

n − 4δk
2δ

n
2

)
Bk

]
,

s22 = s23 = s32 = s33 = 1

2
√

2

[−g2(�k + 2�q)i
(
2k0δ

B
A − 2ik1ε3BA

)(
2δk

i − 4δi
2δ

k
2

)
− ig3(�k + 2�q)i

(
2δk

i − 4δi
2δ

k
2

)(−2k0εAB3 − 2ik1δ
A
3 δB

3 + 2ik1δ
B
A

)]
. (A7)
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Here, we have the same poles as Eq. (A2). So, after doing the integration over energy, the obtained relation is

r
(M1)
16 (Ei,k) = eyt

8π2(Ef − Ei)
t

(LO)†
3He (k)D(LO)

(
Ef − k2

2mN

,k

)∫ �

0
q2 dq

∫ 1

−1
(d cos θ )

×
(

1

mN Ei − k2 − q2 − �k · �q − 1

mN Ef − k2 − q2 − �k · �q

)⎛⎜⎝s11 s12 s13

s21 s22 s23

s31 s32 s33

⎞⎟⎠. (A8)

For the initial 2P 1
2
, 4P 1

2
, 2P 3

2
, 4P 3

2
states, in the cluster-configuration space, we obtain respectively:

R16
(

2P 1
2
; Ei,k

) = −eyt

12
√

2π2k(Ef − Ei)
t

(LO)†
3He (k)D(LO)

(
Ef − k2

2mN

,k

)∫ �

0
q2 dq

∫ 1

−1
(d cos θ )

×
[ �k · (�k + 2�q)

mN Ei − k2 − q2 − �k · �q −
�k · (�k + 2�q)

mN Ef − k2 − q2 − �k · �q

]

×

⎛⎜⎝3k0g1 + 4k1g5 2g2k1 0

2g2k1 g2k0 0

0 0 2(g2k1 − g3k0)

⎞⎟⎠t†[�εd · �ε∗
γ + i �σ · �εd × �ε∗

γ ]N, (A9)

R16
(

2P 3
2
; Ei,k

) = −√
3eyt

36
√

2π2k(Ef − Ei)
t

(LO)†
3He (k)D(LO)

(
Ef − k2

2mN

,k

)∫ �

0
q2 dq

∫ 1

−1
(d cos θ )

×
[ �k · (�k + 2�q)

mN Ei − k2 − q2 − �k · �q −
�k · (�k + 2�q)

mN Ef − k2 − q2 − �k · �q

]

×

⎡⎢⎣k1g5 −g2k1 0

g5k0 g2k0 0

0 0 2(k0 + k1)(g2 − g3)

⎤⎥⎦t†[2�εd · �ε∗
γ − i �σ · �εd × �ε∗

γ ]N, (A10)

R16
(

4P 1
2
; Ei,k

) = −eyt

12π2k(Ef − Ei)
t

(LO)†
3He (k)D(LO)

(
Ef − k2

2mN

,k

)∫ �

0
q2 dq

∫ 1

−1
(d cos θ )

×
[ �k · (�k + 2�q)

mN Ei − k2 − q2 − �k · �q −
�k · (�k + 2�q)

mN Ef − k2 − q2 − �k · �q

]

×

⎛⎜⎝2g5k1 0 0

g5k0 0 0

0 0 0

⎞⎟⎠t†[�εd · �ε∗
γ + i �σ · �εd × �ε∗

γ ]N, (A11)

R16
(

4P 3
2
; Ei,k

) = 5eyt

12
√

30π2k(Ef − Ei)
t

(LO)†
3He (k)D(LO)

(
Ef − k2

2mN

,k

)∫ �

0
q2 dq

∫ 1

−1
(d cos θ )

×
[ �k · (�k + 2�q)

mN Ei − k2 − q2 − �k · �q −
�k · (�k + 2�q)

mN Ef − k2 − q2 − �k · �q

]

×

⎛⎜⎝k1g5 0 0

0 0 0

0 0 0

⎞⎟⎠t†[2�εd · �ε∗
γ − i �σ · �εd × �ε∗

γ ]N. (A12)
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