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α clustering with a hollow structure: Geometrical structure of α clusters from platonic solids
to fullerene shape
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We study α-cluster structure based on the geometric configurations with a microscopic framework, which
takes full account of the Pauli principle, and which also employs an effective internucleon force including
finite-range three-body terms suitable for microscopic α-cluster models. Here, special attention is focused upon
the α clustering with a hollow structure; all the α clusters are put on the surface of a sphere. All the platonic solids
(five regular polyhedra) and the fullerene-shaped polyhedron coming from icosahedral structure are considered.
Furthermore, two configurations with dual polyhedra, hexahedron-octahedron and dodecahedron-icosahedron,
are also scrutinized. When approaching each other from large distances with these symmetries, α clusters create
certain local energy pockets. As a consequence, we insist on the possible existence of α clustering with a geometric
shape and hollow structure, which is favored from Coulomb energy point of view. Especially, two configurations,
that is, dual polyhedra of dodecahedron-icosahedron and fullerene, have a prominent hollow structure compared
with the other six configurations.
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Carbon atoms play an essential role in composing molecular
structure related to geometric configuration in organic chem-
istry. It is plausible that α particles are in the same situation
in nuclear structure as carbon atoms in molecular structure
because of their strong binding energy and the dual role of
the Pauli principle [1,2]. When two α particles are at a distance
from each other, the Pauli principle works attractively; on the
other hand, the strong repulsion acts on approaching two α
particles. Not only cannot the α cluster easily break down but
also two α particles have a resonance state around the threshold
energy. We can point out that three α clusters are loosely
bound in making Borromean nucleus, which was predicted
to be α-cluster condensation [3,4].

Up to now, there have been many studies on the geo-
metrical structure of α clusters based on the microscopic
frameworks, which employ effective internucleon forces and
completely consider the Pauli principle simultaneously [5].
In particular, the Brink-Bloch model is one of the suitable
tools for studying the geometric structure of α clustering [6].
However, almost all the attempts have been restricted up to
4N nuclei of (0p)-shell region. Furthermore, the employed
effective internucleon force is different for every α-type 4N
nuclei because we do not have appropriate ones to reproduce
the physical quantities in the wide mass number region from
α particle to nuclear matter. For instance, the Volkov force
[7], which is the most popular internucleon force, includes
the Majorana strength as an adjustable parameter for every
nucleus. Nevertheless, the saturation property for the nuclear
matter cannot be reproduced.

Fortunately, the introduction of the finite-range three-body
internucleon force can elegantly overcome the defects of
internucleon force only with the two-body terms. The overall
saturation property in the wide mass number region of 4N

nuclei is well explained by using an effective internucleon
force with finite-range three-body terms related to the density
dependency. The concepts of deciding the parameters in the
effective internucleon force are as follows: (1) reasonable
reproduction of the saturation property of α, 16O, 40Ca, and
nuclear matter, and (2) the reproduction of the phase shift
of elastic α-α scattering. In this report, we use Tohsaki F1
force [8] (we call F1). Recent report by one of the authors
verifies the validity of the F1 force for the unified understanding
of the 12C and 16O [9]. As a comparison, we show the results for
the Brink-Boeker force [10] (referred as BB force), which has
also no adjustable parameter but which cannot reproduce the
saturation property except for α particle and nuclear matter.
Therefore, we think that F1 force is more reliable than BB
force, but here we compare the results of two forces.

In this Rapid Communication, we show that α clusters with
geometric configurations create certain local energy pockets
when they approach each other from large distances. This
is because Coulomb repulsion is the most important factor
at large distances, and formation of geometric configurations
allows us to reduce this effect. The contribution of the nuclear
interaction creates distinct local energy minimum points; on
the other hand, the Pauli principle works repulsively after the
touching inside the nuclear surface.

The importance of α cluster structure has been pointed out
also in the heavy mass region. For instance, α-like four-body
correlation is found to be important in explaining the α decay
[11]. The formation of α cluster around the nuclear surface
has been discussed in quite heavy Polonium isotopes for a
long time [12]. Not only α decays but also various types
of cluster decays have been discussed in heavy nuclei [13].
Also, appearances of various geometric cluster configurations
have been theoretically pointed out [14]. Furthermore, cluster
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FIG. 1. Schematic figures for the prepared configurations, where
vertices on the polyhedra show the positions of the α clusters:
(a) tetrahedron, (b) hexahedron (cube), (c) octahedron, (d) dodecahe-
dron, (e) icosahedron, (f) hexahedron-octahedron, (g) dodecahedron-
icosahedron, and (h) fullerene-shape polyhedron configurations.

structure has been studied from ab initio point of view [15]. In
this study, we examine much multicenter α cluster structure in
even heavier regions.

As for the geometric configurations, first of all, we consider
five Platonic solids (five regular polyhedra), of which vertices
are positions ofα clusters. As schematically shown in Fig. 1, we
prepare (a) tetrahedron, (b) hexahedron (cube), (c) octahedron,
(d) dodecahedron, and (e) icosahedron configurations. They
consists of 4, 8, 6, 20, and 12 α clusters corresponding to
16O, 32S, 24Mg, 80Zr, and 48Cr, respectively. In addition, we

introduce their dual polyhedra, (f) hexahedron-octahedron and
(g) dodecahedron-icosahedron; the latter is related to the rhom-
bic triacontahedron, which is the basic seed of quasicrystal.
Here, hexahedron-octahedron is a combination of two platonic
solids, hexahedron and octahedron. In Fig. 1(f), blue balls are
α clusters at the vertices of hexahedron and red balls are α
clusters, which form pyramid shape together with the four
nearest (blue) α clusters. There are six red balls corresponding
to the number of faces of hexahedron, and these six points
form an octahedron shape. In total, we have 14 α clusters
corresponding to 56Ni, and the distances from the origin
are taken to be common for all the fourteen α’s. Therefore,
hexahedron and octahedron are inscribed in a common sphere.
If we start with an octahedron shape and add α clusters at the
centers of the faces, formation of completely the same solid
is achieved, and hexahedron and octahedron are considered
as a pair (dual polyhedra). Another one is dodecahedron-
icosahedron, which is the combination of dodecahdron and
icosahdron. In Fig. 1(g), 20 blue balls are α clusters at the
vertices of dodecahedron, and 12 red α clusters are added at the
center of 12 faces, which form an icosahedron shape. We have
32 α clusters corresponding to 128Gd, and the distances from
the origin are taken to be common for all the α’s; dodecahedron
and icosahedron are inscribed in a common sphere. If we start
with an icosahedron shape and add α clusters at the centers
of the faces, the same solid is formed, and dodecahedron and
icosahedron are considered as a pair (dual polyhedra). Note
that tetrahedron is a self-dual polyhedron. If we apply the same
procedure for the tetrahedron (adding α clusters at the center
of each surface and adjusting the distances from the origin
to be the same as those of α’s at vertices), it becomes
hexahedron (cube), which is already included in the model as
(b). Furthermore, we introduce (h) fullerene-shape polyhedron,
which has 60 α clusters corresponding to 240120. The fullerene-
shaped nucleus, whose atomic number is 120, belongs to the
ultra-super-heavy region of nucleus. If the radius is very large,
the configuration contains a big void inside of the sphere. In
other words, we can imagine balloon-shaped nuclei and takes
the rhombic triacontahedron and the fullerene configurations as
their plausible candidates. In order to study the stability of the
structure in this report, we show an adiabatic-energy curve with
respect to the radius of the sphere, which is the only variational
parameter to see the property of the breathing mode. Carrying
out the angular momentum projection is unnecessary because
of the symmetric shape of the sphere.

We employ Brink-Bloch-type wave function, which takes
complete account of the Pauli principle:

�(ρ) = A{φ1(ρ R1)φ2(ρ R2) . . . φN (ρ RN )}, (1)

where A is the antisymmetrization operator among all the
nucleons. The Nα clusters are on the surface of the sphere
with the radius ρ (fm), and the vectors R1, . . . ,RN are the
parameters on the dimensionless unit sphere. The kth α cluster
(k = 1,2, . . . N) wave function is written by

φ(ρ Rk) =
∏

i,j=1,2

(
1

πb2

) 3
4

exp

[
− 1

2b2

(
r ij
k − ρ Rk

)2
]
χ

ij
k ,

(2)
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where b is the nucleon size parameter and χ
ij
k is a spin isospin

wave function. The vector r ij
k is the real physical coordinate

for the nucleon, and i and j are labels for the spin and
isospin, respectively, for the four nucleons in the kth α clusters.
The four nucleons in the kth α cluster share the common
Gaussian center, ρ Rk . We prepare eight sets of {R1, . . . ,RN }
corresponding to the configurations in Fig. 1.

The norm and energy kernel matrix elements after carrying
out the integration with respect to the real physical coordinates
{r ij

k } are functions of variational parameter ρ: 〈�(ρ ′)|�(ρ)〉
and 〈�(ρ ′)|Ĥ |�(ρ)〉, where the Hamiltonian is given by

Ĥ = − h̄2

2M

∑
i

∇2
i − Tcm + 1

2!

∑
i,j

v
(c)
ij + 1

2!

∑
i,j

v
(2)
ij

+ 1

3!

∑
i,j,k

v
(3)
ijk. (3)

The first and the second terms are the kinetic operator and the
center of mass (c.m.) energy. The third is the Coulomb operator
running over the protons, and the fourth and the fifth terms are
the effective internucleon force separated by the two-body and
three-body ones. The explicit form is written by the summation
of Gaussian function:

v
(2)
ij =

3∑
l=1

V
(2)
l

((
1 − m

(2)
l

) − m
(2)
l P σ

ij P τ
ij

)

× exp[−(r i − rj )2/β2
l ] (4)

and

v
(3)
ijk =

3∑
l=1

V
(3)
l

{(
1 − m

(3)
l

) − m
(3)
l P σ

ij P τ
ij

}

× {(
1 − m

(3)
l

) − m
(3)
l P σ

jkP
τ
jk

}
× exp

[−(r i − rj )2/β2
l − (rj − rk)2/β2

l

]
, (5)

where the exchange operators for the spin and isospin parts
are expressed by P σ

ij and P τ
ij . The force strengths for two-

and three-body are written by V
(2)
l and V

(3)
l , where their range

parameters are given by βl , and the Majorana strengths are
m

(2)
l and m

(3)
l , where not only two-body but also three-body

are given by the finite three-range description unlike the δ-
type zero-range force. The parameters for the range of the
internucleon force are taken to be the same in two-body and
three-body parts. On the other hand, the BB force does not
have the three-body terms.

When all the position parameters {Rk} are given, basically,
the matrix elements of norm and Hamiltonian are analytically
given. However, the summation over all the α clusters still
remains and this part is numerically performed in most of the
conventional Brink-model calculations. Here we innovated a
method to perform this summation analytically, which allows
us to apply Brink model to much heavier nuclei. Here we
estimate the adiabatic energy

E(ρ) = 〈�(ρ)|Ĥ |�(ρ)〉
〈�(ρ)|�(ρ)〉 (6)
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FIG. 2. Energy for one α as a function of the radius (ρ in
the text): (a) tetrahedron, (b) hexahedron (cube), (c) octahedron,
(d) dodecahedron, and (e) icosahedron.

to find out the bulk property of the geometric configuration
of α clustering with a hollow structure. The diagonal part of
the norm kernel has the following property depending on the
antisymmetrization effect:

lim
ρ→0

〈�(ρ)|�(ρ)〉 = 0 (7)

and we define the normalization as

lim
ρ→∞〈�(ρ)|�(ρ)〉 = 1. (8)

Therefore, it is reasonable to define the Pauli index as

pi(ρ) = 1 − 〈�(ρ)|�(ρ)〉 (9)

for each configuration.
In Figs. 2 [for (a)–(e) in Fig. 1] and 3 [for (f)–(h) in Fig. 1],

we show the adiabatic energy curves per α for the case of
F1 force. The horizontal axis is the radius ρ in Eq. (1), which
starts with larger values and then decreases. The size parameter
of single-nucleon wave function b is chosen to be 1.415 fm,
leading to the minimum of the binding energy of α particle,
27.500 MeV, reasonable comparison with the experimental
value of 28.294 MeV; however, here the reference of the energy
is taken as the Nα breakup energy. In all cases, the adiabatic
energy curves have the energy barrier at larger distances and
pocket at shorter distances.

In Table I, the physical quantities at the (A) energy barrier
and (B) pocket positions in the case of F1 force are listed. Here,
the acronym s.d. means the shortest distance of two α clusters at
the fixed radius of ρ, and P04(4), P08(6), P06(8), P20(12), P08-
06(14), P12-20(32), and Ful(60) are configurations (a)–(h) in
Fig. 1, where the values in the parentheses show the numbers
of α clusters. The characteristic features are the following:
(1) There are stable energy pockets in all the cases, (2) the
energy pocket is protected by the competition of the Coulomb
repulsion and the Pauli principle, (3) the values of s.d. are
almost the same for all the cases of energy pocket and barrier,
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FIG. 3. Energy for one α as a function of the radius (ρ in the
text), (f) hexahedron-octahedron, (g) dodecahedron-icosahedron, and
(h) fullerene.

but the rhombic triacontahedron and the fullerene shape have
comparably large distance of twoα particles, (4) the Pauli index
becomes almost 1 around the energy pocket, and the increase
starts at the barrier position where the index is 0. We predict a
void surrounded by α particles, but we see that the gap of the

TABLE I. The physical quantities at the (A) barrier and (B) energy
pocket positions calculated using F1 force. The radius (ρ in the text),
depth of the energy pocket, and height of the barrier pi(ρ) in Eq. (9)
are listed. Here s.d. means the shortest distance of two α clusters at
the fixed radius of ρ. The values in parentheses show the energy after
subtracting the center of mass kinetic energy for each α cluster. Conf
means configurations (a)–(h) in Fig. 1.

(A) Barrier Conf ρ (fm) s.d. (fm) Height (MeV) pi(ρ)

P04(4) (a) 4.5 7.35 8.845 0.000
P08(6) (b) 5.2 7.35 12.071 0.000
P06(8) (c) 6.0 6.93 13.814 0.000
P20(12) (d) 6.7 7.05 16.180 0.000
P12(20) (e) 9.0 6.42 18.367 0.004
P08-06(14) (f) 7.3 6.71 19.271 0.001
P12-20(32) (g) 9.9 6.41 22.626 0.011
Ful(60) (h) 14.2 5.73 24.180 0.094

(8.885)

(B) Pocket Conf ρ (fm) s.d.(fm) Depth (MeV) pi(ρ)
P04(4) (a) 1.4 2.29 − 3.039 0.994
P08(6) (b) 2.1 2.97 − 1.643 0.986
P06(8) (c) 2.5 2.89 1.228 0.998
P20(12) (d) 2.9 3.05 − 0.367 1.000
P12(20) (e) 3.9 2.78 6.700 1.000
P08-06(14) (f) 3.2 2.94 8.838 1.000
P12-20(32) (g) 4.9 3.14 11.694 1.000
Ful(60) (h) 7.7 3.11 18.868 1.000

(6.113)

TABLE II. The physical quantities at the (A) barrier and (B)
energy pocket positions calculated using Brink-Boeker force. The
radius (ρ in the text), depth of the energy pocket, and height of the
barrier pi(ρ) in Eq. (9) are listed. Here s.d. means the shortest distance
of two α clusters at the fixed radius of ρ. The values in parentheses
show the energy after subtracting the center of mass kinetic energy
for each α cluster. Conf means configurations (a)–(h) in Fig. 1.

(A) Barrier Conf ρ (fm) s.d. (fm) Height (MeV) pi(ρ)

P04(4) (a) 4.2 6.86 9.017 0.000
P08(6) (b) 4.7 6.65 12.325 0.000
P06(8) (c) 5.5 6.35 14.117 0.002
P20(12) (d) 6.1 6.41 16.605 0.004
P12(20) (e) 8.2 5.85 18.867 0.021
P08-06(14) (f) 6.7 6.16 20.102 0.007
P12-20(32) (g) 9.1 5.83 23.295 0.047
Ful(60) (h) 12.7 5.13 25.189 0.384

(10.379)

(B) Pocket Conf ρ (fm) s.d. (fm) Depth (MeV) pi(ρ)
P04(4) (a) 2.0 3.27 3.200 0.732
P08(6) (b) 2.3 3.25 4.732 0.936
P06(8) (c) 2.8 3.23 8.458 0.972
P20(12) (d) 3.1 3.26 7.841 0.999
P12(20) (e) 4.9 3.50 15.803 0.997
P08-06(14) (f) 3.6 3.31 16.079 0.998
P12-20(32) (g) 5.3 3.40 18.540 1.000
Ful(60) (h) 10.1 4.08 24.807 0.996

(11.884)

barrier height and the pocket decreases when the number of α
particles increases.

We show the same quantities as those in Table I for the case
of BB force in Table II. The b parameter is taken to be 1.409 fm
which gives the binding energy of 27.375 MeV for α particle.
Surprisingly enough, even fullerene-shaped α clustering has an
energy pocket; however, it is slightly shallower than the case of
F1 force. On the other hand, the barrier position shifts inside.
The general trends do not change so much compared with the
case of F1 force, but physical quantities largely change. For
instance, the tetrahedron shape correctly represents the ground
state of 16O, which is well reproduced by the F1 force, but this
configuration very much underbinds in the BB force case; the
energy shows the value of unbound region.

All the quantities inevitably include the spurious c.m.
energy of each α particle to be removed due to the adiabatic
treatment. The removal procedure is not so easy but possible.
The values after subtracting center-of-mass motion of each
α cluster at energy barrier and pocket points are shown
in the parentheses of Tables I and II. Since the vibration
effect of each α cluster is in three dimensions, the reduction
of the kinetic energy is quite large (more than 10 MeV);
however, the energy pocket does not disappear in F1 interaction
case.

It is shown that α clusters with geometric configurations
have certain local energy pockets when they approach each
other from large distances. These geometric configurations
are favored when α clusters form a nucleus; the Coulomb
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TABLE III. Coulomb energy [Coul (MeV)] for one α cluster at
the energy pocket calculated using F1 force together with the radius
parameter ρ (fm), which gives the energy pocket. Coul-WB is the
Coulomb energy for four particles calculated using the Weizsäcker-
Bethe mass formula. Conf means configurations (a)–(h) in Fig. 1.

Conf ρ (fm) Coul (MeV) Coul-WB (MeV)

P04(4) (a) 1.4 3.68 4.52
P08(6) (b) 2.1 4.86 5.92
P06(8) (c) 2.5 5.98 7.18
P20(12) (d) 2.9 8.32 9.40
P12(20) (e) 3.9 11.42 13.21
P08-06(14) (f) 3.2 6.52 10.42
P12-20(32) (g) 4.9 11.61 18.08
Ful(60) (h) 7.7 19.90 27.50

repulsion, most important at large distances, is reduced by
forming the hollow structures. This is shown by presenting
the expectation values of the Coulomb interaction for all
the geometric configurations at the energy pocket points. In
Table III, the Coulomb energy [Coul (MeV)] for oneα cluster at
the energy pocket calculated using F1 force are shown together
with the radius parameter ρ (fm), which gives the energy
pocket. These values are significantly smaller than Coul-WB,
which is the Coulomb energy for four particles calculated using
Weizsäcker-Bethe mass formula. Although the values of the
optimal radius parameter ρ are not so large compared with the
stand radius of nuclei with these mass numbers, the Coulomb
energies are much smaller than the mass formula. Then the
formation of geometric configuration and hollow structure is
favored.

The nucleon number density of the fullerene configuration
with ρ = 7.7 fm is shown in Fig. 4 as a function of the radius.
The integration over the radius is normalized to the number
of nucleons, and we can clearly see the appearance of hollow
structure.

In this Rapid Communication, full microscopic calculation
(wave function is fully antisymmetrized and interaction is
applied not between clusters but between nucleons) is carried
out for the balloon-shaped α clustering; typical eight examples,
five platonic solids, two cases of dual polyhedra, and the
fullerene shape are examined. It has been shown that α clusters
with these geometric configurations create certain local energy
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FIG. 4. Nucleon number density of the fullerene configuration
with ρ = 7.7 fm as a function of the radius. The integration over the
radius is normalized to the number of nucleons.

pockets when they approach each other from large distances.
These geometric configurations are favored when α clusters
form a nucleus; the Coulomb repulsion, most important at large
distances, is reduced by forming the hollow structures. Here
we avoid studying individual nuclei, because it is necessary
to dynamically consider each nucleus, and this is another
task. Namely, the next step of this investigation is to clarify
the properties on individual nuclei. Is it crazy to imagine
balloon nuclei which consist of α clusters? Our answer is
no. Reliable effective internucleon force and the complete
consideration of the Pauli principle make it possible to give a
correct answer. Surprisingly enough, the present report predicts
that even ultra-super-heavy nuclei can exist with a void as
local minimum configurations, when they gather from large
distances.

One of the authors (A.T.) has discussed the fullerene-shaped
α clusters with the late W. Greiner, for whom the authors are
now grateful. We also thank H. Horiuchi, Y. Funaki, P. Schuck,
and G. Röpke for their fruitful discussions. Numerical calcu-
lation has been performed at Yukawa Institute for Theoretical
Physics, Kyoto University. This work was supported by JSPS
KAKENHI Grant No. 17K05440.
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