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Background: An accurate determination of the core-crust transition is necessary in the modeling of neutron stars
for astrophysical purposes. The transition is intimately related to the isospin dependence of the nuclear force at
low baryon densities.
Purpose: To study the symmetry energy and the core-crust transition in neutron stars using the finite-range
Gogny nuclear interaction and to examine the deduced crustal thickness and crustal moment of inertia.
Methods: The second-, fourth-, and sixth-order coefficients of the Taylor expansion of the energy per particle in
powers of the isospin asymmetry are analyzed for Gogny forces. These coefficients provide information about
the departure of the symmetry energy from the widely used parabolic law. The neutron star core-crust transition is
evaluated by looking at the onset of thermodynamical instability of the liquid core. The calculation is performed
with the exact Gogny equation of state (EoS) (i.e., the Gogny EoS with the full isospin dependence) for the
β-equilibrated matter of the core, and also with the Taylor expansion of the Gogny EoS in order to assess the
influence of isospin expansions on locating the inner edge of neutron star crusts.
Results: The properties of the core-crust transition derived from the exact EoS differ from the predictions
of the Taylor expansion even when the expansion is carried through sixth order in the isospin asymmetry.
Gogny forces, using the exact EoS, predict the ranges 0.094 fm−3 � ρt � 0.118 fm−3 for the transition density
and 0.339 MeV fm−3 � Pt � 0.665 MeV fm−3 for the transition pressure. The transition densities show an
anticorrelation with the slope parameter L of the symmetry energy. The transition pressures are not found to
correlate with L. Neutron stars obtained with Gogny forces have maximum masses below 1.74M� and relatively
small moments of inertia. The crustal mass and moment of inertia are evaluated and comparisons are made with
the constraints from observed glitches in pulsars.
Conclusions: The finite-range exchange contribution of the nuclear force, and its associated nontrivial isospin
dependence, is key in determining the core-crust transition properties. Finite-order isospin expansions do not
reproduce the core-crust transition results of the exact EoS. The predictions of the Gogny D1M force for the
stellar crust are overall in broad agreement with those obtained using the Skyrme-Lyon EoS.
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I. INTRODUCTION

Neutron stars are unique laboratories that provide access
to regimes of extreme isospin and density via astrophysical
observations [1,2]. A wealth of data in single and binary
neutron star systems is imposing more and more precise limits
on nuclear observables, above but also close to saturation
density [3]. Observations on neutron stars masses from binaries
already restrict nuclear models and their isospin dependence
[4], and even more stringent constraints will be available from
upcoming accurate radius measurements with x-ray telescopes
[5]. The mass and radius of a neutron star is directly related
to the equation-of-state (EoS) of neutron-rich matter [6],
which is calculable within a variety of nuclear theory models
[7]. Correlations between age determinations and surface
temperature measurements provide an insight into the cooling
history of isolated neutron stars, which is in turn sensitive to
the EoS and the microphysics of both the crust and the core [8].

Glitches in the periodic radio signals emitted by pulsars are
indicative of a rich interplay between superfluid and normal
components in the crust of a neutron star [9–13]. Glitching
phenomena can also provide an indication of a pulsar’s mass,
provided that the basic microphysics of the neutron star crust

is under control [14,15]. The densities of both the inner and
outer crust are fractions of the nuclear saturation region, and
one can argue that the nuclear energy density functional is
understood to the extent that predictions in this region are under
control [3,16–18]. The boundary between the liquid core and
the inhomogeneous solid crust is connected to the isospin de-
pendence of nuclear models below saturation, as indicated by
the widely used thermodynamical method [19–26]. A variety
of different functionals (and many-body theories) have been
used to determine the properties of the core-crust transition,
including Skyrme forces [21,27–29], finite-range functionals
[26], relativistic mean-field (RMF) models [22,23,29–33],
momentum-dependent interactions [21,24], and Brueckner-
Hartree-Fock theory [34–36].

A key observable in the analysis of glitches is the thickness
of the pulsar’s crust [10,11,33,37,38], which is linked to the
core-crust transition. The crustal thickness, in turn, determines
how much superfluid is available to pin to nuclear sites. Recent
indications suggest that there is not enough superfluid in the
crust for glitches to occur [9,10]. The role of superfluid en-
trainment and its interplay with the lattice structure, however,
is also relevant [39,40]. Superfluidity is key in this region
and a detailed treatment based on the pairing extension of
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nuclear density functionals is possible [28,41,42]. From a
nuclear physics perspective, the description of the crust starting
from a finite-range functional would allow for a description of
the pairing channel which is free of divergences [43,44]. The
finite-range Gogny interaction is constructed to reproduce the
known pairing properties of nuclei [45] and is widely used in
the nuclear structure community [46]. Its isovector properties
have been analyzed by one of us in Ref. [47]. While the
symmetry energies of different Gogny forces are too soft in
comparison with existing constraints [48–50], a few Gogny
forces do generate realistic enough equations of state. In the
past, Gogny forces have been occasionally used in neutron-star
calculations [51,52].

Here, we extend the investigation of the isovector properties
of the Gogny force with an emphasis both on the higher-order
contributions to the symmetry energy and on the density
region relevant for the core-crust transition in neutron stars.
The EoS in cold asymmetric matter with the Gogny force
can be computed analytically [47]. Due to its finite-range
nature and the appearance of a nontrivial exchange term, the
density and asymmetry dependence of the EoS are expressed in
terms of functions which differ from the standard polynomials
that appear in the Skyrme approach and/or other effective
descriptions [53–55]. In turn, this may lead to a more complex
isospin asymmetry dependence, which we seek to identify
by computing, in addition to the exact EoS, fourth- and
sixth-order asymmetry effects in a Taylor expansion on the
isospin asymmetry [23–26,56–58]. The coefficients of the
expansion can be computed explicitly and provide an insight
on the importance of deviations from the standard quadratic
approximation. In many-body calculations, for instance, the
asymmetry dependence is not always directly accessible, and
the parabolic approximation is often used [34].

We explore the accuracy of the second- and higher-order
approximations for different Gogny parametrizations, by
directly comparing them to the results of the exact isospin-
dependent EoS. Moreover, the use of an expansion affects the
determination of the core-crust transition in neutron stars. The
differences between the predictions extracted from the isospin
expansion and from the exact EoS can be significant [26,35],
and we explore these for Gogny interactions by computing
the core-crust transition using the thermodynamical method
[19–22], which requires the thermodynamical stability of the
β-equilibrated matter of the homogeneous liquid core. When
we analyze the calculated properties of the transition point
against the slope parameter L of the symmetry energy in the
different Gogny sets, we find an anticorrelation of the transition
density with the L value, whereas the transition pressure does
not display a regular dependence with L.

In a second stage, we compute the structure of neutron stars
by solving the Tolman-Oppenheimer-Volkov (TOV) equations
using the exact EoS of the Gogny forces. We analyze the
stellar mass-radius relationships for the Gogny sets that yield
stable solutions of the TOV equations. We obtain the moment
of inertia of the star in the slow-rotation approximation. We
discuss the predictions for the dimensionless ratio I/MR2

as a function of the compactness of the star, and compare
with the universal fits provided by Lattimer and Schutz [59]
and Breu and Rezzolla [60]. Having evaluated the transition

point between the core and the crust, we can predict the
thickness and mass of the crust of the neutron star. Among
the analyzed Gogny interactions, the parameter sets D280
[61] and, specially, D1M [62] are found to be better suited
for describing the physical properties of the crust. Finally, we
compare the predictions of these forces for the crust fraction
of the moment of inertia, with the constraints deduced from
observed glitches [9,37].

The paper is structured as follows. Section II provides a
brief introduction to the properties of neutron-star matter of
relevance for the crust, as well as to the Gogny interaction. The
contributions to the symmetry energy arising from expansions
on the isospin asymmetry are studied in Sec. III. Following a
short review on the predictions for β-stable neutron-star matter
with the Gogny force, the results for the core-crust transition
are analyzed in Sec. IV. In Sec. V, we study the properties of
neutron stars predicted by Gogny forces, with special emphasis
on the crustal properties. We summarize our results in Sec. VI.
The appendixes contain relevant analytical formulas obtained
within the Gogny-Hartree-Fock framework, i.e., the exact EoS
and its Taylor expansion through sixth order in the isospin
asymmetry (Appendix A), the chemical potentials and the
pressure in isospin asymmetric matter (Appendix B), and the
expressions for the thermodynamical potential used to locate
the core-crust transition (Appendix C).

II. FORMALISM

The Gogny two-body effective nuclear interaction [45] used
in the present work is given (neglecting the spin-orbit force,
which vanishes in nuclear matter) by

V (r1,r2) =
∑
i=1,2

(Wi + BiPσ − HiPτ − MiPσPτ )e−r2/μ2
i

+ t3(1 + x3Pσ )ρα(R)δ(r). (1)

The two-body spin-exchange and isospin-exchange operators
are denoted by Pσ and Pτ , respectively; r = r1 − r2 is the
relative distance between two nucleons; and R = (r1 + r2)/2
is the center of mass coordinate. The first term in Eq. (1)
is modulated by two Gaussians, with short- and long-range
parameters μi . The second term is a zero-range density
dependent contribution. The coefficients t3, x3, Wi , Bi , Hi ,
and Mi (i = 1,2) are the fit parameters of the interaction (in
principle, the ranges μi and the α power are also parameters,
but in practice they are fixed in the fitting procedure).

For a given nuclear interaction, the energy per baryon
Eb(ρ,δ) in asymmetric infinite nuclear matter can be written as
a function of the total baryon number density ρ = ρn + ρp and
of the isospin asymmetry δ = (ρn − ρp)/ρ, where ρn and ρp

are, respectively, the neutron and proton number densities. The
analytical expression of Eb(ρ,δ) for the Gogny interaction is
provided in Eqs. (A1)–(A5) of Appendix A. It is also common
to express the energy per baryon as a Taylor expansion with
respect to the isospin asymmetry around δ = 0:

Eb(ρ,δ) = Eb(ρ,δ = 0) + Esym,2(ρ)δ2 + Esym,4(ρ)δ4 + · · ·
+Esym,2k(ρ)δ2k + O(δ2k+2). (2)
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Charge symmetry of the nuclear forces is assumed, so that
the strong interaction is symmetric under neutron and proton
exchange and only even powers of δ appear in Eq. (2). The first
coefficient in this expansion, Eb(ρ,δ = 0), gives the energy per
baryon in symmetric nuclear matter. The symmetry energy
coefficient is usually defined as the second-order coefficient
in the expansion, Esym,2(ρ). Another popular notation for
Esym,2(ρ) in the literature is S(ρ) [47,63]. If the isospin
dependence of the EoS is rich, however, one expects that the
higher-order coefficients may provide relatively important cor-
rections [21,56]. In general, the symmetry energy coefficients
at a given order 2k in the isospin asymmetry are defined as

Esym,2k(ρ) = 1

(2k)!

∂2kEb(ρ,δ)

∂δ2k

∣∣∣∣
δ=0

. (3)

These coefficients are intimately related to the isospin depen-
dence of the nuclear interaction, and are directly connected to
the properties of the single-nucleon potential in asymmetric
systems [55,64]. Analytical expressions for the symmetry
energy coefficients Esym,2(ρ), Esym,4(ρ), and Esym,6(ρ) for
the Gogny interaction are given in Eqs. (A12)–(A14) of
Appendix A. Recent calculations in many-body perturbation
theory have shown that the isospin asymmetry expansion (2)
may not be convergent at zero temperature when the many-
body corrections beyond the Hartree-Fock mean-field level are
incorporated [65]. We do not deal with this complication here
since we will be working at the Hartree-Fock level, where no
nonanalyticities are found in the equation of state.

In our applications of Gogny forces to calculations of
the matter of the core of neutron stars, we shall consider
neutron star cores consisting of β-stable npe asymmetric
nuclear matter. This is the expected composition of the neutron
star core below the inner edge of the crust. The very dense
inner core of the star may harbor more exotic particles such
as hyperons [66,67]. However, in this paper we are mainly
interested in studying the properties of the nucleonic EoS of
Gogny forces and, hence, we shall avoid dwelling with cores
with more exotic components. In the system of npe matter, we
can express the total energy density as the sum of the baryon
and electron contributions, i.e.,

H(ρ,δ) = Hb(ρ,δ) + He(ρ,δ). (4)

The baryon contribution includes the energy per baryon
Eb(ρ,δ) as well as the nucleon rest mass m:

Hb(ρ,δ) = ρEb(ρ,δ) + ρm. (5)

It is to be noted that we use natural units h̄ = c = 1. The
electronic contribution is that of a relativistic degenerate free
Fermi gas [68]:

He = m4
e

8π2

[
xF

√
1 + x2

F

(
2x2

F + 1
) − arcsinh(xF )

]
, (6)

where me is the mass of the electron and the dimensionless
Fermi momentum is xF ≡ kFe/me = (3π2ρe)1/3/me, with
ρe being the electron number density. We impose charge
neutrality and thus consider ρe = ρp.

The pressure of the system contains the baryon and electron
contributions,

P (ρ,δ) = Pb(ρ,δ) + Pe(ρ,δ), (7)

with

Pb = ρ2 ∂Eb

∂ρ
and Pe = ρ2

e

∂Ee

∂ρe

, (8)

where Ee is the electron energy per particle. An analytical
expression for the baryon pressure in Gogny interactions is
provided in Appendix B. The corresponding electron pressure
is

Pe = m4
e

24π2

[
xF

√
1 + x2

F

(
2x2

F − 3
) + arcsinh(xF )

]
. (9)

We denote by μn, μp, and μe the chemical potentials of
neutrons, protons, and electrons, respectively. The electron
chemical potential is

μe = ∂He

∂ρe

=
√

k2
Fe + m2

e =
√

(3π2ρe)2/3 + m2
e . (10)

For neutrons and protons, chemical potentials are obtained
from density derivatives of the energy density,

μn = ∂Hb

∂ρn

and μp = ∂Hb

∂ρp

, (11)

or, alternatively, from the single-particle potentials at the
corresponding Fermi surfaces [47]. Analytical expressions for
the nucleon chemical potentials are given in Appendix B. With
Eqs. (10) and (11), we can write the pressures in Eq. (8) as

Pb(ρ,δ) = μnρn + μpρp − Hb(ρ,δ),

Pe(ρ,δ) = μeρe − He(ρ,δ). (12)

Before we proceed to study the core-crust transition in neu-
tron stars with the Gogny interaction, in the following Sec. III
we analyze the symmetry energy of Gogny forces at higher
orders. If the exact EoS is replaced by its Taylor expansion
at second and higher orders in the isospin asymmetry, the
properties of the core-crust transition may be affected. Hence,
in Sec. IV when we study the neutron star core-crust transition
we will also analyze the errors introduced by breaking the
isospin asymmetry expansion of the EoS at finite orders.
Finally, in Sec. V we will compute with the Gogny forces
global properties, such as masses and sizes, of neutron stars
and their crusts.

III. SYMMETRY ENERGY OF GOGNY FORCES

There are about ten available Gogny parametrizations in the
literature [47]. In our calculations, we use the interactions D1
[45], D1S [69], D1M [62], D1N [70], and the family of forces
D250, D260, D280, and D300 [61]. D1 is the original Gogny
force and was fit to the properties of a few closed-shell nuclei
and of nuclear matter at saturation [45]. D1S was introduced
some years later with a focus on describing nuclear fission [69],
and remains the most widely used Gogny force to date. The
models D250, D260, D280, and D300 were devised to have
different nuclear matter compression moduli for calculations
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FIG. 1. Density dependence of the second-order symmetry en-
ergy coefficient Esym,2(ρ) for different Gogny interactions. Also
represented are the symmetry energy constraints extracted from the
analysis of data on isobaric analog states (IAS) and of IAS data
combined with neutron skins (IAS+n.skin) [72], the constraints from
the electric dipole polarizability in lead (αD in 208Pb) [73], and
from transport simulations of heavy-ion collisions of tin isotopes
(HIC) [74].

of the breathing mode in nuclei [61]. D1N is a revised
parametrization of D1S that aims to improve on some of its
features, such as the isotopic trends of binding energies [70].
The isospin dependence of this force was calibrated by con-
sidering the Friedman-Pandharipande neutron matter EoS in
the density region from subsaturation up to saturation densities
[70]. Finally, D1M [62] has been conceived as a high-accuracy
nuclear mass model within the Hartree-Fock-Bogoliubov
approach. The D1M parameters have been obtained by a
global fit to essentially all measured nuclear masses, while
keeping the properties of nuclear matter and neutron matter in
satisfactory agreement with realistic many-body calculations
of the EoS [62]. We note that, as discussed in Ref. [47], none of
these Gogny parametrizations fall within the low-density (ρ <
0.08 fm−3) microscopic predictions based on chiral effective

field theory proposed in Ref. [71]. At densities between
0.10 fm−3 and 0.17 fm−3, however, Gogny parametrizations
overlap with the microscopic constraints of Ref. [71].

A. Second-, fourth-, and sixth-order contributions
to the symmetry energy

We first analyze the second- and higher-order terms (sym-
metry energy coefficients) in the Taylor expansion, Eq. (2), of
the energy per particle for the Gogny interaction. A detailed
characterization of these terms is useful in order to understand
the calculations of β-equilibrium matter as well as the core-
crust transition. In Fig. 1 we show the second-order symmetry
energy coefficient Esym,2(ρ) for all the considered Gogny
interactions. At low densities ρ � 0.1 fm−3, Esym,2(ρ) has
comparable values in all the forces and increases with density.
From ρ � 0.1 fm−3 on, there are substantial differences
between the predictions of different parametrizations. In com-
parison with existing empirical constraints for the symmetry
energy at subsaturation density [72–74], one finds that the
Gogny functionals in general respect them (cf. Fig. 1). At
saturation density, Esym,2(ρ) of the Gogny forces lies between
28.5 and 33 MeV. The relatively flat density dependence
of Esym,2(ρ) around saturation for all the interactions in
turn translates into a relatively small slope parameter L, as
discussed in Ref. [47] (see also Table I below). As a general
trend, all curves peak at values Esym,2(ρ) ∼ 30–40 MeV right
above saturation density, with a subsequent flattening. Beyond
this maximum, all parametrizations yield a symmetry energy
that decreases with density (in D1M, though, this happens
only at substantially high densities). In all cases, Esym,2(ρ)
beyond 0.4 fm−3 eventually becomes negative (in D1M only
at a very large density of 1.9 fm−3), signaling the onset of an
isospin instability. We do not consider explicitly the effect of
this instability in the following discussions.

We show the symmetry energy coefficients of fourth
order, Esym,4(ρ), and sixth order, Esym,6(ρ), in Figs. 2 and
3, respectively. On the one hand, at subsaturation densities
both terms are relatively small: below saturation density,
Esym,4(ρ) is below ≈1 MeV and Esym,6(ρ) does not go above
≈0.3 MeV. These values can be compared with the larger

TABLE I. Saturation properties of nuclear matter studied using Gogny interactions. The saturation density ρ0 has units of fm−3 and all
other properties have units of MeV.

Force D1 D1S D1M D1N D250 D260 D280 D300

ρ0 0.167 0.163 0.165 0.161 0.158 0.160 0.153 0.156
E0 −16.31 −16.01 −16.03 −15.96 −15.80 −16.26 −16.33 −16.22
K0 229.37 202.88 224.98 225.65 249.41 259.49 285.20 299.14

Esym,2(ρ0) 30.70 31.13 28.55 29.60 31.54 30.11 33.14 31.23
Esym,4(ρ0) 0.76 0.45 0.69 0.21 0.43 1.20 1.18 0.80
Esym,6(ρ0) 0.20 0.16 0.24 0.15 0.16 0.27 0.29 0.20
L 18.36 22.43 24.83 33.58 24.90 17.57 46.53 25.84
L4 1.75 −0.52 −1.04 −1.96 −0.33 4.73 4.36 2.62
L6 0.46 0.08 0.42 0.08 0.09 0.99 1.19 0.63

EPA
sym(ρ0) 31.91 31.95 29.73 30.14 32.34 31.85 35.89 32.44

LPA 21.16 22.28 24.67 31.95 24.94 24.33 53.25 29.80
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FIG. 2. Density dependence of the fourth-order symmetry energy
coefficient Esym,4(ρ) for different Gogny interactions.

values of Esym,2(ρ) > 10 MeV in the same density regime.
One should also consider that in the expansion of Eq. (2)
the terms Esym,4(ρ) and Esym,6(ρ) carry additional factors δ2

and δ4 with respect to Esym,2(ρ), and their overall magnitude
will therefore be smaller. On the other hand, above saturation
density, we observe two markedly different behaviors for the
density dependence of Esym,4 and Esym,6. For both Esym,4(ρ)
and Esym,6(ρ), we find a group of parametrizations (D1S, D1M,
D1N, and D250) that reach a maximum and then decrease with
density. We call this set of forces “group 1” from now on. A
second set of forces, “group 2,” is formed of D1, D260, D280,
and D300, which yield Esym,4(ρ) and Esym,6(ρ) terms that do
not reach a maximum and increase steeply in the range of the
studied densities.

The difference in density dependence between the second-
order symmetry energy and its higher-order corrections can
be understood by decomposing them into terms associated
to the different contributions from the nuclear Hamiltonian.
All three coefficients Esym,2, Esym,4, and Esym,6 include a
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FIG. 3. Density dependence of the sixth-order symmetry energy
coefficient Esym,6(ρ) for different Gogny interactions.

kinetic component, which decreases substantially as the order
increases. The Esym,2 coefficient also receives contributions
from the zero-range term of the force [Eq. (A3)] as well as
from the finite-range direct and exchange terms [Eqs. (A4)
and (A5)]:

Esym,2(ρ) = h̄2

6m

(
3π2

2

)2/3

ρ2/3

− 1

8
t3ρ

α+1(2x3 + 1) + 1

2

∑
i=1,2

μ3
i π

3/2Biρ

+ 1

6

∑
i=1,2

[−CiG1(μikF ) + DiG2(μikF )]. (13)

The expressions for the constants Bi , Ci , and Di and the
Gn(μikF ) functions are given in Appendix A. We note that
the direct terms of the finite-range contribution to Esym,2 are
directly proportional to the constants Bi and to the density
ρ. The functions Gn(μikF ) are due solely to the exchange
contribution in the matrix elements of the Gogny force.
One can equally say that they reflect the contribution of the
momentum dependence of the interaction to the symmetry
energy. As discussed in Ref. [47], the zero-range term, the
direct term, and the exchange (momentum-dependent) term
contribute with similar magnitudes to the determination of
Esym,2 with Gogny forces. However, they contribute with
different signs, which leads to cancellations in Esym,2 between
the power-law zero-range term, the linear density-dependent
direct term, and the more complex exchange term. Depending
on the parametrization, the sum of the zero-range and direct
terms is positive and the exchange term is negative, or the other
way around. In any case, there is a balance between terms,
which gives rise to a somewhat similar density dependence of
the symmetry energy coefficient Esym,2 for all parameter sets.

In contrast to the case of the Esym,2 coefficient, neither the
zero-range nor the direct term contribute to the Esym,4 and
Esym,6 coefficients,

Esym,4(ρ) = h̄2

162m

(
3π2

2

)2/3

ρ2/3

+ 1

324

∑
i=1,2

[CiG3(μikF ) + DiG4(μikF )],

Esym,6(ρ) = 7h̄2

4374m

(
3π2

2

)2/3

ρ2/3

+ 1

43740

∑
i=1,2

[CiG5(μikF ) − DiG6(μikF )],

(14)

because both the zero-range and the direct components of
the energy per particle [cf. Eqs. (A3) and (A4)] depend on the
square of the isospin asymmetry, δ2. In other words, the higher-
order corrections to the symmetry energy are only sensitive to
the kinetic term and to the momentum-dependent term, i.e.,
the exchange term of the Gogny force. We note that the same
pattern is found in zero-range Skyrme forces. That is, also in
Skyrme forces the higher-order symmetry energy coefficients
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FIG. 4. Density dependence of the ratios Esym,4(ρ)/Esym,2(ρ) (top
panel) and Esym,6(ρ)/Esym,2(ρ) (bottom panel) for different Gogny
interactions.

Esym,4, Esym,6, etc., arise exclusively from the kinetic term
and from the momentum-dependent term of the interaction,
which in the Skyrme forces is the term with the usual t1 and t2
parameters [53,54]. In the Skyrme case, though, the functional
dependence of the momentum-dependent contribution to the
symmetry energy coefficients is proportional to ρ5/3, whereas
in the Gogny case it has a more intricate density dependence
due to the finite range of the interaction, which is reflected in
the Gn(μikF ) functions.

In both Esym,4(ρ) and Esym,6(ρ) of Gogny forces, cf.
Eq. (14), the exchange term is given by the product of two
parametrization-dependent constants, Ci and Di , and two
density-dependent functions, G3 and G4, or G5 and G6.
Because the density dependence of these functions is similar,
one does expect that comparable density dependencies arise
for the fourth and the sixth order, as observed in Figs. 2
and 3. This simple structure also provides an explanation
for the appearance of two distinct groups of forces in terms
of the density dependence of Esym,4(ρ) and Esym,6(ρ). In
group 1 forces, the fourth- and sixth-order contributions to
the symmetry energy change signs as a function of density,
whereas group 2 forces produce monotonically increasing
functions of density. The change of sign is necessarily due to
the exchange contribution, which in the case of group 1 forces
must also be attractive enough to overcome the kinetic term.

For further insight into the relevance of Esym,4(ρ) and
Esym,6(ρ) for the Taylor expansion of the EoS at each density,
we plot in Fig. 4 their ratios with respect to Esym,2(ρ). In
the zero density limit, we see that both ratios tend to a

constant value. This is expected in the noninteracting case,
although the actual values of these ratios are modified by the
exchange contributions. In this limit, we find Esym,4/Esym,2 ≈
1.5% and Esym,6/Esym,2 ≈ 0.4%. At low but finite densities,
ρ � 0.1 fm−3, the ratio Esym,4/Esym,2 is relatively flat and
not larger than 3%. The ratio for the sixth-order term is
also mildly density dependent and less than 0.6%. Beyond
saturation, both ratios increase in absolute value, to the point
that for some parametrizations the ratio of the fourth- (sixth-)
order term to the second-order term is not negligible and
of about 10–30% (2–8%) or even more. In particular, this
is due to the decreasing trend of Esym,2(ρ) with increasing
density for several interactions when ρ is above saturation.
We may compare these results for the ratios with previous
literature. For example, in the calculations of Ref. [24]
with the momentum-dependent interaction (MDI) and with
the Skyrme forces SLy4, SkI4, and Ska, we find values
|Esym,4(ρ)/Esym,2(ρ)| < 8% at ρ ∼ 0.4 fm−3. In the same
reference, we find that the Thomas-Fermi model of Myers
and Swiatecki yields a ratio |Esym,4(ρ)/Esym,2(ρ)| reaching
60% already at moderate density ρ = 1.6ρ0 [24]. With RMF
models such as FSUGold or IU-FSU, at densities ρ ∼ 0.4 fm−3

one has ratios |Esym,4(ρ)/Esym,2(ρ)| < 4% [23]. All in all, it
appears that Gogny parametrizations provide ratios that are
commensurate with previous literature.

B. Isovector properties at saturation

The physics of the core-crust transition occurs at subsatu-
ration densities, which is also the finite nucleus regime where
Gogny forces are fit to. At slightly higher densities, at and
around saturation, one also expects the isovector properties to
be relatively well under control [34]. Large deviations between
functionals at saturation would point to large systematic
uncertainties in the nuclear density functional [75].

We present the isoscalar saturation properties for Gogny
functionals in the first three rows of Table I. The saturation
density is close to ρ0 � 0.16 fm−3 in all cases. The saturation
energy is also within a few percent of the standard value E0 �
−16 MeV. The compressibility K0 describes the curvature
of the energy per particle around the saturation point, and
has a wider range of values, 202 � K0 � 300 MeV. Part of
this variation is due to the family of interactions D250–D300,
which were specifically designed to have a range of nuclear
compressibilities [61]. The lower bound, however, is given
by the D1S force [69], with K0 ≈ 202 MeV. On the whole,
isoscalar saturation properties are in line with expectations.

Rows 4–6 of Table I include the symmetry energy coef-
ficients at the saturation density calculated at second, fourth,
and sixth order. The second-order symmetry energy coefficient
is in the range of Esym,2(ρ0) ≈ 28–33 MeV, which agrees
well with known empirical and theoretical values [48–50].
This range may also be compared with the values derived
from recent microscopic calculations, such as, e.g., the range
of 28.5–33.3 MeV proposed from ab initio calculations of
the electric dipole polarizability in 48Ca [76] using chiral
interactions [77,78], and the ranges 28–35 MeV [79] and
29–34 MeV [80] from nuclear and neutron matter calculations
from chiral effective field theory. For the symmetry energy
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corrections of fourth and sixth order in the Gogny forces, we
find values of Esym,4(ρ0) ≈ 0.2–1.2 MeV and Esym,6(ρ0) ≈
0.15–0.3 MeV at saturation density. Clearly, they exhibit
larger relative variations in the different forces than Esym,2(ρ0).
Bulk isovector properties are hardly ever considered in the fit
procedure of Gogny interactions. The isospin dependence of
these forces is guided by fits to finite-nucleus properties, close
to isospin-symmetric conditions. It is therefore not surprising
to find large variations in the isovector properties predicted by
different parametrizations, in contrast to the well-constrained
isoscalar properties.

If we expand Esym,2k(ρ) around saturation density ρ0, we
obtain the expression

Esym,2k(ρ) = Esym,2k(ρ0) + L2kε + O(ε2), (15)

where ε = (ρ − ρ0)/(3ρ0) is the relative density variation with
respect to ρ0. The slope parameters L2k are given by

L2k = 3ρ0
∂Esym,2k(ρ)

∂ρ

∣∣∣∣
ρ0

. (16)

Recalling Eq. (2) and the saturation condition of nuclear forces,
we see that the density slope at saturation of the energy per
particle Eb(ρ,δ) of asymmetric matter can be parametrized as

∂Eb(ρ,δ)

∂ρ

∣∣∣∣
ρ0

= 1

3ρ0
(L2δ

2 + L4δ
4 + L6δ

6 + · · · ). (17)

L2 is usually referred to as the slope parameter of the symmetry
energy and is denoted as L, which we do from here onwards.

The expressions for L, L4, and L6 in the Gogny interaction
are collected in Appendix A. The numerical results are
presented in Table I. The values of L2k provide a good handle
on the density dependence of the corresponding Esym,2k(ρ)
contributions. At second order, the slope parameter L is
positive in all the interactions. It goes from L = 17.57 MeV
in D260 to 46.53 MeV in D280. This large variation of the L
value indicates that the density dependence of the symmetry
energy is poorly constrained with these forces [47]. We also
emphasize that all forces in Table I have a low slope parameter,
under 50 MeV, and thus correspond to soft symmetry energies
[48–50,81–83]. Indeed, we see that the L values in Table I
are below or on the low side of recent results proposed from
microscopic calculations, such as L = 43.8–48.6 MeV [76],
L = 20–65 MeV [79], and L = 45–70 MeV [80].

The higher-order slope parameters L4 and L6 are in
keeping with the density dependence of Esym,4 and Esym,6,
respectively. As expected for two quantities that are difficult
to constrain with finite nuclei properties, there are large
systematic variations of the values of both L4 and L6. L4 goes
from about −2 MeV (D1N) to 4.7 MeV (D260) and L6 is in the
range of 0.1–1.2 MeV for the different forces. Interestingly, we
find a one-to-one correspondence between group 1 and group
2 forces and the sign of L4. For group 1 forces, Esym,4(ρ) has
already reached a maximum at saturation density and tends to
decrease with density (cf. Fig. 2); consequently, L4 is negative.
On the contrary, group 2 forces have positive L4, reflecting
the increasing nature of Esym,4(ρ) with density. In contrast to
L4, the values of L6 are always positive. This is a reflection
of the fact that the maximum of Esym,6(ρ) occurs somewhat

above saturation density, as shown in Fig. 3. It is worth
noting that in absolute terms the value of the L2k parameters
decreases with increasing order of the expansion, i.e., we have
|L6| < |L4| < |L|. This indicates that the dominant density
dependence of the isovector part of the functional is accounted
for by the second-order parameter L.

C. Parabolic approximation

A parabolic approximation (PA) has been widely used in
the literature to evaluate the energy of asymmetric matter
with isospin asymmetry δ by interpolation of the energies in
symmetric matter and in pure neutron matter, i.e.,

Eb(ρ,δ) = Eb(ρ,δ = 0)(1 − δ2) + Eb(ρ,δ = 1)δ2. (18)

In this case, the symmetry energy coefficient, which we will
denote as EPA

sym(ρ) in the following, is given by the difference
between the energy per particle in pure neutron matter and in
symmetric nuclear matter:

EPA
sym(ρ) = Eb(ρ,δ = 1) − Eb(ρ,δ = 0). (19)

This expression is often used in microscopic approaches,
where calculations of asymmetric matter and its derivatives
are not necessarily straightforward [7,34]. With the Taylor
expansion in Eq. (2) taken up to order δ2 and setting δ = 1,
one finds EPA

sym(ρ) = Esym,2(ρ). However, EPA
sym(ρ) includes, in

principle, contributions from all Esym,2k(ρ) terms:

EPA
sym(ρ) =

∑
k

Esym,2k(ρ). (20)

Large values of the higher-order corrections to Esym,2(ρ) will
spoil the correspondence between the two quantities.

In Fig. 5 we show the results for EPA
sym(ρ) from the different

Gogny functionals. We find a similar picture to that of Fig. 1.
At subsaturation densities, the symmetry energies EPA

sym(ρ) of
all the forces are quite close to each other. At and above
saturation, there are markedly different behaviors. Usually,
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FIG. 5. Density dependence of the symmetry energy coefficient
in the parabolic approximation [Eq. (19)] for different Gogny
interactions.
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FIG. 6. Density dependence of the ratio EPA
sym(ρ)/Esym,2(ρ) for

different Gogny interactions.

EPA
sym(ρ) reaches a maximum and then starts to decrease up to

a given density where it becomes negative.
In order to analyze better the differences between EPA

sym(ρ)
and Esym,2(ρ), we plot in Fig. 6 the ratio EPA

sym(ρ)/Esym,2(ρ). At
low densities ρ � 0.1 fm−3, the symmetry energy calculated
with the parabolic law is always a little larger than calculated
with Eq. (3) for k = 1. The ratio is approximately 1.025
irrespective of the functional. This is relatively consistent
with the zero-density limit of a free Fermi gas, which has
a ratio EPA

sym(ρ)/Esym,2(ρ) = 9
5 (22/3 − 1) ≈ 1.06. At densities

ρ � 0.1 fm−3, the ratios change depending on the Gogny force.
Here, group 1 and group 2 parametrizations again show two
distinct behaviors. In group 1 (D1S, D1M, D1N, D250), the
ratio becomes smaller than 1 at large densities, whereas in
group 2 (D1, D260, D280, D300), it increases with density.
There is a clear resemblance between Fig. 6 and the top panel
of Fig. 4. Indeed, Eq. (20) suggests that the two ratios are
connected,

EPA
sym(ρ)

Esym,2(ρ)
= 1 + Esym,4(ρ)

Esym,2(ρ)
+ · · · , (21)

as long as the next-order term Esym,6(ρ)
Esym,2(ρ) is small. The behavior of

the ratio
EPA

sym(ρ)
Esym,2(ρ) can therefore be discussed in similar terms as

the ratios shown in Fig. 4. As discussed earlier in the context
of Eq. (14), Esym,4(ρ) and Esym,6(ρ) are entirely determined
by the exchange contributions that are proportional to the
constants Ci and Di and the functions Gn(μikF ).

We include in Table I the results for EPA
sym(ρ0) at satu-

ration density for the Gogny functionals. The values are of
approximately 30–36 MeV. In general, EPA

sym(ρ0) is larger than
Esym,2(ρ0) for the same interaction. This is in accordance with
Eq. (20) and the fact that both Esym,4(ρ0) and Esym,6(ρ0) are
positive (Table I). When these are added up to the value of
Esym,2(ρ0), one finds a very close agreement with EPA

sym(ρ0).
The differences, about a percent, should be explained in terms
of relatively small k > 3 contributions.

Moreover, analogously to the definition of Eq. (16), the
slope parameter using the PA can be computed as

LPA = 3ρ0

∂EPA
sym(ρ)

∂ρ

∣∣∣∣∣
ρ0

. (22)

The LPA values are displayed in the last row of Table I. There
are again differences between the two groups of functionals.
In group 1 forces, such as D1S, D1M, D1N, or D250, the LPA

values are fairly close to the slope parameter L. In contrast,
group 2 forces have LPA values that are substantially larger
than L. For example, the relative differences between LPA

and L are of the order of 40% for D260 and 15% for D280.
This again may be explained in terms of the higher-order
L2k contributions, which add up to give LPA analogously to
Eq. (20).

This points to an important conclusion of this paper. For
Gogny interactions, the parabolic approximation seems to
work relatively well at the level of the symmetry energy. For the
slope parameter, however, the contribution of L4 can be large
and spoil the agreement between the approximated LPA and L.
L4 is a density derivative of Esym,4, which, as shown in Eq. (14),
is entirely determined by the exchange finite-range terms in
the Gogny force. The large values of L4 are therefore due
to isovector finite-range exchange contributions. We therefore
conclude that exchange contributions play a very important
role in the slope parameter. These terms can provide substantial
(in some cases of order 30%) corrections and should be
explicitly considered when it is possible to do so [34].

IV. NEUTRON STAR CORE-CRUST TRANSITION

A. β-stable neutron star matter

In β-stable npe matter, the URCA reactions

n → p + e− + ν̄e, p + e− → n + νe (23)

take place simultaneously. Assuming that the neutrinos leave
the system, β equilibrium leads to the condition

μnp ≡ μn − μp = μe, (24)

where μn, μp, and μe are the chemical potentials of neutrons,
protons, and electrons, respectively. The analytical expression
of the nucleonic chemical potentials for the Gogny interaction
is provided in Appendix B, whereas the electronic chemical
potential is given by Eq. (10) with ρe = ρp due to charge
neutrality. Ultimately, the condition of Eq. (24) is an implicit
equation for the isospin asymmetry δ that at each baryon
density ρ allows the system to be β equilibrated.

Recalling Eq. (11) for the neutron and proton chemical
potentials, the β-equilibrium condition can be written as

2
∂Eb(ρ,δ)

∂δ
= μe, (25)

where Eb(ρ,δ) is the baryon energy per particle. Now, if we
replace in Eq. (25) the full expression for Eb(ρ,δ) with its
Taylor expansion in powers of δ2, given by Eq. (2), the β-
equilibrium condition becomes

4δEsym,2(ρ) + 8δ3Esym,4(ρ) + 12δ5Esym,6(ρ) + O(δ7) = μe.

(26)
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FIG. 7. Density dependence of the isospin asymmetry in β-stable
matter calculated using the exact expression of the EoS or the
expression in Eq. (2) up to second, fourth, and sixth order for the D1S
and D280 interactions. The results of the parabolic approximation are
also included.

Upon using the PA discussed in Sec. III C, it is easy to see that
the β-equilibrium condition takes the form

4δEPA
sym(ρ) = μe. (27)

Employing the full EoS of the interaction, the solution
of Eq. (24) [or, equivalently, Eq. (25)] will yield the exact
isospin asymmetry of β equilibrium for Gogny forces. Solving
Eqs. (26) and (27) instead, we will be able to gauge the quality
of replacing the exact isospin dependence of the interaction by
the different approximations of the symmetry energy.

We present in Fig. 7 the asymmetry of β-stable matter as a
function of density calculated using different approximations
for two illustrative cases. Namely, we show the results for
the D1S force (lines without symbols) that has a low slope
parameter L = 22.4 MeV and the results for D280 (lines with
triangles) that has L = 46.5 MeV, the largest L value of the
analyzed forces (cf. Table I). We include in Fig. 7 the results
obtained with the exact EoS (black solid line), as well as those
obtained with the expansion (2) of the EoS up to second order
(red dashed lines), fourth order (green dash-dotted lines), and
sixth order (blue dash-double-dotted lines). We also provide
results with the parabolic approximation (orange double-dash-
dotted lines). In general, there is a trend, that in models with
softer symmetry energy, like D1S, there is an overall larger
isospin asymmetry at densities above ∼0.1 fm−3. In other
words, the system is more neutron-rich at these densities for
D1S as compared to D280. It is in consonance with the fact
that for the same density range the symmetry energy of D1S
is smaller than in D280, as can be seen in Fig. 1. Importantly,
we also find that, when one uses the Taylor expansion (2)
of the EoS up to second order [i.e., Eb(ρ,δ) = Eb(ρ,0) +
Esym,2(ρ)δ2], the predicted values for the β-equilibrium
asymmetry are far from the results obtained with the exact
EoS. The agreement improves as the approximations of the
EoS increase in order, but even with the terms up to sixth order,
the β-equilibrium asymmetries are not in line with the values
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FIG. 8. Density dependence of the pressure in β-stable matter
calculated using the exact expression of the EoS or the expression
in Eq. (2) up to second, fourth, and sixth order for the D1S and
D280 interactions. The results of the parabolic approximation are
also included. The vertical axis is in logarithmic scale.

of the exact EoS. As for the PA results [which correspond
to using Eb(ρ,δ) = Eb(ρ,0) + EPA

sym(ρ)δ2], it is interesting to
note that they are significantly different from those obtained
in the second-order approximation. In fact, for the functionals
under consideration, the PA asymmetries are overall closer to
the exact asymmetries than the second-order values.

We display in Fig. 8 the pressure of β-stable matter,
including the (small) electron contribution, for the same
Gogny forces. We show results calculated using the exact β-
equilibrium condition, as well as the different approximations
and the PA. For the D1S force, the relative differences between
the pressure calculated at second order and the pressure of the
exact EoS are of 30% at the largest density (0.4 fm−3) of
the figure. With the corrections up to sixth order included, the
differences reduce to 1%. For D280, these differences are of
10% and 1.5%, respectively. In all cases, adding more terms
in the expansion brings the results closer to the pressure of the
exact EoS. The results for the pressure are in keeping with the
pure neutron matter predictions of Ref. [47] and the β-stable
calculations of Ref. [52].

B. Core-crust transition from the thermodynamical method

In order to predict the transition between the core and the
crust of the neutron star, we apply the so-called thermody-
namical method [19,20] which has been widely used in the
literature [21–26]. Within this approach, the stability of the
neutron star core is discussed in terms of its bulk properties.
The following mechanical and chemical stability conditions
set the boundaries of the homogeneous core:

−
(

∂P

∂v

)
μnp

> 0, (28)

−
(

∂μnp

∂q

)
v

> 0. (29)
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Here, P is the total pressure of β-stable matter, defined in
Eq. (7); μnp is the difference between the neutron and proton
chemical potentials [Eq. (24)]; v = 1/ρ is the volume per
baryon; and q is the charge per baryon. Calculations with
the dynamical method [16,17,21,27,35], the RPA [30,31,33],
or with a quantum mechanical approach based on response
functions [84,85] can also be implemented, although the
presence of the finite-range exchange term in the Gogny
interaction is a nontrivial complication. The thermodynam-
ical approach is the long-wavelength limit of the dynam-
ical method and requires the convexity of the energy per
particle in the single phase when neglecting the Coulomb
interaction [21,22].

First, we consider the mechanical stability condition in
Eq. (28). The electron pressure does not contribute to this term,
due to the fact that the derivative is performed at constant μnp.
In β equilibrium, this involves a constant electron chemical
potential μe and, because the electron pressure in Eq. (9) is
a function of μe only, the derivative of Pe with respect to v
vanishes. Equation (28) can therefore be rewritten as

−
(

∂Pb

∂v

)
μnp

> 0. (30)

Moreover, the isospin asymmetry of the β-stable system is
a function of density δ(ρ). With μnp = 2∂Eb/∂δ, and using
Eq. (8) for baryons, we can express the mechanical stability
condition as [21–24]

−
(

∂Pb

∂v

)
μnp

= ρ2

⎡
⎣2ρ

∂Eb(ρ,δ)

∂ρ
+ ρ2 ∂2Eb(ρ,δ)

∂ρ2

−
(
ρ ∂2Eb(ρ,δ)

∂ρ∂δ

)2

∂2Eb(ρ,δ)
∂δ2

⎤
⎦ > 0. (31)

In the chemical stability condition of Eq. (29), the charge q
can be written as q = xp − ρe/ρ, where xp = (1 − δ)/2 is
the proton fraction. In the ultrarelativistic limit, the electron
number density is related to the chemical potential by ρe =
μ3

e/(3π2). We can thus recast (29) as

−
(

∂q

∂μnp

)
v

= 1

4

[
∂2Eb(ρ,δ)

∂δ2

]−1

+ μ2
e

π2ρ
> 0. (32)

In the low-density regime of interest for the core-crust
transition, the first term on the right-hand side is positive for
the Gogny parametrizations studied here. With a second term
that is also positive, we conclude that the inequality of Eq. (32)
is fulfilled. Hence, the stability condition for β-stable matter
can be expressed in terms of Eq. (31) alone, with the result
[19–22]

Vther(ρ) = 2ρ
∂Eb(ρ,δ)

∂ρ
+ ρ2 ∂2Eb(ρ,δ)

∂ρ2

−
(

ρ
∂2Eb(ρ,δ)

∂ρ∂δ

)2(
∂2Eb(ρ,δ)

∂δ2

)−1

> 0, (33)
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FIG. 9. Density dependence of the thermodynamical potential
Vther(ρ) in β-stable matter calculated using the exact expression of
the EoS (solid lines) or the expression in Eq. (2) up to second (dashed
lines), fourth (dash-dotted lines), and sixth (dash-double-dotted lines)
order for the D1S and D280 interactions. The results of the parabolic
approximation are also included (double-dashed-dotted lines).

where we have introduced a thermodynamical potential,
Vther(ρ).

If the condition for Vther(ρ) is rewritten using the Taylor
expansion of Eb(ρ,δ) given in Eq. (2), one finds

Vther(ρ) = ρ2 ∂2Eb(ρ,δ = 0)

∂ρ2
+ 2ρ

∂Eb(ρ,δ = 0)

∂ρ

+
∑

k

δ2k

(
ρ2 ∂2Esym,2k(ρ)

∂ρ2
+ 2ρ

∂Esym,2k(ρ)

∂ρ

)

− 2ρ2δ2

(∑
k

kδ2k−2 ∂Esym,2k(ρ)

∂ρ

)2

×
[∑

k

(2k − 1)kδ2k−2Esym,2k(ρ)

]−1

> 0. (34)

This equation can be solved order by order, together with
the β-equilibrium condition, Eq. (26) [or Eq. (27) in the PA
case], to evaluate the influence on the predictions for the core-
crust transition of truncating the Taylor expansion of the EOS
of asymmetric nuclear matter. We collect in Appendix C the
expressions for the derivatives of Eb(ρ,δ) that are needed to
calculate Vther(ρ) in Eqs. (33) and (34) for Gogny forces.

We show in Fig. 9 the density dependence of Vther(ρ) in
β-stable matter, calculated with the exact expression of the
EoS (solid lines), with its Taylor expansion up to second,
fourth, and sixth order, and with the PA. An instability
region characterized by negative Vther(ρ) is found below
ρ ≈ 0.09–0.11 fm−3. The condition Vther(ρt ) = 0 defines the
density ρt of the transition from the homogeneous core to the
crust. We see in Fig. 9 that adding more terms to Eq. (2)
brings the results for Vther(ρ) closer to the exact values.
At densities near the core-crust transition, the higher-order
results are rather similar, but differ significantly from the exact
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TABLE II. Values of the core-crust transition density ρt (in fm−3) calculated using the exact expression of the EoS (ρexact
t ), the parabolic

approximation (ρPA
t ), or the approximations of the full EoS with Eq. (2) up to second (ρδ2

t ), fourth (ρδ4

t ), and sixth (ρδ6

t ) order. The table includes
the corresponding values of the transition pressure Pt (in MeV fm−3) and isospin asymmetry δt .

Force D1 D1S D1M D1N D250 D260 D280 D300

δδ2

t 0.9215 0.9199 0.9366 0.9373 0.9167 0.9227 0.9202 0.9190

δδ4

t 0.9148 0.9148 0.9290 0.9336 0.9119 0.9136 0.9127 0.9128

δδ6

t 0.9127 0.9129 0.9265 0.9321 0.9101 0.9112 0.9110 0.9110
δexact
t 0.9106 0.9111 0.9241 0.9310 0.9086 0.9092 0.9110 0.9096

δPA
t 0.9152 0.9142 0.9296 0.9327 0.9111 0.9153 0.9136 0.9134

ρδ2

t 0.1243 0.1141 0.1061 0.1008 0.1156 0.1228 0.1001 0.1161

ρδ4

t 0.1222 0.1129 0.1061 0.0996 0.1143 0.1198 0.0984 0.1145

ρδ6

t 0.1211 0.1117 0.1053 0.0984 0.1131 0.1188 0.0973 0.1136
ρexact

t 0.1176 0.1077 0.1027 0.0942 0.1097 0.1159 0.0938 0.1109
ρPA

t 0.1222 0.1160 0.1078 0.1027 0.1168 0.1171 0.0986 0.1142

P δ2

t 0.6279 0.6316 0.3326 0.4882 0.7034 0.5892 0.6984 0.6776

P δ4

t 0.6479 0.6239 0.3531 0.4676 0.6908 0.6483 0.7170 0.6998

P δ6

t 0.6452 0.6156 0.3554 0.4582 0.6811 0.6509 0.7053 0.6955
P exact

t 0.6184 0.5817 0.3390 0.4164 0.6464 0.6272 0.6493 0.6647
P PA

t 0.6853 0.6725 0.3986 0.5173 0.7368 0.6809 0.7668 0.7356

ones. We note that, all in all, the order-by-order convergence
of the δ2 expansion in Vther(ρ) is slow. This indicates that
the nontrivial isospin and density dependence arising from
exchange terms needs to be considered in a complete manner
for realistic core-crust transition physics [25,34,56]. If we
look at the unstable low-density zone, both the exact and
the approximated results for Vther(ρ) go to zero for vanishing
density, but they keep a different slope. In this case, we have
found that the discrepancies are largely explained by the
differences in the low-density behavior of the approximated
kinetic energy terms, in consonance with the findings of
Ref. [26].

We next analyze more closely the properties of the core-
crust transition, using both exact and order-by-order predic-
tions. The complete results for the eight Gogny functionals
are provided in numerical form in Table II. For a better under-
standing, we discuss each one of the key physical properties of
the transition (asymmetry, density, and pressure) in separate
figures. We plot our predictions as a function of the slope
parameter L of each functional, which does not necessarily
provide a stringent correlation with core-crust properties [35].
The slope parameter, however, can be constrained in terrestrial
experiments and astrophysical observations [48–50,81–83]
and is therefore an informative parameter in terms of the
isovector properties of the functional.

In Fig. 10, we display the results for the transition
asymmetry, δt . Black crosses correspond to the calculations
with the exact EoS. We find that the Gogny forces predict a
range 0.909 � δt � 0.931 for the asymmetry at the transition
point, or, in other words, proton fractions in the range
3.45% � xp � 4.55%. The D1N and D1M forces provide
distinctively large transition asymmetries, whereas the other
interactions predict very similar values δt ≈ 0.91 in spite of
having different slope parameters. When using the Taylor
expansion of the EoS up to second order (shown by red squares

in the figure), the predictions for δt are, in all forces, well above
the exact result. The fourth-order values (green diamonds)
are still above the exact ones but closer, and the sixth-order
calculations (blue triangles) produce results that are very close
to the exact δt . The δt values obtained with the PA (empty
orange squares) differ from the second-order approximation
and turn out to be closer to the exact results.

We show in Fig. 11 the predictions for the density of the
core-crust transition, ρt . The calculations with the exact EoS
of the models give a window 0.094 fm−3 � ρt � 0.118 fm−3.
Again, we find that the approximations of the EoS only
provide upper bounds to the exact values. The relative
differences between the transition densities predicted using
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FIG. 10. Core-crust transition asymmetry δt as a function of the
slope parameter L calculated using the exact expression of the EoS
(crosses), and the approximations up to second (solid squares), fourth
(solid diamonds), and sixth order (solid triangles). The parabolic
approximation is also included (empty squares).
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FIG. 11. Core-crust transition density ρt as a function of the slope
parameter L. Symbols are defined as in Fig. 10.

the δ2 approximation of the EoS and the exact densities are
about 4–7%. When the EoS up to δ4 is used, the differences
are slightly reduced to 3–6%. The sixth-order results remain
at a similar level of accuracy, within 3–5%. In other words,
the order-by-order convergence for the transition density is
very slow. As mentioned earlier in the discussion of Fig. 9,
the nontrivial density and isospin asymmetry dependence
of the thermodynamical potential arising from the exchange
contributions is likely to be the underlying cause of this slow
convergence pattern. The results for ρt of the PA do not exhibit
a regular trend with respect to the other approximations. The
PA estimate may happen to be closest to the exact ρt , as in
D260, but it may also be the most distant, as in D1S and other
models.

Unlike the transition asymmetry δt , we find that there is
a decreasing quasilinear correlation between the transition
density ρt and the slope parameter L. In fact, it is known from
previous literature that the transition densities calculated with
Skyrme interactions and RMF models have an anticorrelation
with L [21,24,30,33,35,86,87]. We confirm this tendency
and find that the transition densities calculated with Gogny
functionals are in consonance with other mean-field models.
Moreover, if we take into account the slope parameter of these
interactions, the Gogny results are within the expected window
of values provided by the Skyrme and RMF models [21,34].
The values of ρt that we obtain are larger than some recent
predictions [87,88], as expected from the relatively low values
of L of the Gogny forces. In the future, it might be interesting
to explore Gogny parametrizations with larger values of L to
confirm this tendency.

In Fig. 12, we present the pressure at the transition point Pt

for the same interactions. The results of the exact Gogny EoSs
lie in the range 0.339 MeV fm−3 � Pt � 0.665 MeV fm−3,
with D1M and D1N giving the lower Pt values. According
to Ref. [89], in general, the transition pressure for real-
istic EoSs varies over a window 0.25 MeV fm−3 � Pt �
0.65 MeV fm−3. Gogny forces therefore seem to deliver
reasonable predictions. If we look at the accuracy of the isospin
Taylor expansion of the EoS for predicting Pt , we find that the
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FIG. 12. Core-crust transition pressure, Pt , as a function of the
slope parameter L. Symbols are defined as in Fig. 10.

second-order approximation gives transition pressures above
the values of the exact EoS in almost all of the forces. The
differences are of about 2–17%. These differences become
3–12% at fourth order of the expansion, and 4–10% at sixth
order. On the whole, Fig. 12 shows that the order-by-order
convergence for the transition pressure is not only slow,
but actually erratic at times. For some parametrizations, like
D1 or D300, the fourth- and sixth-order predictions for Pt

differ more from the exact value than if we stop at second
order. We also see that the PA overestimates the transition
pressure for all parametrizations—in fact, the PA provides
worse predictions for the transition pressure than any of the
finite-order approximations.

We note that we do not find a general trend with the slope
parameter L in our results for the pressure of the transition,
i.e., Gogny forces with similar L may have quite different
pressure at the border between the core and the crust. As in
the case of the transition density, the transition pressure has
been studied in previous literature. However, the predictions on
the correlation between the transition pressure and L diverge
[11,21,22,24,33]. In our case, we obtain that the transition
pressure is uncorrelated with the slope parameter L. The same
was concluded in Ref. [33] in an analysis with RMF models.

V. NEUTRON STAR STRUCTURE

A. Bulk properties of the stars

With access to the analytical expressions for the pressure
and the energy density in asymmetric matter, one can compute
the mass-radius relation of neutron stars by integrating the
TOV equations [1–3]. We have solved these equations for the
above Gogny forces [90] using the β-equilibrium EoS with
the exact isospin asymmetry dependence in the neutron star
core. Note that at high densities these conditions yield a pure
neutron star with δ = 1, and we ignore the effects of an isospin
instability at and beyond that point. At very low densities, we
use the Haensel-Pichon EoS for the outer crust [91]. In the
absence of microscopic calculations of the EoS of the inner
crust with the Gogny forces, we adopt the prescription of
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FIG. 13. Mass-radius relation for the neutron stars produced with
the four stable Gogny functionals and with the unified SLy EoS [91].
We show physically excluded regions in the upper-left corner as well
as the accurate M ≈ 2M� mass measurement of Ref. [96].

previous works [21,31,92] by taking the EoS of the inner crust
to be of the polytropic form P = a + bε4/3, where ε denotes
the mass-energy density. The constants a and b are adjusted by
demanding continuity at the inner-outer crust interface and at
the core-crust transition point [21,31,92]. At the subsaturation
densities of the inner crust, the pressure of matter is dominated
by the relativistic degenerate electrons and a polytropic form
with an index of average value of about 4/3 is found to be a
good approximation to the EoS in this region [37,50,89]. For
more accurate predictions of the crustal properties, it would
be of great interest to determine the microscopic EOS of the
inner crust with finite-range Gogny interactions [51], which
we leave for future work.

The results for the mass-radius relationship are presented
in Fig. 13. We also show the predictions of the SLy unified
neutron star EoS [91], which we will use as a benchmark in our
following discussions. It may be mentioned that we could have
adopted other reference unified neutron star EoSs, like those
recently developed from the Brussels-Montreal BSk models
[93] or from the Brueckner theory [94,95]. First, we stress that
Fig. 13 contains only the four Gogny functionals that provide
numerically stable solutions for neutron stars. Second, and
more important, all Gogny EoSs provide maximum neutron
star masses that are well below the observational limit of
M ≈ 2M� from Refs. [96,97]. As a matter of fact, only D1M
and D280 are able to generate masses above the canonical
1.4M� value. The neutron star radii from these two EoSs
are considerably different, however, with D1M producing
stars with radii R ≈ 9–10.5 km, and D280 stars with radii
R ≈ 10–12 km. These small radii for a canonical neutron star
would be in line with recent extractions of stellar radii from
quiescent low-mass x-ray binaries and x-ray burst sources that
have suggested values in the range of 9–13 km [50,98–101].
It appears that a certain degree of softness of the nuclear

TABLE III. Properties of the neutron star maximum mass and
1.4M� configurations for the D1M and D280 functionals. From
top to bottom, we quote central number density, central mass-
energy density, radius, mass, baryon number, binding energy, surface
redshift, and moment of inertia of the star.

D1M D280 D1M D280
Mmax Mmax 1.4M� 1.4M�

ρc (fm−3) 1.57 1.46 0.81 0.69
εc (1015 g cm−3) 3.65 3.28 1.51 1.30
R (km) 8.85 9.77 10.1 11.7
M (M�) 1.74 1.66 1.40 1.40
A (1057) 2.45 2.26 1.89 1.85
Ebind (1053 erg) 5.43 4.00 3.09 2.56
zsurf 0.55 0.42 0.30 0.24
I (1045 g cm2) 1.23 1.21 1.10 1.27

symmetry energy is necessary in order to reproduce small
radii for a canonical mass neutron star [67,102,103]. The
parametrizations D1N and D300, in contrast to D1M and
D280, generate neutron stars which are unrealistically small
in terms of both mass and radius. One should of course be
cautious in interpreting these results. Gogny forces have not
been fit to reproduce high-density, neutron-rich systems and
it is not surprising that some parametrizations do not yield
realistic neutron stars.

One could presumably improve these results by guar-
anteeing that, at least around the saturation region, the
pressure of neutron-rich matter is compatible with neutron
star observations [49]. This could provide a Gogny force
in the spirit of the well-known Skyrme SLy forces [53,54],
which are still widely used in both nuclear structure and
neutron star studies. For completeness, we provide data on the
maximum mass and 1.4M� configurations of the neutron stars
produced by D1M and D280 in Table III. The maximum mass
configurations are reached at central baryon number densities
close to ≈10ρ0, whereas 1.4M� neutron stars have central
baryon densities close to around 4–5ρ0. These large central
density values are in keeping with the fact that the neutron
matter Gogny EoSs are relatively soft, which require larger
central densities to produce realistic neutron stars.

One property of interest, due to potential observational
evidence in binaries as well as the connection to the core-crust
transition, is the star’s moment of inertia I [3,50,59,104]. To
lowest order in angular velocity, the moment of inertia of the
star can be computed from the static mass distribution and
gravitational potentials encoded in the TOV equations [105].
We do not provide further details of the standard numerical
procedure to obtain this quantity, but note that our code has
been tested against the results of known EoSs [3,104]. We
show in Fig. 14(a) the results of the moments of inertia for the
four Gogny parametrizations of interest. In agreement with
the findings of the EoS, the moments of inertia are relatively
small. In particular, we find that the moments of inertia of
the Gogny parametrizations are below the predictions of SLy.
As expected, the maximum of I is reached slightly below the
maximum mass configuration for all forces [3]. In the case
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FIG. 14. (a) Neutron star moment of inertia as a function of
mass for the four stable Gogny functionals and for the SLy EoS.
(b) Dimensionless ratio I/MR2 as a function of compactness for the
EoSs. The shaded area enclosed by a solid line is the parametrization
provided by Breu and Rezzolla [60]. The shaded area enclosed by a
dashed line is that of Lattimer and Schutz [59].

of the two most realistic EoSs (D1M and D280), we find a
maximum value Imax ≈ 1.3–1.4 × 1045 g cm2. This is below
the typical maximum values of ≈2 × 1045 g cm2 obtained with
stiffer EoSs [3]. Our results for D1N are commensurate with
those of Ref. [52].

A useful comparison with the systematics of other neutron
star EoSs is provided by the dimensionless quantity I

MR2 . This
has been found to scale with the neutron star compactness
which, in natural units, is

χ = GM

R
. (35)

In fact, in a relatively wide region of χ values, the dimension-
less ratio I

MR2 for the mass and radius combinations of several
EoSs can be fitted by universal parametrizations [59,60,104].
We show in Fig. 14(b) this dimensionless ratio as a function of
compactness for the four Gogny forces and the SLy EoS. Our
results are compared to the recent fits from Breu and Rezzolla
[60] (shaded area enclosed by a solid line) and the older results
from Lattimer and Schutz [59] (shaded region enclosed by a
dashed line). These fits have been obtained from a very wide
range of different theoretical EoS predictions. For compactness
χ > 0.1, only D1M falls within the wider range obtained with

the parametrization of Breu and Rezzolla [60]. D280 is close
to the lower limit of this fit, but well below the lower bounds
of the fit in Lattimer and Schutz [59]. We find that, in spite of
the significant differences in their absolute moments of inertia,
both D1M and SLy produce dimensionless ratios which agree
well with each other. In contrast, and as expected, D1N and,
specially, D300 produce too small moments of inertia for a
given mass and radius, and systematically fall below the fits.
This again illustrates the inability of these two forces to create
realistic neutron stars.

B. Crustal properties

The solution of the TOV and moment of inertia equations,
combined with the determination of the core-crust transition,
allows us to separate the crust and the core within the neutron
star [18]. One can, for instance, find the crust thickness Rcrust,
which corresponds to the radial coordinate at which the crust-
core transition takes place measured from the surface of the
star. Similarly, the crust mass Mcrust is the fraction of the star’s
mass enclosed by the crust. Finally, the crust moment of inertia,
Icrust, is the fraction of moment of inertia within the star’s
crust. While the EoSs of the Gogny forces that we present
are relatively soft and incompatible with the observations of
the heaviest neutron stars [96,97], one might expect the low-
density physics around the core-crust transition to be well
described by these functionals. We provide an overview of the
crust properties for the considered Gogny parametrizations in
Fig. 15. In all the panels, we find that the SLy results lie within
the Gogny D280 and D1M predictions. We take this as an
indication of the fact that some Gogny forces indeed provide a
relatively realistic description of the crust. Accordingly, in the
following we concentrate on discussing the predictions from
the D280 and D1M EoSs.

Figure 15(a) summarizes our results on the crust thickness.
As expected, the thickness decreases with the mass of the
star [18,36]. For a canonical mass M = 1.4M�, D1M predicts
Rcrust ≈ 0.6 km whereas both D280 and SLy have larger crusts,
Rcrust ≈ 0.9–1.2 km. In fact, D280 provides a significantly
thicker neutron star crust than D1M for the whole mass region.
Within the small number of forces that are available, it appears
that models with a larger slope parameter L ≈ 45 MeV, like
D280 and SLy, produce larger crusts for a given mass. This is
in principle in contrast to the systematics of Ref. [21], although
the results in that reference are quoted for L > 60 MeV.

The amount of mass contained in the crust is shown in
Fig. 15(b). We find that the crust mass decreases as the mass of
the star increases [18,36]. There is a large sensitivity to the EoS
in the crust mass. D280, for instance, provides substantially
larger crust masses than SLy and D1M in a wide range of
masses. Moreover, the dependence in mass is steep for D280,
whereas it is relatively flat for SLy and D1M. A canonical
1.4M� pulsar would have a crust mass Mcrust ≈ 0.01M�
(≈0.03M�) for D1M (D280), in between the SLy prediction
of Mcrust ≈ 0.02M�.

Within a thin-crust approximation, the mass of the crust can
be estimated by the expression [18]

Mcrust ≈ 4πR4Pt

GM
[1 − 2χ ]. (36)
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FIG. 15. (a) Crust thickness for the four stable Gogny functionals
and the SLy EoS. (b) Mass enclosed by the crust. Short-dashed lines
correspond to the approximation of Eq. (36). (c) Percentage fraction
of the star’s moment of inertia contained in the crust. Short-dashed
lines correspond to the approximation of Eq. (37). Thick horizontal
lines indicate the constraints of Refs. [37] (bottom line) and [9] (top
line) to account for observed glitches in the Vela pulsar and other
glitching sources.

This involves the pressure at the transition point Pt as well
as properties computed at the surface of the star (total mass
and radius). The results of this approximation (thin short-
dashed lines) are compared to those obtained in the full TOV
calculation in Fig. 15(b). We note that the approximation
overestimates the crust mass, particularly at low masses. In
contrast, near the maximum mass configuration, the results of
Eq. (36) become closer to the exact ones. Above M ≈ 1.4M�,
for instance, the approximation is good to within ≈0.01M�.
In fact, the mass and thickness of the crust can be entirely
determined to excellent accuracy by the core EoS and the
crust-core transition point as recently discussed in Ref. [106].

We have explored the sensitivity of our results to a different
treatment of the inner crust, by using the extended SLy EoS in
this region instead of a polytropic parametrization. In general,
for the analyzed forces we find moderate variations in the
mass and radius of the crust with the inner crust treatment.

For Mcrust, we find a variation which is less than 2% for M >
M�. Similarly, Rcrust changes by about 10% for D1M, D1N,
and D300, and by about 20% for D280, in the region where
M > M�. Ideally, the inner crust EoS should be computed
with the same nuclear force used for the homogeneous matter
of the core [51,94,107], but this goes beyond the scope of this
work.

Finally, we present in Fig. 15(c) the results for the crustal
fraction of the moment of inertia. We find similar trends to
those present in previous panels. Icrust/I decreases with the
pulsar mass. Up to about M ≈ 1.6M�, D280 stands out above
the other models. This is to be expected, as it predicted thicker
and heavier crusts. Both D1M and SLy predict crustal fractions
which are below 5% above 1M�, whereas D280 only falls
below this value above 1.3M�. In fact, for a canonical pulsar
with M = 1.4M�, we find Icrust/I ≈ 4% for D280 and ≈1%
for D1M.

An approximated formula for the crustal fraction of moment
of inertia is given by [21,37,89]

Icrust

I
≈ 28πR3Pt

3M

1 − 1.67χ − 0.6χ2

χ

×
[

1 + 2Pt (1 + 5χ − 14χ2)

mρtχ2

]−1

. (37)

The results of this approximation are shown by the thin
short-dashed lines in Fig. 15(c). We find a very good agreement
between the approximated formula and the full results above
1–1.2M�, and the agreement improves as the mass of the
pulsar increases. This is in keeping with the findings of
Ref. [21].

To account for the sizes of observed glitches, the widely
used pinning model requires that a certain amount of angular
momentum is carried by the crust. This can be translated into
constraints on the crustal fraction of the moment of inertia.
Initial estimates suggested that Icrust/I > 1.4 % to explain Vela
and other glitching sources [37]. We show this value as the
bottom horizontal line in Fig. 15(c). We note that this does not
pose mass constraints on D280, which has a minimum value
of Icrust/I slightly above that limit. For D1M, in contrast,
glitching sources that satisfy this constraint should have
M < 1.4M�. More recently, a more stringent constraint has
been obtained by accounting for the entrainment of neutrons in
the crust [9]. With entrained neutrons, a larger crustal fraction
of moment of inertia, Icrust/I > 7 % [top horizontal line in
Fig. 15(c)], is needed to explain glitches. For D280, this
represents a mass constraint below M < 1.1M�. In contrast,
D1M would need significantly lower masses, M < 0.6M�, to
account for glitching phenomena. Of course, a more realistic
account of nuclear structure and superfluidity in the crust will
modify the estimates. In particular, Gogny forces, which can
naturally account for superfluidity, would be helpful in the
modeling of the microphysics of neutron star crusts.

VI. SUMMARY AND OUTLOOK

In this paper, we attempt to link the microphysical pre-
dictions associated to the isospin dependence of the Gogny
interaction to the observational properties of the neutron star
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core-crust transition. On the one hand, we investigate the
influence of the symmetry energy on the core-crust transition
using different Gogny forces. On the other hand, we study the
stellar masses and radii predicted by the Gogny forces, paying
special attention to properties related with the crust, such as
its thickness, mass, and fraction of the moment of inertia,
which can have observational consequences. These properties
are directly related to the core-crust transition, which can be
computed in the thermodynamical method.

We first analyze the Taylor expansion of the energy per
particle of asymmetric nuclear matter in even powers of the
isospin asymmetry δ. The lowest order is the contribution
in symmetric nuclear matter and the next term, quadratic
in δ, corresponds to the usual symmetry energy coefficient.
Higher-order terms in the Taylor expansion provide additional
corrections that account for the departure of the energy
from a quadratic law in δ. The second-order symmetry
energy coefficient in the analyzed Gogny interactions shows
a well-known isospin instability at large values of the density,
above 0.4–0.5 fm−3. The fourth- and sixth-order symmetry
energy coefficients contain contributions from the kinetic and
exchange terms exclusively. The results indicate that Gogny
parametrizations fall into two different groups according to
the density behavior of these coefficients above saturation. In
the first group (D1S, D1M, D1N, and D250), the fourth- and
sixth-order coefficients reach a maximum and then decrease
with growing density. In the second group (D1, D260, D280,
and D300), these coefficients are always increasing functions
of density in the range analyzed. The different behavior of the
two groups can be traced back to the density dependence of
the exchange terms, which add to the kinetic part of the fourth-
and sixth-order coefficients. At saturation density, the fourth-
and sixth-order symmetry energy coefficients are relatively
small. This supports the accuracy of the Taylor expansion
at second order in calculations of the energy in asymmetric
nuclear matter around this density.

The symmetry energy is often evaluated through the so-
called parabolic approximation, as the difference between the
energy per particle in pure neutron matter and in symmetric
matter. We find that around saturation the difference between
the PA estimate EPA

sym(ρ) and the Esym,2(ρ) coefficient is
largely accounted by the sum of the fourth- and sixth-order
contributions. Another important quantity in studies of the
symmetry energy is the slope parameter L, which is commonly
used to characterize the density dependence of the symmetry
energy near saturation. We find that large discrepancies
of several MeV can arise between the L value calculated
with Esym,2(ρ) or with EPA

sym(ρ), particularly for group 2
forces. Again, adding the fourth- and sixth-order contributions
accounts for most of these differences.

To study the core-crust transition in neutron stars, one needs
to consider β-stable stellar matter first. We take into account
neutrons, protons, and electrons in chemical equilibrium. By
solving the equations with the exact EoS and with the Taylor
expansion of Eq. (2) at increasing orders in δ, we are able to
analyze the convergence of the solutions with the expansion.
The corresponding isospin asymmetry for β stability is always
close to δ ≈ 1, in accord with the relatively soft symmetry
energies associated to Gogny forces. The agreement between

the β-equilibrium asymmetries obtained using the exact EoS
and the truncated Taylor expansion improves order by order.
However, the convergence of this expansion is rather slow, in
particular for forces with larger slope parameters L.

The core-crust transition density is estimated using the
thermodynamical method. The change of sign of the potential
Vther(ρ) determines the onset of instabilities. In general,
adding more terms to the Taylor expansion of the EoS brings
the transition density closer to the value of the exact EoS.
However, there can be still significant differences even when
the Taylor expansion is pushed to sixth order. This points
out that the convergence for the transition properties is slow.
As noted in earlier literature, at least for Skyrme forces
and RMF parameter sets, the core-crust transition density
is anticorrelated with the slope parameter L of the models.
Our calculations confirm this trend for Gogny forces also.
Although we have a reduced number of forces, if we take into
account their slope parameters, the predictions are consistent
with the expected window of values provided by the Skyrme
and RMF models. In contrast to the transition density, the
transition pressure analyzed with Gogny forces is not seen to
correlate with L.

Next, we have studied several neutron star properties using
Gogny interactions. We find that only the D1M, D1N, D280,
and D300 forces provide numerically stable solutions of the
TOV equations. The maximum mass configurations for D1M
and D280 occur at M = 1.74M� and 1.66M�, respectively,
clearly below the observational limit of 2M�. In contrast, D1N
and D300 predict neutron stars with maximum masses below
the canonical value 1.4M�, as well as unrealistically small
radii. The central densities of both maximum and canonical
mass neutron stars computed with D1M and D280 are rather
large. This is consistent with the soft neutron matter EoSs of
these interactions. Another quantity of interest is the moment
of inertia of the star, which has a maximum value of Imax ≈
1.3–1.4 × 1045 g cm2 in the D1M and D280 forces.

The solution of the TOV and moment of inertia equations,
together with the core-crust transition density, allows one to
predict the crust thickness and to separate the mass and the
moment of inertia into crust and core contributions. Although
some of the bulk stellar properties predicted by the Gogny
forces are incompatible with observations, the physics around
the core-crust transition seems to be rather well described
by D280 and, in particular, by D1M, which gives results
commensurate with previous literature, and similar to those
obtained with the SLy EoS. Finally, let us point out that this is
not completely surprising. Gogny forces are fitted to nuclear
properties at relatively low densities and close to isospin
symmetric conditions. High-density neutron-rich systems are
normally beyond the fit of these forces. However, the relatively
low-density physics of the core-crust transition can be well
described as long as the near-saturation isospin dependence is
realistic. It appears that D1M performs relatively well in this
context.

From the present analysis of neutron stars with Gogny
forces, we see that there is room for improvement. On
the one hand, the so-called dynamical method has often
been used to compute the core-crust transition with Skyrme
forces [16,17,21,27,35]. With a proper extension, this method
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could be generalized to the case of Gogny interactions.
Moreover, quantum-mechanical predictions of random phase
approximation instabilities in infinite matter are now available,
and their extension to isospin asymmetric matter should be an
informative step forward [85]. On the other hand, it would be
desirable to construct new Gogny parametrizations which are
able to reproduce simultaneously finite nuclei and the most
recent constraints from neutron star observations. There is no
reason why new parametrizations could not achieve a similar
quality to the SLy or BSk families of Skyrme forces.
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APPENDIX A: TOTAL BARYON ENERGY AND
SYMMETRY ENERGY UP TO SIXTH ORDER

FOR GOGNY FORCES

This Appendix contains the expression of the baryon energy
per particle Eb(ρ,δ) in asymmetric nuclear matter with Gogny
interactions. We also give the expressions for the symmetry
energy coefficients entering the Taylor expansion of Eb(ρ,δ)
[see Eq. (2)] through sixth order in the isospin asymmetry δ,
and the respective slope parameters defined in Eq. (16).

The total energy per particle in the Hartree-Fock approx-
imation with the Gogny two-body effective interaction given
in Eq. (1) becomes the sum of four different contributions,
namely, a kinetic contribution, a zero-range contribution, and
the direct and exchange contributions:

Eb(ρ,δ) = Ekin
b (ρ,δ) + Ezr

b (ρ,δ) + Edir
b (ρ,δ) + Eexch

b (ρ,δ),

(A1)

which read as

Ekin
b (ρ,δ) = 3h̄2

20m

(
3π2

2

)2/3

ρ2/3[(1 + δ)5/3 + (1 − δ)5/3]

(A2)

Ezr
b (ρ,δ) = 1

8
t3ρ

α+1[3 − (2x3 + 1)δ2] (A3)

Edir
b (ρ,δ) = 1

2

∑
i=1,2

μ3
i π

3/2ρ[Ai + Biδ
2] (A4)

Eexch
b (ρ,δ) = −

∑
i=1,2

1

2k3
F μ3

i

{Ci[e(kFnμi) + e(kFpμi)]

−Di ē(kFnμi,kFpμi)}, (A5)

with

e(η) =
√

π

2
η3erf(η) +

(
η2

2
− 1

)
e−η2 − 3η2

2
+ 1, (A6)

and

ē(η1,η2) =
∑
s=±1

s

[√
π

2
(η1 + sη2)

(
η2

1 + η2
2 − sη1η2

)

× erf

(
η1 + sη2

2

)
+ (

η2
1 + η2

2 − sη1η2 − 2
)

× e−(1/4)(η1+sη2)2

]
, (A7)

where erf(x) = 2√
π

∫ x

0 e−t2
dt is the error function. The func-

tion ē(η1,η2) is a symmetric function of its arguments,
satisfying ē(η,η) = 2e(η) and ē(η,0) = 0.

The term in Eq. (A2) is the sum of the neutron and proton
kinetic energy contributions, whereas the zero-range term in
Eq. (A3) is the contribution of the contact interaction. Both
can be expressed in terms of the total baryon density ρ and
the isospin asymmetry in the system δ = (ρn − ρp)/(ρn + ρp).
The direct term in Eq. (A4) and the exchange term in Eq. (A5)
are the contributions to the energy from the finite range
part of the Gogny interaction. The direct term Edir

b (ρ,δ) is
easily expressed in terms of the density ρ and of δ2. The
exchange term Eexch

b (ρ,δ), in contrast, is a function of the
neutron and proton Fermi momenta: kFn = kF (1 + δ)1/3 and
kFp = kF (1 − δ)1/3, respectively. The Fermi momentum of
isospin symmetric matter is given by kF = (3π2ρ/2)1/3. The
following combinations have been used in order to present the
finite range terms:

Ai = 1

4
(4Wi + 2Bi − 2Hi − Mi), (A8)

Bi = −1

4
(2Hi + Mi), (A9)

Ci = 1√
π

(Wi + 2Bi − Hi − 2Mi), (A10)

Di = 1√
π

(Hi + 2Mi). (A11)

The constants Ai and Bi define, respectively, the isoscalar and
isovector part of the direct term. For the exchange terms, the
matrix elements Ci relate to the interaction between particles
with the same isospin (neutron-neutron and proton-proton
interactions), whereas the matrix elements Di take care of
interactions between particles with different isospin (neutron-
proton interactions).

From the energy per baryon we can obtain analytical
expressions for the symmetry energy coefficients, which up
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to sixth order are

Esym,2(ρ) = 1

2!

∂2Eb(ρ,δ)

∂δ2

∣∣∣∣
δ=0

= h̄2

6m

(
3π2

2

)2/3

ρ2/3 − 1

8
t3ρ

α+1(2x3 + 1) + 1

2

∑
i=1,2

μ3
i π

3/2Biρ

+ 1

6

∑
i=1,2

[−CiG1(kF μi) + DiG2(kF μi)], (A12)

Esym,4(ρ) = 1

4!

∂4Eb(ρ,δ)

∂δ4

∣∣∣∣
δ=0

= h̄2

162m

(
3π2

2

)2/3

ρ2/3 + 1

324

∑
i=1,2

[CiG3(kF μi) + DiG4(kF μi)],

(A13)

Esym,6(ρ) = 1

6!

∂6Eb(ρ,δ)

∂δ6

∣∣∣∣
δ=0

= 7h̄2

4374m

(
3π2

2

)2/3

ρ2/3 + 1

43740

∑
i=1,2

[CiG5(kF μi) − DiG6(kF μi)],

(A14)

with

G1(η) = 1

η
−

(
η + 1

η

)
e−η2

, (A15)

G2(η) = 1

η
−

(
η + e−η2

η

)
, (A16)

G3(η) = −14

η
+ e−η2

(
14

η
+ 14η + 7η3 + 2η5

)
, (A17)

G4(η) = 14

η
− 8η + η3 − 2e−η2

(
7

η
+ 3η

)
, (A18)

G5(η) = −910

η
+ e−η2

(
910

η
+ 910η + 455η3 + 147η5 + 32η7 + 4η9

)
, (A19)

G6(η) = −910

η
+ 460η − 65η3 + 3η5 + e−η2

(
910

η
+ 450η + 60η3

)
. (A20)

The corresponding slope parameters L ≡ L2, L4, and L6 at saturation density ρ0 are given by

L = 3ρ0
∂Esym,2(ρ)

∂ρ

∣∣∣∣
ρ0

= h̄2

3m

(
3π2

2

)2/3

ρ
2/3
0 − 3(α + 1)

8
t3ρ

α+1
0 (2x3 + 1) + 3

2

∑
i=1,2

μ3
i π

3/2Biρ0

+ 1

6

∑
i=1,2

μikF0[−CiG
′
1(μikF0) + DiG

′
2(μikF0)], (A21)

L4 = 3ρ0
∂Esym,4(ρ)

∂ρ

∣∣∣∣
ρ0

= h̄2

81m

(
3π2

2

)2/3

ρ
2/3
0 + 1

324

∑
i=1,2

μikF0[CiG
′
3(μikF0) + DiG

′
4(μikF0)], (A22)

L6 = 3ρ0
∂Esym,6(ρ)

∂ρ

∣∣∣∣
ρ0

= 7h̄2

2187m

(
3π2

2

)2/3

ρ
2/3
0 + 1

43740

∑
i=1,2

μikF0[CiG
′
5(μikF0) − DiG

′
6(μikF0)], (A23)

where kF0 = (3π2ρ0/2)1/3 is the Fermi momentum at saturation and the derivatives of the Gn(η) functions are

G′
1(η) = − 1

η2
+ e−η2

(
1

η2
+ 1 + 2η2

)
, (A24)

G′
2(η) = − 1

η2
+ e−η2

(
1

η2
+ 2

)
− 1, (A25)

G′
3(η) = 14

η2
− e−η2

(
14

η2
+ 14 + 7η2 + 4η4 + 4η6

)
, (A26)
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G′
4(η) = −14

η2
− 8 + 3η2 + e−η2

(
14

η2
+ 22 + 12η2

)
, (A27)

G′
5(η) = 910

η2
− e−η2

(
910

η2
+ 910 + 455η2 + 175η4 + 70η6 + 28η8 + 8η10

)
, (A28)

G′
6(η) = 910

η2
+ 460 − 195η2 + 15η4 − e−η2

(
910

η2
+ 1370 + 720η2 + 120η4

)
. (A29)

APPENDIX B: CHEMICAL POTENTIALS AND PRESSURE IN ISOSPIN ASYMMETRIC MATTER

The neutron and proton chemical potentials in asymmetric nuclear matter are the derivatives of the baryon energy density Hb

with respect to the neutron or proton densities, respectively; cf. Eq. (11). With τ = +1 for neutrons and τ = −1 for protons, the
nucleon chemical potentials for the Gogny interaction are given by

μτ = h̄2

2m
(3π2)2/3ρ2/3

τ + t3

8
ρα+1[3(α + 2) − 2τ (2x3 + 1)δ − α(2x3 + 1)δ2]

+
∑
i=1,2

μ3
i π

3/2ρ(Ai + τBiδ) −
∑
i=1,2

[Ci w̄
(
kτ
F μi,k

τ
F μi

) − Di w̄
(
kτ
F μi,k

−τ
F μi

)]
, (B1)

where w̄(η1,η2) is the dimensionless function

w̄(η1,η2) =
∑
s=±1

s

[√
π

2
erf

(
η1 + sη2

2

)
+ 1

η1
e−(1/4)(η1+sη2)2

]
. (B2)

The baryon pressure in isospin asymmetric matter can be obtained from the derivative of Eb(ρ,δ) with respect to the baryon
density, Eq. (8). It may also be computed from the chemical potentials and the baryon energy density following Eq. (12). Either
way, one finds

Pb(ρ,δ) = h̄2

10m

(
3π2

2

)2/3

ρ5/3[(1 + δ)5/3 + (1 − δ)5/3] + (α + 1)

8
t3ρ

α+2[3 − (2x3 + 1)δ2] + ρ2

2

∑
i=1,2

π3/2μ3
i (Ai + Biδ

2)

− ρ

2

∑
i=1,2

{Ci[(1 + δ)p(kFnμi) + (1 − δ)p(kFpμi)] − Di p̄(kFnμi,kFpμi)}. (B3)

The function p(η) contains the density dependence of the pressure in both symmetric and neutron matter [47]:

p(η) = − 1

η3
+ 1

2η
+

(
1

η3
+ 1

2η

)
e−η2

. (B4)

In asymmetric matter, the double integral on the exchange terms leads to the appearance of a term that depends on the two Fermi
momenta:

p̄(η1,η2) = 2

η3
1 + η3

2

∑
s=±1

(η1η2 + 2s)e−(1/4)(η1+sη2)2
. (B5)

This term is a symmetric function of its arguments, which fulfills p̄(η,η) = 2p(η) and p̄(η,0) = 0.

APPENDIX C: THERMODYNAMICAL POTENTIAL

The stability condition for the thermodynamical potential Vther(ρ) discussed in Sec. IV B requires the calculation of the first and
second derivatives of the Gogny energy per baryon Eb(ρ,δ) with respect to density ρ and isospin asymmetry δ. In this Appendix
we provide the corresponding expressions obtained with the exact EoS and with the Taylor expansion of the EoS up to order δ6.

1. Derivatives for Vther(ρ) using the exact expression of the EoS

Here, we collect the derivatives of Eb(ρ,δ) involved in the stability condition Vther(ρ) > 0 in Eq. (33). The derivative
∂Eb(ρ,δ)/∂ρ is immediately obtained from the expression for the pressure Pb(ρ,δ) we have given in Eq. (B3), taking into

065806-19



GONZALEZ-BOQUERA, CENTELLES, VIÑAS, AND RIOS PHYSICAL REVIEW C 96, 065806 (2017)

account that ∂Eb(ρ,δ)/∂ρ = Pb(ρ,δ)/ρ2. The other derivatives that appear in Eq. (33) are

∂2Eb(ρ,δ)

∂ρ2
= − h̄2

30m

(
3π2

2

)2/3

ρ−4/3[(1 + δ)5/3 + (1 − δ)5/3] + (α + 1)α

8
t3ρ

α−1[3 − (2x3 + 1)δ2] +
∑
i=1,2

1

6ρ2k3
F μ3

i

×
{
Ci

[
2
(−6 + k2

Fnμ
2
i + k2

Fpμ2
i

) + e−k2
Fnμ

2
i

(
6 + 4k2

Fnμ
2
i + k4

Fnμ
4
i

) + e−k2
Fpμ2

i

(
6 + 4k2

Fpμ2
i + k4

Fpμ4
i

)]

+Die
−(1/4)(k2

Fn+k2
Fp)μ2

i

[(−12kFnkFpμ2
i − k3

FnkFpμ4
i − kFnk

3
Fpμ4

i

)
cosh

[
kFnkFpμ2

i

2

]

+ 2
(
12 + k2

Fnμ
2
i + k2

Fpμ2
i + k2

Fnk
2
Fpμ4

i

)
sinh

[
kFnkFpμ2

i

2

]]}
, (C1)

∂2Eb(ρ,δ)

∂ρ∂δ
= h̄2

6m

(
3π2

2

)2/3

ρ−1/3[(1 + δ)2/3 − (1 − δ)2/3] − (α + 1)

4
t3ρ

α(2x3 + 1)δ +
∑
i=1,2

μ3
i π

3/2Biδ

−
∑
i=1,2

1

6ρ

{
Ci

[−1 + e−k2
Fpμ2

i

(
1 + k2

Fpμ2
i

)
kFpμi

− −1 + e−k2
Fnμ

2
i

(
1 + k2

Fnμ
2
i

)
kFnμi

]

−Die
−(1/4)(k2

Fn+k2
Fp)μ2

i

[(
kFnμi − kFpμi

)
cosh

[
kFnkFpμ2

i

2

]

− 2

kFnkFpμ2
i

(
kFnμi − kFpμi + δk3

F μ3
i

)
sinh

[
kFnkFpμ2

i

2

]]}
, (C2)

∂2Eb(ρ,δ)

∂δ2
= h̄2

6m

(
3π2

2

)2/3

ρ2/3[(1 + δ)−1/3 + (1 − δ)−1/3] − t3

4
ρα+1(2x3 + 1) + 1

4

∑
i=1,2

μ3
i π

3/2Biρ

− 1

6

∑
i=1,2

{
Ci

[
1 − e−k2

Fpμ2
i

(
1 + k2

Fpμ2
i

)
(1 − δ)kFpμi

+ 1 − e−k2
Fnμ

2
i

(
1 + k2

Fnμ
2
i

)
(1 + δ)kFnμi

]

+Die
−(1/4)(k2

Fp+k2
Fn)μ2

i

[
[kFnμi(1 − δ)−1 + kFpμi(1 + δ)−1] cosh

[
kFnkFpμ2

i

2

]

− 2

(1 − δ2)kFnkFpμ2
i

(
kFnμi + kFpμi − k3

F μ3
i + δ

(
kFnμi − kFpμi + δk3

F μ3
i

))
sinh

[
kFnkFpμ2

i

2

]]}
. (C3)

2. Derivatives for Vther(ρ) using the Taylor expansion of the EoS

If one replaces the EoS of asymmetric matter Eb(ρ,δ) with its Taylor expansion in powers of the isospin asymmetry δ, the
stability condition Vther(ρ) > 0 takes the form shown in Eq. (34). Expressing Eq. (34) to sixth order in δ gives the result

Vther(ρ) = ρ2 ∂2Eb(ρ,δ = 0)

∂ρ2
+ 2ρ

∂Eb(ρ,δ = 0)

∂ρ
+ δ2

(
ρ2 ∂2Esym,2(ρ)

∂ρ2
+ 2ρ

∂Esym,2(ρ)

∂ρ

)

+ δ4

(
ρ2 ∂2Esym,4(ρ)

∂ρ2
+ 2ρ

∂Esym,4(ρ)

∂ρ

)
+ δ6

(
ρ2 ∂2Esym,6(ρ)

∂ρ2
+ 2ρ

∂Esym,6(ρ)

∂ρ

)

− 2ρ2δ2

Esym,2(ρ) + 6Esym,4(ρ)δ2 + 15Esym,6(ρ)δ4

(
∂Esym,2(ρ)

∂ρ
+ 2δ2 ∂Esym,4(ρ)

∂ρ
+ 3δ4 ∂Esym,6(ρ)

∂ρ

)2

> 0. (C4)

For the Gogny interaction, the density derivatives of the energy per baryon in symmetric nuclear matter Eb(ρ,δ = 0) that are
needed for evaluating (C4) are given by

∂Eb(ρ,δ = 0)

∂ρ
= h̄2

5m

(
3π2

2

)2/3

ρ−1/3 + 3(α + 1)

8
t3ρ

α + 1

2

∑
i=1,2

μ3
i π

3/2Ai

−
∑
i=1,2

1

2ρk3
F μ3

i

(Ci − Di)
[−2 + k2

F μ2
i + e−k2

F μ2
i

(
2 + k2

F μ2
i

)]
, (C5)
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∂2Eb(ρ,δ = 0)

∂ρ2
= − h̄2

15m

(
3π2

2

)2/3

ρ−4/3 + 3(α + 1)α

8
t3ρ

α−1

−
∑
i=1,2

1

3ρ2k3
F μ3

i

(Ci − Di)
[
6 − 2k2

F μ2
i − e−k2

F μ2
i

(
6 + 4k2

F μ2
i + k4

F μ4
i

)]
. (C6)

The first and second derivatives with respect to density of the symmetry energy coefficients Esym,2(ρ), Esym,4(ρ), and Esym,6(ρ)
for the inequality (C4) can be readily computed from Eqs. (A12)–(A14) of Appendix A by taking derivatives of the Gn(η)
functions defined in Eqs. (A15)–(A20) and using ∂Gn(η)

∂ρ
= ∂Gn(η)

∂η
∂η
∂ρ

, where ∂η
∂ρ

= π2μi

2k2
F

for η = μikF . The results for ∂Gn(η)
∂η

are

given in Eqs. (A24)–(A29). The same procedure can be repeated to compute ∂2Gn(η)
∂ρ2 . As this is relatively straightforward, we

omit the explicit results for these derivatives.
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