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Constraints on the nuclear equation of state from nuclear masses and radii
in a Thomas-Fermi meta-modeling approach
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The question of correlations among empirical equation of state (EoS) parameters constrained by nuclear
observables is addressed in a Thomas-Fermi meta-modeling approach. A recently proposed meta-modeling for
the nuclear EoS in nuclear matter is augmented with a single finite size term to produce a minimal unified
EoS functional able to describe the smooth part of the nuclear ground state properties. This meta-model can
reproduce the predictions of a large variety of models, and interpolate continuously between them. An analytical
approximation to the full Thomas-Fermi integrals is further proposed giving a fully analytical meta-model for
nuclear masses. The parameter space is sampled and filtered through the constraint of nuclear mass reproduction
with Bayesian statistical tools. We show that this simple analytical meta-modeling has a predictive power on
masses, radii, and skins comparable to full Hartree-Fock or extended Thomas-Fermi calculations with realistic
energy functionals. The covariance analysis on the posterior distribution shows that no physical correlation is
present between the different EoS parameters. Concerning nuclear observables, a strong correlation between the
slope of the symmetry energy and the neutron skin is observed, in agreement with previous studies.
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I. INTRODUCTION

The nuclear equation of state (EoS) is one of the fundamen-
tal entities that governs the behavior of nuclear systems, from
terrestrial nuclei to neutron stars [1]. However, astrophysical
observations alone cannot provide enough information to
constrain the behavior of asymmetric nuclear matter in the
different density and isospin asymmetry domains, and the best
knowledge of the EoS still comes from low energy nuclear
physics experiments, i.e., nuclear ground state properties such
as masses and radii of nuclei or the neutron skin, among
others [2,3].

For this reason, extracting reliable confidence intervals for
the EoS empirical parameters from the laboratory data has
become a crucial issue in compact star modeling. Thanks to
the new developments in density functional theory (DFT), in
ab initio modeling, and thanks to the large number of data
on asymmetric nuclei collected from the new rare-ion beam
facilities worldwide, enormous progress was achieved in the
past decade [4–10].

Within a specific functional family, confidence intervals
for the EoS parameters can be extracted [8,11,12] using
standard Bayesian statistical tools [13], but the problem of the
model dependence of the results naturally arises. This model
dependence is responsible for the fact that the correlations
among empirical parameters are modified by changing the
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functional family, from Skyrme to Gogny or Relativistic Mean
Field (RMF) or Relativistic Hartree-Fock (RHF) [14–18].
A simple example is given by nonrelativistic functionals:
it is easy to show analytically that the phenomenological
density dependent term of Skyrme interactions, the t3 term,
induces artificial correlations among the different isoscalar
as well as isovector EoS terms [16]. A possible solution
of this problem was proposed in Ref. [17]. In that paper, a
meta-modeling for the nuclear equation of state is introduced,
as a representation of the class of continuous EoS models
(that is, models assuming that there is no discontinuity at high
density, possibly induced by a first-order phase transition for
instance) [19]. The meta-model consists of a functional which
is flexible enough that it can reproduce within its parameter
space the different functionals obtained from most of the
existing models (relativistic, nonrelativistic, ab initio). Varying
the parameters of the meta-model thus allows exploration of
a large class of continuous EoS models, and continuously
interpolating between them. The prior distribution of the
meta-model parameters is extracted from a compilation of
the different models belonging to the class. Using Bayesian
statistics [20], posterior distributions can be obtained by
filtering the meta-model parameter space with the constraint
of reproducing physical observables. The resulting EoS and
observable predictions can then be seen as weighted averages
of the different models, where the artificial parameter corre-
lations induced by the choice of a given model are naturally
suppressed. A first application of this technique was proposed
in Ref. [21], where astrophysical observables from neutron
star physics were analyzed.

In this paper we want to extend the study of Ref. [21]
by analyzing some observables from finite nuclei, namely
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nuclear masses and radii. However, a difficulty comes from
the fact that the energy functionals used to describe ground
state nuclear properties contain many more parameters than
the ones entering the EoS of infinite nuclear matter, such as (at
least) effective masses, surface, spin-orbit, and tensor terms,
and building up a meta-model that includes all this complexity
is highly nontrivial. A meta-model of nuclear structure is not
only hard to conceive, but also redundant for the purpose of
determining the nuclear EoS. Indeed, the proliferation of extra
parameters, though essential to pin down the complexity of
nuclear structure, makes it hard to sort out the specific effect
of EoS parameters on a given nuclear observable [14]. To
give an example, this problem is shown by different recent
works analyzing the EoS dependence of the neutron skin
in 208Pb. Based on a droplet model analysis, the Barcelona
group [22] has shown that the skin is not directly correlated
to the EoS parameter Lsym (slope of the symmetry energy at
saturation), but rather to the ratio Lsym/Q, where Q represents
the so-called surface stiffness parameter, which is related to
the differential surface tension between protons and neutrons.
Consequently, one can expect that the EoS independent surface
contribution to the skin should be sorted out in order to
recover the correct correlation with the EoS. However, when
using more sophisticated EoS models it was shown [18,23,24]
that the surface contribution is remarkably constant in the
different relativistic and nonrelativistic models, and therefore
the correlation of the skin with Lsym is preserved. It was
conjectured [23] that this constant behavior might come from
the constraint on nuclear mass reproduction applied to the DFT
functionals, but the argument neglects the fact that the mass
itself is known to provide constraints on the EoS [4,10,25]
besides the constraints on the finite size parameters [26].

For this reason, we limit ourselves to the extended Thomas-
Fermi (ETF) approximation. In the Thomas-Fermi approxi-
mation, the ground state energy functional of a finite nucleus
is simply given by the functional for homogeneous nuclear
matter (that is, the EoS model), calculated at the local density
which is variationally determined. Our Thomas-Fermi meta-
model will therefore be given by the same meta-functional
introduced in nuclear matter in Refs. [17,21], augmented by a
single isoscalar surface term, which can be taken as an effective
representation of finite size effects. Varying the parameters of
the meta-model within reasonable priors, we will therefore
generate all the possible mass models associated with the
different DFT functionals, when the ground state of these
models is calculated in the spherical ETF approximation.

We show that considering the first low order parameters
is sufficient to pin down the full isoscalar and isovector
behavior of the smooth part of the nuclear binding energy, and
the predictive power of the meta-model is not significantly
improved if further parameters are added.

The addition of a single finite size term, subject to the
constraint of correctly reproducing experimental nuclear mass,
allows us to single out the interplay between bulk and surface
parameters. A similar strategy was recently employed in
Ref. [27] and shown to be able to reproduce, with high
accuracy, a series of nuclear observables including binding
energies, two-neutron and two-proton separation energies, and
charge radii.

With this meta-modeling, we will then sample the multidi-
mensional parameter space with a prior flat distribution, and
filter the parameter set through the constraint of least-square
mass reproduction. This allows us to explore the possible
physical correlations among empirical parameters and carry
out a systematic investigation of radii and neutron skins in
nuclei. We will show that the slope of symmetry energy
strongly correlates with the neutron skin, and its measurement
is virtually unaffected by the uncertainty in any of the other
empirical quantities, thus highlighting the importance of
neutron skin in the determination of the nuclear EoS [28–30].

II. FORMALISM

In this section, we shortly review the formalism of meta-
modeling for uniform nuclear matter. Then we detail its
implementation in finite nuclei in the framework of the
Extended Thomas-Fermi (ETF) approximation. Finally an
analytical solution of the Thomas-Fermi integrals is explicitly
worked out, giving an effective analytical meta-model for
nuclear mass with coefficients directly related to the empirical
parameters of nuclear matter.

A. Energy functional for homogeneous matter

Following Ref. [17], the description of homogeneous
nuclear matter is based on a metamodeling belonging to the
class of continuous EoS models. Within this meta-model, the
EoS coefficients are directly related to the state-of-the-art
knowledge of nuclear matter based on data from nuclear
experiments. The energy per particle in asymmetric nuclear
matter can be separated into isoscalar and isovector channels as

e(n0,δ) = eIS(n0) + δ2eIV (n0). (1)

Here, δ = n1/n0 is the asymmetry of bulk nuclear matter, the
density n0 = nn + np (n1 = nn − np) being the sum (differ-
ence) of proton and neutron densities np and nn. In principle
the expansion in asymmetry parameter δ in Eq. (1) can go up
to any even power of δ, due to isospin symmetry. In practice
stopping at order δ2 is usually enough [17] for the potential
part. Nonquadraticities in the kinetic part are treated explicitly;
see below. The empirical parameters appear as the coefficients
of the series expansion around saturation density nsat in terms
of a dimensionless parameter x = (n0 − nsat)/(3nsat), i.e.,

eIS = Esat + 1
2Ksatx

2 + O(x3), (2)

eIV = Esym + Lsymx + 1
2Ksymx2 + O(x3). (3)

The isoscalar channel is written in terms of the energy per
particle at saturation, Esat, and the isoscalar incompressibility
Ksat. There is no linear term in x since the pressure is zero at
saturation density. The isovector channel is defined in terms of
the symmetry energy Esym and its first two derivatives Lsym,
Ksym. In principle, there is an infinite number of terms in
the series expansion. To reproduce well the equation of state
and its derivatives of the different models described by the
meta-model up to 4nsat, it is enough to stop at order 4 in x
[17]. For our purpose, since we are only interested in finite
nuclei, around and below saturation density, it is sufficient to
stop at order 2 in x [17]. Therefore, in this study, which is
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uniquely centered on nuclear ground state properties, we do
not consider higher order terms.

To achieve a good representation of the different models
at low density and large isospin asymmetries, the density
dependence of the kinetic energy term is separated from that
of the potential term:

e(x,δ) = ekin(x,δ) + epot(x,δ). (4)

The kinetic energy term is written as

ekin = tFG
sat (1 + 3x)2/3 1

2

[
(1 + δ)5/3 m

m∗
n

+ (1 − δ)5/3 m

m∗
p

]
,

(5)

where the constant tFG
sat is given by

tFG
sat = 3

5

h̄2

2m

(
3π2

2

)2/3

n
2/3
sat , (6)

and m∗
n and m∗

p are the in-medium masses of protons and
neutrons, m being the bare nucleon mass. The in-medium
effective mass can also be expanded in terms of the density
parameter x as [17]

m

m∗
q

= 1 + (κsat + τ3κsymδ)
n0

nsat
, (7)

where τ3 = 1 for neutrons and −1 for protons.
This expansion adds two extra empirical parameters to our

parameter set, namely

κsat = m/msat − 1,

κsym = 1
2 [m/m∗

n(x = 0,δ = 1) − m/m∗
p(x = 0,δ = 1)].

(8)

Here, κsat is related to the isoscalar effective mass and κsym

is half the difference of the inverse of the effective masses in
neutron matter. More commonly, the isovector dependence of
the effective mass is described in terms of the isospin splitting
of the nucleon masses in neutron matter,

�m∗

m
= 1

2 [m∗
n(x = 0,δ = 1) − m∗

p(x = 0,δ = 1)].

= κsym

(κsym)2 − (1 + κsat)2
. (9)

The value of �m∗/m is not very well constrained from
experimental data [31]. Theoretical predictions based on the
Bruckner-Hartree-Fock formalism prefer a small value, of the
order of 0.1 [31]. In this work, we fix κsym = 0 since this
parameter has a very weak effect for masses of finite nuclei.

Similarly, we write the potential part of the energy per
particle as a series expansion separated into isoscalar and
isovector contributions aα0 and aα2, up to second order in
the parameter x as follows:

epot =
2∑

α=0

(aα0 + aα2δ
2)

xα

α!
uα(x) . (10)

This expression for the potential term corresponds to the
meta-modeling ELFc (Empirical Local density Functional,

with correction at zero density) of Ref. [17]. The function u
is defined as uα(x) = 1 + 27x3e−b(3x+1) such that epot satisfies
the following limit: epot → 0 for n0 → 0. The parameter b
is set to b = 10 ln 2 such that it has a negligible contribution
above saturation density; see Ref. [17] for more details.

Then comparing with Eqs. (2) and (3), the isoscalar and
isovector coefficients in the expansion can be written in terms
of the empirical parameters as [17]

a00 = Esat − tFG
sat (1 + κsat), (11)

a10 = −tFG
sat (2 + 5κsat), (12)

a20 = Ksat − 2tFG
sat (−1 + 5κsat), (13)

a02 = Esym − 5

9
tFG
sat (1 + κsat), (14)

a12 = Lsym − 5

9
tFG
sat (2 + 5κsat), (15)

a22 = Ksym − 10

9
tFG
sat (−1 + 5κsat). (16)

A given choice for the parameter set {Esat,nsat,
Ksat,Esym,Lsym,Ksym,κsat} defines a possible realization of the
meta-model, and a full exploration of the seven-dimensional
parameter space ensures, below saturation, a quasicomplete
mapping of the possible models belonging to the class of
continuous EoS with the exclusion of models considering an
effective mass splitting, because of the simplification κsym = 0.
The parameter set will be denoted as {Pα} in the following.

B. Energy functional for nuclei

1. The ETF approximation

To extend the formalism of Sec. II A to finite nuclei,
we employ the spherical ETF approximation. The resulting
meta-modeling will be called “ETF meta-functional” in the
following. In this approximation, the mass of a finite nucleus
is obtained performing a numerical integration of the local
energy functional folded with a parametrized density profile,
according to

Etot(A,δ) = 4π

∫ ∞

0
dr r2(HET F [np,nn] + Hcoul[np]).

(17)

The energy functional is given by the meta-modeling
presented in Sec. II A, complemented with a gradient term to
account for finite size effects [27]. In the framework of the ETF
theory, an extra gradient term arises from the semiclassical h̄
expansion of the nonlocal momentum operator. The final result
at the second order in h̄ is given by

HET F [nn,np] = e(nn,np)n0 +
∑

q=n,p

h̄2

2m∗
q

τ2q + Cfin(∇n0)2.

(18)

Here, the energy per particle of uniform nuclear matter e
and the effective masses m∗

q are given by Eqs. (4) and (7). The
second-order local and nonlocal corrections τ2q = τ l

2q + τnl
2q
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are given by the h̄ expansion as

τ l
2q = 1

36

(∇nq)2

nq

+ 1

3
�nq (19)

τnl
2q = 1

6

∇nq∇fq

fq

+ 1

6
n0

�fq

fq

− 1

12
nq

(∇fq

fq

)2

, (20)

with fq = m/m∗
q . Finally, the Cfin term is the extra isoscalar

surface coupling. To have a complete meta-model description
of the different DFT functionals for finite nuclei in the
ETF approximation, in principle many different gradient
terms should be introduced. However, as discussed in the
Introduction, the extra functional terms are largely redundant
if we only aim at calculating masses and radii, and we only
consider this minimal extension of the meta-functional in the
present paper.

The density profiles are taken as Fermi functions,

nq(r) = nbulk,qFq(r), Fq(r) = (1 + e(r−Rq )/aq )−1, (21)

Rq are effective radii fixed by particle number conservation,
and the parameters nbulk,q and aq are treated as four indepen-
dent variational variables. The minimization with respect to
these variables is performed including the direct and exchange
Coulomb terms at the level of the energy density defined as [32]

Hcoul[np] = 2πe2np(r)
∫ r

0
dr ′np(r ′)

(
r ′2

r
− r ′

)

− 3e2

4

(
3

π

)1/3

n4/3
p (r) , (22)

where the Slater approximation has been employed to estimate
the exchange Coulomb energy density.

2. Analytical mass model

The ETF approximation of Sec. II B 1 is a straightforward
extension of the meta-model of Sec. II A suited to evaluate
nuclear ground state properties. However, the variational
determination of the density profile parameters is numerically
very demanding when the systematic exploration of the huge
parameter space of the meta-functional is performed. For this
reason, we have developed an analytical approximation of the
ETF integrals. The theoretical method is described in detail
in Refs. [33,34] in the case of a Skyrme functional. Here we
only give the main results and the differences of the present
study with respect to [33,34], arising from the use of the
meta-functional instead of the Skyrme functional. The density
profiles are still given by Eq. (21), but the parameters nbulk,q , aq

are now analytically determined.
The parameters nbulk,q can be obtained from the infinite

matter limit of the Euler-Lagrange variational equations [35]
as the proton and neutron saturation densities [36]: nbulk,q =
nbulk(δ)(1 ± δ)/2, where the saturation density for asymmetric
matter depends on the asymmetry δ and can be written as a
function of the empirical parameters as [36]

nbulk(δ) = nsat

(
1 − 3Lsymδ2

Ksat + Ksymδ2

)
. (23)

If we further assume an = ap = a, the diffuseness of the
density profile can be analytically determined by energy
minimization, giving [34]

a2(A,δ) =CNL
surf (δ)

CL
surf(δ)

+ �RHS(A,δ)

×
√

π(
1 − K1/2

18J1/2

) nsat

nbulk(δ)

3J1/2

CL
surf(δ)

√
CNL

surf (0)

CL
surf(0)

(δ − δ2).

(24)

In this expression, the coefficients J1/2 and K1/2 represent
the value of the symmetry energy and its curvature at one
half of the saturation density, J1/2 = 2eIV (nsat/2), K1/2 =
18( nsat

2 )2∂2eIV /∂n2|nsat/2, and

�RHS =
(

3

4π

)1/3
[(

A

nbulk(δ)

)1/3

−
(

Z

nbulk,p(δ)

)1/3
]

(25)

is the difference between the hard sphere radius RHS =
rbulk(δ)A1/3 and the proton radius RHS,p = rbulk,p(δ)Z1/3 in
the hard sphere limit.

One should observe that the approximation an = ap em-
ployed to obtain Eq. (24) is not verified in complete variational
ETF or HF calculations of asymmetric nuclei; see for instance
Refs. [37,38]. It was indeed suggested that a substantial frac-
tion of the neutron skin is induced by the difference between
an and ap [22,23,37]. This effect corresponds to the nonbulk
contribution to the neutron skin. In our model, however,
we can see from Eq. (24) that, due to the complex isospin
dependence of the ETF functional, the diffuseness a explicitly
contains isovector nonbulk contributions generated by the
non-local terms. We will see in Sec. IV D that even within
the approximation an = ap the skin in our model acquires
a finite surface contribution. While not being explicitly in
contradiction with the arguments presented in Refs. [22,23,37],
our meta-modeling shows that the richness of the mean field
induces sometimes more features than a priori expected.

Finally, the asymmetry parameter δ is defined in the
framework of the droplet model as [39]

δ =
I + 3acZ

2

8QA5/3

1 + 9Esym

4QA1/3

, (26)

where ac = 3e2/[20πε0rbulk(δ)] is the Coulomb parameter and
rbulk(δ) = [ 4

3πnbulk(δ)]
−1/3

the mean radius per nucleon. More
details can be found in Refs. [33,34,40].

3. Energy calculation

Using the analytical density profiles Eq. (21), the nuclear
part of the integral Eq. (17) can be analytically evaluated, with
some approximation [33,34]. This allow us to decompose the
total energy into a bulk and a surface contribution:

Enuc(A,δ) = Eb + Es. (27)
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The bulk energy is the equilibrium energy of homogeneous
nuclear matter at isospin δ,

Eb(A,δ) = e(nbulk(δ),δ)A, (28)

where e is defined in Eq. (4). The surface energy Es contains
contributions from the gradient terms in the energy functional.
It can be further decomposed into an isoscalar and an isovector
part,

Es(A,δ) = EIS
s + EIV

s δ2. (29)

Thanks to the Fermi profile ansatz, the integration of the
isoscalar part is fully analytical, giving [33,34]

EIS
s = [CL

surf({Pα}) + CNL
surf ({Pα},Cfin)

] a

rbulk
A2/3

+ [CL
curv({Pα}) + CNL

curv({Pα},Cfin)
][ a

rbulk

]2

A1/3

+ [CL
ind({Pα}) + CNL

ind ({Pα},Cfin)
][ a

rbulk

]3

, (30)

where the explicit expressions for the CL/NL
surf/curv/ind coefficients

are given in Refs. [33,34].
We can see that the surface energy consists of a surface, a

curvature, and a constant term [39]. In turn, these terms can
be separated into a local and a non-local part. The local terms
depend only on the bulk density nbulk and on the empirical
EoS parameters {Pα} [we recall that nbulk depends only on the
isospin parameter δ and on the empirical {Pα} set; see Eq. (23)].
The nonlocal part also depends on the gradient terms and thus
on the finite size parameter (Cfin, in the present application).
It is also interesting to remark that the isospin dependence
of the surface energy is more complex than in the usual
parabolic approximation, and the expression (29) effectively
contains higher orders in δ because of the δ dependence of
the diffuseness aq , saturation radius rbulk, and of the saturation
density nbulk.

The isovector surface part can be evaluated in the Gaussian
approximation as [34]

EIV
s = EIV

surfA
2/3 + EIV

ind , (31)

where again the coefficients only depend on the EoS param-
eters, Esurf({Pα},nbulk(δ)), Eind({Pα},nbulk(δ)). It was shown
in Ref. [34] that this approximation to the surface symmetry
energy gives a good reproduction of a full ETF calculation
using the same density profiles, for isospin asymmetries up to
δ ≈ 0.3 or I ≈ 0.4, which are very close to the neutron drip
line.

Finally, a Coulomb contribution is added to the total energy
from Eqs. (30) and (31), which becomes

Etot(A,Z) = Eb(A,δ) + Es(A,δ) + ac

Z2

A1/3
. (32)

4. Calculation of radii and skins

Within the same analytical ETF approximation, we can also

calculate the root-mean-square (rms) radii of protons
√

〈r2
p〉

and neutrons
√〈r2

n〉 as [23,36]

〈
r2
q

〉 = 3

5
R2

HS,q

(
1 + 5π2a2

6R2
HS,q

)2

, (33)

where the diffuseness a is given by Eq. (24). We can see from
Eqs. (33) and (24) that the radii are explicitly correlated to
nsat through rbulk,q defining RHS,q , but all the other isovector
and isoscalar empirical parameters, including the finite size
Cfin, additionally enter in the radius definition. As discussed
before, the radii are thus related to all empirical and surface
parameters in a complex way.

The neutron skin is given by the difference in the rms

radii of protons and neutrons, i.e., �Rnp = √〈r2
n〉 −

√
〈r2

p〉. To

compare with the observations, one must calculate the charge
radius, which is related to the proton radius, using the relation〈

r2
ch

〉1/2 = [〈
r2
p

〉 + S2
p

]1/2
,

where the correction Sp = 0.8 fm comes from the internal
charge distribution of the proton [41,42].

With this fully analytical ETF meta-model, masses and radii
can be evaluated for any arbitrary set of empirical parameters
{Pα}, provided an estimation of the extra finite size parameter
Cfin is given. The determination of a confidence interval for
this parameter is detailed in Sec. III.

III. FIXING A SET OF REFERENCE PARAMETERS

In the following, we vary the values of the EoS empirical
parameters {Pα} ≡ {nsat, Esat, κsat, Ksat, Esym, Lsym, Ksym}, as
well as that of the effective finite size parameter Cfin. From
this variation, we study their influence on nuclear masses,
isolate the best parameters from their ability to reproduce the
experimental nuclear masses, and determine the correlations
among the parameters within the constraints of the physical
masses.

To reasonably restrict the huge space of the multi-
dimensional prior parameter distribution, we need to know
their average values and typical uncertainties. We extract a part
of this information from a recent work where these data were
compiled from a large number of Skyrme, relativistic mean
field and relativistic Hartree-Fock models [17]. For each of
them, the average and the standard deviation among the model
predictions were estimated, and are reported in the second line
of Table I. Alternatively, an optimized value of the empirical
parameters can be estimated by a least-square fit of nuclear
masses of some chosen nuclei with the full variational ETF,
with resulting parameters also given in Table I (first line).
From Table I we can see that the different approximations
and optimization techniques lead to different values for
the empirical parameters, as expected. The differences are,
however, consistent with the standard deviations associated
with the parameters in Ref. [17], also shown in the table (last
line).

It is important to stress that, because of the possible corre-
lations among empirical parameters, the set corresponding to
the average values (second line of Table I) is not necessarily an
optimized set, but only represents the central value of our prior
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TABLE I. Empirical parameters used in the spherical ETF model, with different approximations (first and second lines). For comparison,
the average and standard variation of the different parameters recommended in Ref. [17] is also given.

Parameter {Pα} nsat Esat Ksat Esym Lsym Ksym m∗
sat/m Cfin

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV fm5)

Full ETF, optimized set 0.1589 −15.84 266.73 32.81 58.37 −37.87 0.7484 62.15
Analytical ETF, reference set 0.1540 −16.04 255.91 33.43 77.92 −2.19 0.7 59
variation interval (absolute) ±0.0051 ±0.20 ±34.39 ±2.64 ±30.84 ±142.71 ±0.15 ±13
variation interval (relative) ±3.31% ±1.25% ±13.44% ±7.90% ±39.58% ±6516.44% ±2.14% ±22.03%
Average 〈{Pα}〉 (from Ref. [17]) 0.155 − 15.8 230 32 60 −100 0.75
Standard deviation σα (from Ref. [17]) ±0.005 ±0.3 ±20 ±2 ±15 ±100 ±0.1

parameter distribution. Still, we can use it as a reference set
to determine a reasonable domain for the extra parameter Cfin

which is specific to our meta-modeling and cannot therefore
be taken from the literature.

We optimize Cfin by calculating the binding energy of
symmetric nuclei with the analytical mass model, using
for the other parameters the average empirical set from
Table I. We minimize with respect to Cfin the average relative
dispersion

∑N
i=1(Ei,th − Ei, exp)2/E2

i, exp, for the total number
N of available nuclear masses, where the theoretical values Eth

are calculated from the analytical ETF model Eq. (32), and the
experimental values Eexp are taken from the AME2012 mass
table [43]. The resulting value is Cfin = 59 MeV fm5. We call
this parameter set EoS-Cfin, as displayed in Fig. 1.

In realistic Skyrme functionals, other energy terms (spin-
orbit, spin-gradient, isovector gradient terms) are added in
addition to the surface term. To check whether a single effective
isoscalar finite size term is sufficient to catch the information
contained in nuclear masses, we introduce an additional
spin-orbit term with coefficient Cso to the ETF functional
Eq. (32), and minimize the average relative dispersion in the
two-dimensional (Cfin,Cso) space; see results EoS-Cfin-Cso in
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FIG. 1. Difference between theoretical and experimental energy
per particle of symmetric nuclei for the reference analytical EoS, in
the case where a single surface parameter Cfin is added to the empirical
set (filled circles), and in the case where a spin-orbit coupling Cso

is also added (open circles). The result for the full ETF using an
optimized EoS (filled squares) and spherical Hartree-Fock results
using the Sly4 [45] parameter set (open squares) are also given.

Fig. 1. Though the optimal value of Cfin is obviously modified
by the presence of the spin-orbit term (from Cfin = 59 to Cfin =
61 MeV fm5), the quality of data reproduction is not modified
as we can see from Fig. 1. This shows that this extra parameter
is redundant as far as binding energies are concerned.

We can observe from Fig. 1 that the deviation of the ETF
model from the experimental data is much higher than in
full optimized DFT calculations; see for instance the best
DFT in Ref. [44], where a residual difference between the
DFT and the experimental total masses are of the order to
500 keV. Notice, however, that this excellent comparison is
possible by introducing empirical corrections to the theoretical
mass model. Without these corrections, the differences are
larger and of the order of a few MeV. For reference, we
show in Fig. 1 the comparison for the Skyrme Hartree-Fock
(H-F) SLy4 mean field model, as well as the result of a full
variational determination of the empirical parameters using
the complete ETF with the empirical EoS, plus the extra Cfin

term (see Sec. II B 1). We can see that both calculations show
a performance comparable to the one of the analytical mass
model, even if the absence of pairing in the ETF meta-modeling
induces a spurious staggering as expected. One also obtains
quantitatively similar results using other Skyrme interactions.
This means that the observed deviation is not due to the
limitations of the analytical mass model, but rather to the
fact that we are working in the mean-field approximation and
supposing spherical symmetry.

This comparison shows that our present ETF approximation
is able to reproduce satisfactorily well the nuclear masses,
averaging over shell corrections, and can be used further for
extracting constraints and correlations among the empirical
parameters.

The systematic error of the meta-modeling on symmetric
nuclei can be very roughly estimated as �E ≈ 100 × A keV.

In our simplified functional, Eq. (18), the finite size term
is purely isoscalar, while standard Skyrme functionals contain
also isovector couplings. In order to test if such a term is
needed for a reasonable reproduction of nuclear masses, we
calculate the residuals for a large number of isotopic chains for
Z = 20, 28, 50, and 82, using the Cfin = 59 MeV fm5 value
extracted from the analysis of symmetric nuclei. The results
are displayed in Fig. 2 and show that the residuals are of the
same order for all asymmetries I . Again, the reproduction
of experimental data is of comparable quality if the full
ETF functional is used without approximations, using the
optimized parameter set of Table I within the empirical model
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FIG. 2. Difference between theoretical and experimental energy
per particle vs asymmetry I = (N − Z)/A for different Z values:
20 (Ca), 28 (Ni), 50 (Sn), and 82 (Pb), for the reference empirical
EoS (filled circles). The result for the full ETF mass model using
an optimized EoS (filled squares) and spherical H-F results with the
Sly4 parameter set (open squares) are also given.

(filled squares). Spherical HF calculations for even-even nuclei
within the SLy4 parametrization [45] (empty squares) are also
included in the figure. The presence of shell effects modifies
the global shape of the residuals, but again the absolute value
of the deviation is comparable. In the case of the full ETF,
no surface isovector term is included, while this latter is taken
into account in the SLy4 calculation.

We can conclude that the analytical ETF mass model leads
to a systematic error on binding energies of the order of
�E ≈ 100 × A keV, independent of the neutron richness.
The introduction of an isovector surface parameter would not
improve the predictive power of the meta-modeling, and a
single isoscalar parameter is sufficient to reproduce the masses
even along the full isotopic chains, within the precision allowed
by the classical spherical ETF approximation, as already
suggested in Ref. [27].

This somewhat surprising result might be due to the fact that
within the ETF formalism the isovector surface energy depends
in a nontrivial way on the EoS parameters and diffusivities, and
is nonzero even without an isovector surface coupling [34].

The width of the prior distribution for the finite size
parameter Cfin is estimated by varying Cfin in the analytical
mass model such that the residuals (Eth − Eexp)/A lie within
± 0.5 MeV, which leads to a value of �Cfin ≈ 13 MeV fm5.
Concerning the set {Pα} of the EoS parameters, we vary them
in the range 〈Pα〉 − σα � Pα � 〈Pα〉 + σα , with averages and
standard deviations from Table I.

To isolate the influence of the other empirical parameters
{Pα} on the nuclear mass, we now vary each parameter
individually and calculate the energy residuals for different
symmetric nuclei and for the Sn isotopic chain. The summary
of the effect on the energy residuals of variations of the
empirical parameters, within error bars, is displayed in Fig. 3.
Evidently, changing the isovector parameters Esym,Lsym,Ksym

does not affect the residuals for the symmetric case (I =
0). Therefore we plot only the influence of the isoscalar
parameters on the energy residuals. We can see from Fig. 3
that all isoscalar parameters are individually correlated to the
nuclear mass, and the largest effect is from m∗. As expected,
the higher the isospin ratio I , the larger is the influence of
isovector parameters. Very similar results are obtained, if the
full ETF mass model is used, with variationally determined
parameters for the density profile and consistent inclusion of
the Coulomb energy in the variation (not shown).

The existence of such correlations does not necessarily
mean that imposing a precise reproduction of nuclear mass
will allow us to restrict the uncertainty domain of the empirical
parameters, because the different parameters are a priori
independent, and should therefore be independently varied.
This we do in the next section.

IV. RESULTS

We now show the results obtained with the analytical and
full ETF mass models employing the meta-functional. We
recall that the parameters of the meta-functional are the set
of empirical EoS parameters, complemented by the single
parameter Cfin for the finite-size effect.
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FIG. 3. Difference between theoretical and experimental binding
energy per particle, for values of empirical parameters varied between
±σ . (a) Isoscalar parameters for symmetric nuclei, as a function of
A. (b) Isovector parameters for the Sn isotopic chain, as a function of
(N − Z)/A.

A. Exploring the parameter space

Because of the close similarity between the results obtained
with the analytical mass model (see Sec. II B 2) and the ones
using the full variational determination of the density profile
of the ETF meta-functional (see Sec. II B 1), in this section we
only use the analytical mass model, which is computationally
very fast.

We begin with the minimum bias hypothesis: we choose
a uniform prior distribution of empirical parameters in all
dimensions as in Table I.

Next, we ask ourselves whether the average value of the
empirical parameters can be modified, and their uncertainty
domain reduced, by the constraint of reproduction of experi-
mental binding energies.

The posterior distribution after application of the mass filter
is given by

p({Pα},Cfin) = Nwfilter({Pα},Cfin)
Np∏
α=1

gα(Pα)gC(Cfin),

(34)

where N is a normalization, Np = 7 stands for the number
of saturation empirical parameters, and the functions gα , gC

are the priors, here taken as flat distributions in the range
〈Pα〉 − σα � Pα � 〈Pα〉 + σα . The standard choice for the
filter function wfilter is given by the likelihood probability:

wχ ({Pα},Cfin) = exp[−χ2({Pα},Cfin)/2], (35)

with the χ2 function defined as

χ2 = 1

N − Np − 1

N∑
i=1

(
Ei,th − Ei, exp

100Ai

)2

. (36)

Here, energies are given in KeV, and the sum extends over
all the symmetric nuclei with 10 � Z � 50 and all the
experimentally known isotopes of the semimagic elements
with Z = 20,28,50,82 (N = 3047 in our calculation). The
denominator corresponds to the systematic theoretical error,
chosen so as to have χ2

min ≈ 1 over the parameter space sample
[46]. The experimental error bar on the masses is always much
smaller than the systematic theoretical error, and has been
neglected.

To better visualize the effect of the filter and at the same
time have a convenient representation of the average binding
energy deviation associated with each parameter set, we also
introduce a dimensional quantity analogous to the χ2, which
directly measures the average binding energy deviation over
the symmetric nuclei as well as semimagic isotopic chains:

� = 1

N

N∑
i=1

|Ei,th − Ei, exp|
A

, (37)

where the sum extends over the same nuclei as for Eq. (36).
We then define a filter function selecting those parameter

sets for which � < �cutoff , where �cutoff is varied in order to
observe the influence on the different observables as well as
model parameters:

w�({Pα},Cfin) = �(�cutoff − �). (38)

The corresponding posterior distribution p� thus explicitly
depends on the chosen value of �cutoff , and so on the goodness
requested from the models to reproduce the data.

Once the sample of models is filtered according to the
chosen cutoff, centroids and standard deviations for any
observable O can be calculated by integrating the posterior
distribution p over the model parameters as

〈O〉 =
∫

dP1 · · · dPNp
dCfinOp({Pα},Cfin), (39)

σ 2
O =

∫
dP1 · · · dPNp

dCfin[O − 〈O〉]p({Pα},Cfin). (40)

In these expressions, the value of the observable O in the
integral is evaluated within the considered parameter set, O ≡
O({Pα},Cfin), and p can be pχ [using Eq. (36)] or p� [if
Eq. (38) is used]. We remark that O may or may not coincide
with one of the model parameters {Pα}, Cfin.
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FIG. 4. Effect of cutoff in � on the average (central purple line) and standard deviation (band width) for two different observables—the
208Pb binding energy per nucleon (left) and its neutron radius (center)—and the nsat empirical parameter (right). In each panel, the inset shows
the same for �cutoff < 0.5.

B. Mean and variance

Using the cutoff filter w� [Eq. (38)], we computed the mean
and variance of some empirical quantities and observables,
namely the binding energy per nucleon, rms neutron radius of
208Pb, and saturation density nsat, shown in Fig. 4. For each
panel, the centroid and standard deviation of the likelihood
posterior distribution are additionally given in Table II.

In each of the panels, the lines indicate the mean value 〈O〉
and the values within a standard deviation of σ . The shown
behaviors are representative of the general evolution with
�cutoff of all the quantities we have examined. Specifically,
all binding energies behave very similarly to the left panel of
Fig. 4; all neutron and charge radii behave as in the central
panel of Fig. 4; and all empirical parameters show a very
constant behavior as in the right panel of Fig. 4. For all
observables and model parameters, the average values only
slightly evolve with �cutoff , showing that our reference set is
not far away from an optimized set. The variance of the energy
per particle monotonically decreases, showing that �cutoff is
indeed a measure of the quality of reproduction of individual
binding energies. The variance of the radii also globally
decreases. This is also expected because a smaller value of
�cutoff corresponds to a reduction of the parameter space,
and therefore of the possible variation among the different
models. However we can see that the cutoff is ineffective

TABLE II. Centroid and standard deviation of the likelihood
posterior distribution for the observables in Fig. 4.

Parameter E/A (208Pb) 〈rn〉 (208Pb) nsat

(MeV) (fm) (fm−3)

Average −7.806 5.596 0.154
Standard deviation 0.124 0.046 0.003

starting at around �cutoff ≈ 0.5 MeV: a reproduction of the
experimental binding energy better than 500 KeV per nucleon
does not improve our uncertainty on the nuclear radius. Finally,
the constant behavior of all the empirical parameters {Pα}
is less expected. None of them (in average as well as in
standard deviation) depends of the goodness requested in the
reproduction of binding energies.

This observation suggests that, if imposing a reproduction
of the experimental binding energies, one cannot expect to
be able to greatly reduce the uncertainty of the empirical
parameters. This is due to the fact that the χ2 hypersurface
is relatively flat: all EoS parameters affect more or less in a
similar way the nuclear binding energy (see Fig. 2). Since
we are not supposing any a priori correlation among the
parameters, compensations can freely occur. This is similar
to the study of neutron stars, where compensation between
different empirical parameters were observed to greatly reduce
the effectiveness of the filters [21].

The only model parameter that can be better constrained
by a better reproduction of nuclear mass is the finite size
parameter Cfin. This is shown in Fig. 5, which displays the
evolution of the variance of Cfin with the cutoff (the average
value is not affected).

However, the observed reduction of the standard deviation
is essentially due to the fact that we have assumed a widely
spread prior for this parameter. At a still relatively large value
of the cutoff �cutoff ≈ 0.25 MeV, a convergence is observed
for a non-negligible width, meaning that extreme values of Cfin

are not excluded by the binding energy reproduction, because
they can be compensated by the smaller but combined opposite
effect of the EoS parameters.

The centroids and standard deviations obtained using the
likelihood filter, Eq. (36), instead of the cutoff dependent
one, Eq. (38), are given in Table II. These values are almost
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identical to the ones obtained with the �cutoff filter for �cutoff �
0.5 MeV.

To conclude, it appears from this study that an improvement
in the predictive power of the mass model would not lead to
any further constraint on the EoS empirical parameters besides
the state-of-the-art values represented by Table I.

C. Correlations

We now come to the main result of this study, namely
the search for physical correlations of the different empirical
parameters among themselves, as well as with the radii
and skins. In particular, the correlation coefficients between
parameters and observables allows determination of the most
influential observables in constraining the EoS [18,22–24].
They are defined as

c(X,Y ) = σ (X,Y )

σ (X)σ (Y )
= 〈(X − 〈X〉)(Y − 〈Y 〉)

σ (X)σ (Y )
, (41)

where X, Y denote parameters or observables, and the
averages, variances, and covariances are computed on the
posterior distribution.

The covariance study is done on the posterior distribution
of empirical parameters with the binding energy filter given
by Eqs. (35) and (36). We have checked that the use of the
cutoff filter produces the same correlation matrix provided
�cutoff � 0.5 MeV.

To summarize the different correlations, we display in
Fig. 6 the correlation matrix of the following quantities:
empirical parameters (nsat, Esat, Ksat, Esym, Lsym, Ksym), the
effective mass m∗/m, the finite size parameter Cfin, and some

observables in 208Pb, namely the rms charge radius
√

〈r2
ch〉,

neutron rms radius
√〈r2

n〉, neutron skin �Rnp, and diffuseness
a. The picture is qualitatively the same if other stable nuclei
are chosen.

The first observation in this plot is that none of the empirical
parameters (including the effective mass) are correlated to
each other. In particular, the correlation coefficient between

Lsym and Esym is close to zero, at variance with numerous
studies in the literature [4,10,15,16,47,48]. That correlation
is generally explained by the fact [49] that nuclear structure
probes the symmetry energy at densities below saturation: to
have a given value for eIV (n0 < nsat), a higher (lower) value
of Esym = eIV (nsat) must be associated to a higher (lower)
value of its derivative at nsat, namely Lsym. However, this
argument neglects the effect of the second derivative Ksym.
In Skyrme forces, Ksym is typically negative and strongly a
priori correlated with Lsym, therefore the argument holds. But
if we allow a larger exploration of the Ksym parameter space,
we can see that the new behaviors explored for the symmetry
energy are still compatible with the binding energy constraint,
and break the simple correlation between Esym and Lsym. This
suggests that this commonly observed correlation is not a direct
consequence of the constraint of mass reproduction, but might
be due to the lack of flexibility of the Skyrme functional.

If we now turn to the correlations between observables
and empirical parameters, apart from the trivial correlation
between the neutron and charge rms radii, the strongest
correlations visible in the plot are the correlations of the radii
with the saturation density nsat, and that between the neutron
skin �Rnp and the slope of symmetry energy Lsym.

The correlation of the radii with the saturation density
nsat is relatively trivial and expected, since the value of nsat

determines the average density of nucleons per volume. The
constant nbulk is indeed a function of the saturation density in
our model and it explicitly enters in the definition of the radii.
At low δ values, the second important quantity entering in the
determination of the bulk density is Ksat [see Eq. (23)], which
explains the weaker correlation between the radii and Ksat.

The excellent correlation of �Rnp with Lsym is in agreement
with previous studies in the literature [18,22–24,37], which
used specific Skyrme or RMF energy functionals. However,
other correlations shown in the literature with Esym or Ksym

[14,50] are not observed here, which might again indicate the
model dependence of these correlations.

The �Rnp-Lsym correlation can be understood from the
fact that the skin is proportional to the average displacement
between neutrons and protons �RHS [39], as can be seen
from Eq. (33). Now, �RHS is directly linked to the isospin
dependence of the saturation density; see Eq. (25). This
latter is determined by the ratio Lsym/(Ksat + Ksymδ2); see
Eq. (23). The value of the bulk asymmetry δ is small in
stable nuclei δ ≈ 0.1 and the parameter Ksat is relatively
well constrained by the isoscalar giant resonance mode. As
a consequence, Lsym is the key parameter to determine the
neutron skin.

A word of caution has to be given here. In our analytical
mass model we have employed the approximation an = ap.
Since the diffusivity depends in a complicated way both on
the empirical parameters and on the finite size ones, this
simplification might lead to an overestimation of the quality
of the correlation. Still, it should be stressed that this same
excellent correlation was observed also in a theoretical analysis
where this approximation was not done [24]. Also, an analysis
with the full ETF mass model, where an(N,Z) and ap(N,Z)
are independent parameters variationally determined for each
nucleus, confirms the correlation between �Rnp and Lsym.
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FIG. 6. Posterior correlation matrix for empirical parameters and nuclear observables, after application of the mass filter.

Finally, the parameters related to the nuclear surface exhibit
different, though weak, interesting correlations. The finite size
parameter Cfin is correlated to the effective mass and, in a
weaker way, to the radii. This is consistent with our observation
that Cfin and m∗ are the two most influential parameters in the
determination of the binding energy. A clear correlation is
observed between Ksat and a. This is an interesting feature
since these two quantities contribute to the surface energy:
Ksat represent the bulk contribution while a is more complex.
The parameter a is also found to be correlated with the radii rch

and rn, as is expected. Finally, a weak correlation is observed
between a and Cfin. This reveals the complex structure of the
nonlinear terms in the ETF which depend on these parameters
in a nontrivial way. In summary, surface terms induce some
interesting correlations, but these correlations are weaker, and
might be less robust, than the dominant correlation �Rnp-Lsym.
Indeed the introduction of more gradient couplings and/or
the introduction of an isovector diffuseness might change the
properties of the surface parameters a, Cfin and their mutual
correlations.

D. Radii and skins

We have seen in the previous section that constraints on Ksat

and nsat might come from the reproduction of nuclear radii, and
constraints on Lsym could be obtained from the measurement
of neutron skin. We therefore turn to examine the predictive
power of our model on these observables in the present section.

The prediction of charge radii along the different semi-
magic isotopic chains, obtained from the models filtered with
the constraint of binding energy reproduction according to
Eq. (38) (see Sec. IV A) is compared to experimental data
from Ref. [51] in Fig. 7. In this figure, the experimental error
bars are smaller than the size of the points. The predictions for
the full ETF mass model with empirical parameters optimized
on the binding energies (Table I) is also given, and seen
to be compatible at the 2σ level with the analytical mass
model.

We can see that the reproduction is not optimal, but the
performance of the model is comparable to the one of complete
ETF or DFT calculations in the absence of deformation
[41,42].
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FIG. 7. rms charge radii vs I for semimagic isotopic chains for different Z values (a) 20, (b) 28, (c) 50, and (d) 82. Symbols with error
bars: experimental data. Bands: predictions at 1σ (and 2σ ) for the empirical EoS filtered through the binding energy constraint. Lines with
filled squares: prediction from the full variational ETF with the optimized empirical parameter set.

Since the experimental error bars are much smaller than the
theoretical ones, the charge radii constitute a very promising
observable to further constrain the EoS. This is especially
interesting for the Ksat parameter, for which some tension still
exists [17] between constraints extracted from relativistic and
nonrelativistic models.1 It is highly probable that this tension
might be induced by the different correlations between Ksat

and Ksym in the two families of models [49,52], and could
therefore be solved using the empirical EoS.

We have not attempted to put a further filter on the radii in
the present study, because we consider that the present meta-
modeling is not sufficiently sophisticated for this purpose.
Indeed, we can see from Fig. 6 that the radii also crucially
depend, beside the EoS parameters, on the surface properties of
the model (here a, Cfin), which are treated in a simplified way
in the present work. Moreover, the spherical approximation
employed in this work is inadequate for many of the isotopes
shown in Fig. 7. Finally, the small but systematic difference
between the results of the analytical mass model and the full

1For the reproduction of the same GMR observables, the nonrel-
ativistic models prefer Ksat ≈ 210–240 MeV, while higher values
Ksat ≈ 250–270 MeV are extracted from RMF calculations.

ETF with increasing nuclear charge suggests that it might be
important to consistently include the Coulomb field in the
variational theory for a correct description of charge radii. For
these reasons, we leave the quantitative study of extracting
EoS parameters from charge radii to a future work.

Next, we study the dependence of neutron skin �Rnp on
the global asymmetry parameter I = (N − Z)/A, for nuclei
for which experimental measurements of the neutron skin
exist [53]. We display the results in Fig. 8, along with the
results from the full ETF calculation with the optimized
empirical data set of Table I. It is clear from the figure
that within the uncertainties of the empirical parameters, our
model predicts neutron skins compatible with experimental
results, with a comparable level of precision as complete ETF
calculations [50].

This shows that a different diffuseness for the proton and
neutron distribution is not necessary to reproduce the correct
magnitude of the neutron skin, in contradiction with the results
of Refs. [22,23,37]. We might understand this contradiction
from the fact that our prescription for the diffuseness Eq. (24)
effectively contains local and nonlocal isovector terms in a
complex way, even assuming an = ap.

Given the excellent correlation between the neutron skin
and the Lsym parameter, we can expect that adding an
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FIG. 8. Neutron skin as a function of global asymmetry for
various nuclei. Symbols with error bars: experimental data. Bands:
predictions at 1σ (and 2σ ) for the empirical EoS filtered through bind-
ing the energy constraint. Lines with filled squares: prediction from
the full variational ETF with the optimized empirical parameter set.

extra filter on the reproduction of the skin will allow us to
considerably reduce the uncertainty interval on Lsym in a fully
model-independent way. This study is not yet possible given
the huge error bars of experimental data, but will hopefully be
possible in a near future.

V. SUMMARY AND OUTLOOK

In this work we have developed a meta-modeling analysis of
the correlations of the empirical parameters among themselves
and with nuclear observables such as masses, radii, and neutron
skins.

We used the extended Thomas-Fermi approximation at
the second order in h̄ and parametrized density profiles, to
construct a fully analytical mass model for finite nuclei,

based on a meta-modeling for homogeneous nuclear matter.
The coefficients of this functional are directly related to the
empirical parameters and can be independently varied, thus
avoiding any artificial correlation induced by the chosen
functional form. In finite nuclei, a single isoscalar extra
parameter is required for the surface term to reasonably
reproduce the experimental measurements of nuclear masses
all along the nuclear chart. Our results show that no physical
correlations exist among the different empirical parameters as
far as the reproduction of binding energy is concerned, and
thus suggest that the correlations shown in the literature might
arise from the specific functional form assumed for the energy
density, in particular for Skyrme functionals.

Charge radii exhibit interesting correlations both with EoS
parameters (Ksat and nsat) and with the properties of the nuclear
surface, which are less universal and might depend on the
details of the variational theory. It will be interesting to try to
disentangle these two aspects with dedicated calculations in
the future.

We also showed that it is possible to reasonably reproduce
the present measurements of neutron skins in nuclei even
without the contribution from the differences in surface
diffuseness between protons and neutrons. In agreement with
some previous studies, we find that the neutron skin depends
only on the slope of the symmetry energy Lsym and thus
represent an extremely important observable to constrain the
nuclear equation of state for astrophysical applications. This
result stresses the importance of precise measurements of this
key quantity in the next future [54,55].
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