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The existence of neutron stars with 2M� requires strong stiffness of the equation of state (EoS) of neutron-star
matter. We introduce a multi-Pomeron exchange potential (MPP) working universally among three- and four-
baryon systems to stiffen the EoS. Its strength is restricted by analyzing the nucleus-nucleus scattering with the
G-matrix folding model. The EoSs are derived using the Brueckner-Hartree-Fock (BHF) theory and the cluster
variational method (CVM) with the nuclear interactions ESC and AV18. The mass-radius relations are derived by
solving the Tolmann-Oppenheimer-Volkoff (TOV) equation, where the maximum masses over 2M� are obtained
on the basis of terrestrial data. Neutron-star radii R at a typical mass 1.5M� are predicted to be 12.3–13.1 km.
The uncertainty of calculated radii is mainly from the ratio of three- and four-Pomeron coupling constants, which
cannot be fixed by any terrestrial experiment. Though values of R(1.5M�) are not influenced by hyperon-mixing
effects, finely observed values for them indicate degrees of EoS softening by hyperon mixing in the region of
M ∼ 2M�. If R(1.5M�) is less than about 12.3 km, the softening of EoS by hyperon mixing has to be weak.
Useful information can be expected by the space mission NICER, offering precise measurements for neutron-star
radii within ±5%.
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I. INTRODUCTION

In studies of neutron stars, the fundamental role is played
by the equation of state (EoS) for dense nuclear matter.
The observed masses of neutron stars J1614 − 2230 [1]
and J0348+0432 [2] are given as (1.97 ± 0.04)M� and
(2.01 ± 0.04)M�, respectively, which are severe conditions
for the stiffness of the EoS of neutron-star matter. It is well
known that the stiff EoS giving the maximum mass of 2M�
can be derived from the existence of strongly repulsive effects
in the high-density region. In the nonrelativistic approaches,
three-body repulsions (TBR) interactions among nucleons are
taken into account. In Ref. [3], for instance, neutron matter
EoSs and mass-radius (MR) relations of neutron stars were
studied using a quantum Monte Carlo technique with the AV8′
interaction added by 3n repulsions. In relativistic mean field
(RMF) models, self-interactions of repulsive vector mesons
are taken into account to stiffen EoSs.

On the other hand, hyperon (Y ) mixing in neutron-star
matter brings about remarkable softening of the EoS, canceling
the TBR effect for the maximum mass [4–6]: With increasing
baryon density toward centers of neutron stars, chemical
potentials of neutrons become high so that neutrons at
Fermi surfaces are changed to hyperons (Y ) via strangeness
nonconserving weak interactions overcoming rest masses of
hyperons. This hyperon mixing of neutron-star matter exists by
all indications. One of the ideas to avoid this “hyperon puzzle
in neutron stars” is to assume that the many-body repulsions
work universally for every kind of baryon. In Refs. [7–9], the
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multi-Pomeron exchange potential (MPP) was introduced as
a model of universal repulsions among three- and four-baryon
systems on the basis of the extended soft core (ESC) BB
interaction model developed by two of the authors (T.R. and
Y.Y.) and Nagels [10,11]. MPP and the additional three-body
attraction (TBA) were restricted on the basis of terrestrial
experiments, where another adjustable parameter was not used
for the stiffness of the EoS.

Compared to the measurement of neutron-star masses, the
observational determination of their radii has been difficult.
Though the radius can be extracted from the analysis of
x-ray spectra emitted by the neutron star atmosphere, very
different values for stellar radii have been derived because
of uncertainties of the modeling of the x-ray emission. Now,
because of the space mission NICER (Neutron star Interior
Composition ExploreR) [12], high-precision x-ray astronomy
is expected to offer precise measurements for neutron-star radii
within ±5%.

In this work, we start from the EoS of neutron-star
matter with baryonic constituents, not considering a possi-
ble transition to deconfined quark matter, and derive basic
MR relations by solving the Tolmann-Oppenheimer-Volkoff
(TOV) equation. Our EoS is derived from the realistic baryon-
baryon (BB) interaction model added by MPP and TBA, This
interaction model is confirmed by rich terrestrial data, and then
MR relations can be predicted within a small range. As shown
later, the important point in this work is that basic features of
MR relations are determined substantially by MPP parts with
minor contributions from TBA parts.

The modern NN interaction models, one of which is our
ESC, are constructed with high accuracy in reproducing NN
scattering data. It is well known, however, that these potentials
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lead to different saturation curves (E/A values as a function
of density), and these curves are controlled mainly by tensor
components included in interaction models. It is interesting to
study how the difference of interaction models has an effect on
the MR relations. In this work, we pick up the AV18 potential
[13] as an example giving a far shallower saturation curve than
ESC.

In our approach, no ad hoc parameter is included to control
the stiffness of the neutron-star EoS. This means that we can
predict radii of neutron stars as a function of their masses,
which should be confirmed by the coming observational
data. We adopt the Burueckner-Hartree-Fock (BHF) theory in
order to treat baryonic many-body systems with realistic BB
interaction models, and study properties of baryonic matter
including not only nucleons but also hyperons with use of the
lowest-order G-matrix theory with the continuous choice of
intermediate single particle potentials. Methods of G-matrix
calculations in this work are the same as those in [7–9], but
numerical results of G matrices are different from those in
these previous works because the computation program is
improved.

The EOSs and MR relations by BHF theory are compared
with those calculated with the cluster variational method
(CVM) [14–16] to discuss the theoretical uncertainties in
predicted values of neutron-star radii with respect to the
many-body approaches.

This paper is organized as follows: In Sec. II, on the basis
of realistic interaction models, the EoSs and the MR relations
of neutron stars are derived: In Sec. II A, the MPP and TBA
parts are restricted so as to reproduce the angular distributions
of 16O + 16O scattering and nuclear saturation properties. In
II B, the EoSs of β-stable neutron-star matter are derived with
use of BHF theory. The MR relations are obtained by solving
the TOV equation. In Sec. II C, the EoSs and MR relations
are investigated with use of CVM. In Sec. III, the EoSs of
hyperonic nuclear matter are derived and effects of hyperon
mixing on the MR relations are investigated. In Sec. IV, our
predictions for values of R(1.5M�) are summarized.

II. BARYON-BARYON INTERACTION AND
NEUTRON-STAR EOS

A. Many-body repulsion

We start from the ESC BB interaction. The latest version
of the ESC model is named ESC08c [11]. Hereafter, ESC
means this version. In this modeling, important parts of BB
repulsive cores are described by Pomeron exchanges. They can
be extended straightforwardly to N -body repulsions by multi-
Pomeron exchanges, called here the multi-Pomeron-exchange
potential (MPP) [7,8]. The N -body local potential W (N) by
Pomeron exchange is

W (N)(x1, . . . ,xN ) = g
(N)
P gN

P

{∫
d3ki

(2π )3
e−iki ·xi

}

× (2π )3δ

(
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ki

)
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exp

( − k2
i
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where gP and g
(N)
P are two-body and N -body Pomeron

strengths, respectively, and the (low-energy) Pomeron prop-
agator is the same as the one used in the two-body Pomeron
potential. The defined MPP works universally among baryons
because the Pomeron is an SU(3) singlet in flavor (and color)
space. The effective two-body potential in a baryonic medium
is obtained by integrating over the coordinates x3, . . . ,xN as
follows:

V
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Now, we assume that the dominant mechanism is triple and
quartic Pomeron exchange. The values of the two-Pomeron
strength gP and the Pomeron mass mP are the same as those
in ESC. The scale mass M is taken as the proton mass.

Because MPP is purely repulsive, it is generally considered
correct to add a three-body attraction (TBA) to ESC together
with MPP in order to reproduce the nuclear saturation property.
We introduce here a phenomenological potential represented
as a density-dependent two-body interaction,

VA(r; ρ) = V0 exp[−(r/2.0)2]ρ exp(−ηρ)(1 + Pr )/2. (3)

Pr is a space-exchange operator so that VA(r; ρ) works only in
even states due to (1 + Pr ). V0 and η are treated as adjustable
parameters.

It is evident here that MPP is defined as a straightforward
extension of the ESC modeling. However, because its strength
is restricted on the basis of experimental data, it is meaningful
that as a phenomenological model the same form of MPP is
added to AV18 together with the VA.

In Refs. [17,18], the authors found that the many-body
repulsive effects appear in angular distributions of 16O and
12C elastic scatterings, where incident energies per nucleon
Ein/A are over about 70 MeV. Such a scattering phenomenon
can be analyzed quite successfully with the complex G-matrix
folding potentials derived from free-space NN interactions:
G-matrix calculations are performed in nuclear matter, and
G-matrix interactions are represented in coordinate space to
construct nucleus-nucleus folding potentials [17]. In order to
study the many-body repulsive effects, we pick up the 16O +
16O elastic scattering at Ein/A = 70 MeV. The 16O nucleus
is a double magic nucleus, and is considered to have a minor
channel coupling effect on the elastic scattering. Therefore,
the 16O + 16O elastic scattering is one of ideal reactions to
investigate the nuclear interaction.

In the same way as in [7–9], the analyses for the 16O + 16O
scattering are performed. The MPP strengths (g(3)

P and g
(4)
P ),

together with VA, are adjusted to reproduce the scattering
data using the G-matrix folding potential together with the
condition that the saturation parameters of nuclear matter are
reproduced well. Backward angular distributions of 16O + 16O
scattering are substantially restricted by the MPP repulsive
contributions in the density region of ρ0 < ρ < 2ρ0 [18]. They
are not so dependent on a ratio of contributions of triple
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TABLE I. Parameters g
(3)
P and g

(4)
P included in MPP

g
(3)
P g

(4)
P

MPa 2.62 40.0
MPb 3.37 0.0
MPa+ 1.84 80.0

and quartic Pomeron exchanges, and we can find various
combinations of g

(3)
P and g

(4)
P reproducing the data equally

well. As found in Eq. (2), the contributions from triple and
quartic components are proportional to ρ and ρ2, respectively.
Therefore, the latter contribution plays a remarkable role in
stiffening the EoS in the high density region.

The chosen parameter sets are listed in Table I, where the
parameter values for these sets are different from those in [8,9]
because of the improvement of G-matrix calculations. For
TBA parts in the case of using ESC, we take V0 = −8.0 MeV
and η = 4.0 fm−1 in three sets (MPa, MPb, MPa+) of g

(3)
P and

g
(4)
P . Although another choice of η leads mainly to a change in

the saturation densities, its impacts on MR curves of neutron
stars are small. For simplicity, the value of η = 4.0 fm−1 is
fixed in this paper. In the case of using AV18, we take V0 =
−35.0 MeV (η = 4.0 fm−1) for the TBA part with the same
strengths of MPP, where the deeper value of V0 in the AV18
case is needed to reproduce the saturation properties. MPa and
MPb are denoted as MPa′ and MPb′, respectively, when V0 =
−8.0 MeV in the former are changed to V0 = −35.0 MeV.
Thus, ESC (AV18) combined with MPa (MPa′) is denoted as
ESC+MPa (AV18 + MPa′), and so on.

Let us show differential cross sections for 16O + 16O elastic
scattering at Ein/A = 70 MeV calculated with the G-matrix
folding potentials in comparison with the experimental data
[19]. In comparing the G-matrix folding potentials derived
from ESC and AV18, it should be noted that not only their
real parts but also their imaginary parts are different from
each other. As shown by the E/A curves in Fig. 2, the real
part for AV18 is shallower than that for ESC. Furthermore,
the imaginary potential for AV18 is considerably weaker than
for ESC. Both features can be understood by the fact that the
weight of the tensor component in AV18 is larger than in the
case of ESC: Tensor-force contributions are suppressed more
efficiently in medium than central-force ones, which leads
to less attractive G matrices. In the cases of using ESC, the
derived imaginary potentials are suitable enough to reproduce
the 16O + 16O scattering data with no adjustment. On the other
hand, the factor NW = 1.5 is multiplied on the imaginary
potentials derived from AV18. In Fig. 1, thin solid and dotted
curves are obtained with ESC and AV18, respectively, which
deviate substantially from the data. The solid curve is for
ESC+MPa, fitting the data nicely. The dashed curve is for
AV18+MPa with V0 = −8.0 MeV, which demonstrates that
the 16O + 16O folding potential is too repulsive to reproduce
the data. The dot-dashed curve is for AV18 + MPa′, in which
we take V0 = −35.0 MeV without changing the MPP strength.
Thus, in the AV18 case, it is necessary to make VA more
attractive than that in the ESC case in order to reproduce the
data well.

FIG. 1. Differential cross sections for 16O + 16O elastic scat-
tering at Ein/A = 70 MeV calculated with G-matrix folding po-
tentials. Solid, dashed, and dot-dashed curves are for ESC+MPa,
AV18+MPa, and AV18 + MPa′, respectively. Dotted curves are for
ESC and AV18.

Similar curves can be obtained in the cases of using
ESC+MPb, AV18+MPb, and AB18+MPb′, where MPb and
MPb′ include the TBA parts of V0 = −8.0, − 35.0 MeV,
respectively.

In Fig. 2, we show the energy curves of symmetric
nuclear matter, namely binding energy per nucleon E/A as
a function of density. Solid curves in the left (right) panel are
obtained by ESC+MPa and ESC+MPb (AV18 + MPa′ and
AV18 + MPb′), and the dot-dashed one is by ESC (AV18).
The box in the figure shows the area where nuclear saturation
is expected to occur empirically. The minimum value of E/A

FIG. 2. Energy per particle E/A as a function of nucleon density
ρ symmetric matter. Solid curves in the left (right) panel are obtained
by ESC+MPa and ESC+MPb (AV18 + MPa′ and AV18 + MPb′),
and the dot-dashed one is by ESC (AV18). The box shows the
empirical value.
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TABLE II. Calculated values of saturation parameters.

ρ0 E/A Esym L K

(fm−3) (MeV) (MeV) (MeV) (MeV)

ESC+MPa 0.151 −16.3 31.7 55.7 248
ESC+MPb 0.155 −16.1 31.4 49.2 217
ESC+MPa+ 0.148 −16.5 31.4 55.1 275
AV18 + MPa′ 0.159 −15.3 29.4 50.5 263
AV18 + MPb′ 0.165 −15.2 29.9 52.0 234

for AV18 is found to be −16.5 MeV at ρ = 0.229 fm−3, which
is considerably shallower than that for ESC −22.5 MeV at
ρ = 0.255 fm−3. This difference of E/A values for ESC and
AV18 is related to the necessity of taking different values for
V0 (−8.0 and −35.0 MeV for ESC and AV18, respectively).

The EoS is specified by the following quantities: The
difference between the E/A curves for neutron matter
and symmetric matter gives the symmetry energy Esym(ρ),

and its slope parameter is defined by L = 3ρ0[ ∂Esym(ρ)
∂ρ

]
ρ0

.

The incompressibility is defined by K = 9ρ2
0 [ ∂2

∂ρ2 E/A(ρ)]
ρ0

.

Calculated values of these quantities at saturation density ρ0

are summarized in Table II. The minimum values of E/A
curves in all cases turn out to be close to the empirical value.
The symmetric energies and their slope parameters are similar
to each other and consistent with the empirical indications.
The difference among these sets appears in the values of
the incompressibility K . The experimental values of K are
given as 220–250 MeV [20]. The value of K = 275 MeV at
ρ0 = 0.148 fm−3 in the MPa+ case seems to be too large in
comparison with the experimental indication. In the following
part of this paper, MPa+ is used only to demonstrate the rela-
tion between the MPP repulsion and the stiffness of the EoS.

B. EoS and M R relation

Using our interaction models, we derive the EoS of β-stable
neutron-star matter composed of neutrons (n), protons (p),
electrons (e−), and muons (μ−), The EoSs obtained from
G-matrix calculations are used for ρ > 0.16 fm−3, and are
connected to the crust EoSs given in [21,22]. The E/A curves
obtained from G-matrix calculations are fitted by analytical
functions, giving rise to analytical expressions for energy
density, chemical potential, and pressure.

Assuming a mixed matter of n, p, e− and μ− in chemical
equilibrium, we solve the TOV equation for the hydrostatic
structure to obtain mass-radius relations of neutron stars.
Because the causality conditions at high density are violated
in our nonrelativistic approach, we adopt the approximation
where the EoS is replaced by the causal EoS above this density
in the same way as the treatment in Ref. [3].

In Fig. 3, we demonstrate the obtained MR relations of
neutron stars. Solid curves are for ESC + MPa/MPb/MPa+,
and the dot-dashed one is for ESC. The EoSs including MPP
repulsions are found to be stiff enough to give 2M� maximum
masses. The critical densities for ESC+MPa, ESC+MPb,
and ESC+MPa+, whose sound speeds are over the speed of
light, are obtained as 0.70, 1.01, and 0.59 fm−3, respectively.

FIG. 3. Neutron-star masses as a function of the radius R. Solid,
dashed, and dotted curves are for ESC+MPa, ESC+MPa+ and
ESC+MPb, respectively. The dot-dashed curve is for ESC. The upper
two dotted horizontal lines show the observed masses 1.97M� and
2.01M� of J1614 − 2230 and J0348+0432, respectively. The lower
dotted line shows the mass 1.5M� of a typical neutron star.

The densities giving the maximum mass in these cases are
0.89 fm−3 (ESC+MPa), 1.07 fm−3 (ESC+MPb), and 0.79
fm−3 (ESC+MPa+). The former values are noted to be smaller
than the latter values.

It should be noted that the 2M� masses are obtained with no
ad hoc parameter to stiffen EoSs in our approach, because our
MPP repulsions are restricted so as to reproduce the 16O + 16O
scattering data. It can be checked here that contributions of
TBA to the MR curves are small in the case of using ESC,
demonstrating that basic features of MR relations are mainly
determined by MPP contributions. The difference between
MPa (MPa+) and MPb is due to the quartic-Pomeron exchange
term included in the former. The strength of the effective two-
body interaction derived from the quartic-Pomeron exchange
is proportional to ρ2, and the contribution becomes sizable in
the high-density region, making the maximum mass so large.
Here, the important point in Fig. 3 is as follows: The repulsive
effect by MPP is shown symbolically as MPa+ > MPa > MPb,
and the increase of the repulsive effect raises both M and R
of a neutron star. In our present approach, only the strength of
this repulsive effect plays a role in adjusting the stiffness of
the EoS. This effect changes both mass and radius of a neutron
star simultaneously: There is no parameter changing mass and
radius independently. The obtained values of R(1.5M�) are
12.5, 13.1, and 13.4 km for MPb, MPa, and MPa+, respectively.

In Fig. 4, the MR curves for AV18 are compared with those
for ESC. Solid curves are for ESC+MPa and ESC+MPb,
and are the same as the corresponding curves in Fig. 3. The
dashed curves are for AV18 + MPa′ and AV18 + MPb′, in
which V0 = −8.0 MeV in MPa/MPb is changed to the more
attractive value of V0 = −35.0 MeV so as to reproduce the
16O + 16O scattering data. The value of R(1.5M�) for AV18 +
MPa′ (AV18 + MPb′) is found to be smaller by 0.2 km (0.1 km)
than that for ESC+MPa (ESC+MPb).

The critical densities for AV18 + MPa′ and AV18 + MPb′,
in which sound speeds are over the speed of light, are obtained
as 0.67 and 0.97 fm−3, respectively, and the densities giving the
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FIG. 4. Neutron-star masses as a function of the radius R. Solid
curves are for ESC+MPa and ESC+MPb. Dashed curves are for
AV18 + MPa′ and AV18 + MPb′. Also see the caption of Fig. 3.

maximum mass are 0.89 fm−3 (AV18 + MPa′) and 1.05 fm−3

(AV18 + MPb′) .

C. Calculations by the variational method

The variational method is another powerful method for the
neutron-star EoS in the nonrelativistic approach. In Refs. [14–
16], one of the present authors (H.T.) and his collaborators
developed a cluster variational method (CVM) for uniform
nuclear matter with arbitrary proton fractions. It is important
to compare the BHF results in the previous sections with
those by CVM using the same interaction models. We adopt
here AV18 + MPa′ and AV18 + MPb′. In Table III, we show
the values of saturation parameters calculated by CVM. In
comparison with the BHF results for the same interactions in
Table II, CVM turns out to give shallower values of E/A by
about 2 MeV than BHF.

Figure 5 shows the E/A curves of symmetric and pure
neutron matter obtained by CVM. The solid and dashed
curves are for AV18 + MPa′ and AV18 + MPb′, respectively.
The corresponding E/A curves obtained by BHF are drawn
by thin solid and dashed curves for AV18 + MPa′ and
AV18 + MPb′, respectively. Here, the CVM results are found
to become more repulsive than the BHF ones with increasing of
density, especially in symmetric matter. This means that strong
repulsive interactions are evaluated larger by CVM than BHF.
It is difficult to determine which is reasonable. In Ref. [23], the
BHF results for the EoS of nuclear matter were compared with
the results by other many-body methods using Argonne-type
interactions. They found that the formers were significantly
different from the latters in symmetric matter. Such situations

TABLE III. Values of saturation parameters calculated by CVM.

ρ0 E/A Esym L K

(fm−3) (MeV) (MeV) (MeV) (MeV)

AV18 + MPa′ 0.155 −12.85 26.6 47 275
AV18 + MPb′ 0.164 −12.92 27.5 48 252

FIG. 5. E/A curves of symmetric and pure neutron matter.
Solid and dashed curves are for AV18 + MPa′ and AV18 + MPb′,
respectively. Thick (thin) curves are obtained by CVM (BHF).

are similar to our present case. Thus, it is considered that there
still remains an important problem how to obtain the most
realistic description of nuclear-matter EoS.

In Fig. 6, the solid curves show the MR relations obtained
by CVM for AV18 + MPa′ and AV18 + MPb′, where For
comparison, here, the BHF results for AV18 + MPa′ and
AV18+MPb’ are shown by dashed curves. Though the forms
of MR curves are rather different from each other, the
differences of M(1.5M�) values are about 0.1 km. The reason
for different MR curves is because the MPP repulsions are
evaluated larger by CVM than BHF. Considering that the MPP
strength is determined in the BHF treatment (G-matrix folding
model), it is reasonable to reduce the MPP strength in the CVM
treatment so as to reproduce E/A values properly. Then, it is
expected that the MR curve for CVM becomes close to that
for BHF.

In Fig. 6, the CVM and BHF EoSs are connected to the same
crust EoSs given in [21,22]. In the CVM case, the MR curves
by this treatment are very similar to those by the treatment in

FIG. 6. MR curves of neutron stars for AV18 + MPa′ and
AV18 + MPb′. Solid and dashed curves are obtained by CVM and
BHF, respectively. Also see the caption of Fig. 3.
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TABLE IV. Calculated values of R(1.5M�).

Model Method R(1.5M�) (km)

ESC+MPa BHF 13.1
AV18 + MPa′ BHF 12.9

CVM 13.0
ESC+MPa+ BHF 13.4
ESC+MPb BHF 12.5
AV18 + MPb′ BHF 12.4

CVM 12.3

Ref. [15], where the E/A values in the crust region are tuned
so that the Thomas-Fermi calculations for atomic nuclei with
them can reproduce the gross features of the experimental data.

In Table IV, we summarize the calculated values of
R(1.5M�). Thus, considering the ambiguities of interactions
and methods, we can say as follows: For the MPb-type interac-
tions including 3-body repulsion only, we expect R(1.5M�) =
12.3–12.5 km. For the MPa-type interactions including 3- and
4-body repulsions, we expect R(1.5M�) = 12.9–13.1 km. It
is important that the two groups are separated meaningfully.
As shown in next section, these results for R(1.5M�) are not
changed by effects of hyperon mixing.

It is meaningful to compare our results by CVM with those
by Akmal, Pandharipande and Ravenhall (APR) [24]. In fact,
as reported in Ref. [14], the energies of pure neutron matter
and symmetric nuclear matter calculated by CVM with AV18
and UIX potentials are in good agreement with those by APR.
In Fig. 12 of APR, the curve for AV18+UIX is found to be
similar to that for AV18 + MPb′ in the present case: The value
of R(1.5M�) in the former is about 12.1 km, which is slightly
smaller than that for AV18 + MPb′ by CVM. This suggests
that the TBR in UIX is slightly weaker than that in MPb′.

III. HYPERON MIXING

Let us recapitulate our method of deriving the EoS of bary-
onic matter composed of nucleons (N = n,p) and hyperons
(Y = �,	−). A single-particle potential of B particle in B ′

matter U
(B ′)
B (k) is given by summing up G-matrix elements

〈kk′|GBB ′,BB ′ |kk′〉:

U
(B ′)
B (k) =

∑
k′,,k(B′ )

F

〈kk′|GBB ′,BB ′ |kk′〉 (4)

with B,B ′ = N,Y , where spin isospin quantum numbers are
implicit. Then, a single-particle potential of B in baryonic
matter is given by UB(k) = ∑

B ′ U
(B ′)
B (k). Energy density is

given by

ε = εmass + εkin + εpot

= 2
∑
B

∫ kB
F

0

d3k

(2π )3

{
MB + h̄2k2

2MB

+ 1

2
UB(k)

}
. (5)

A baryon number density is given as ρ = ∑
B ρB , ρB being the

density of component B. Chemical potentials μB and pressure

P are expressed as

μB = ∂ε

∂ρB

, (6)

P = ρ2 ∂(ε/ρ)

∂ρB

=
∑
B

μBρB − ε. (7)

In neutron-star matter composed of n, p, e−, μ−, � and
	−, equilibrium conditions are given as

(1) chemical equilibrium conditions,

μn = μp + μe, (8)

μμ = μe, (9)

μ� = μn, (10)

μ	− = μn + μe; (11)

(2) charge neutrality,

ρp = ρe + ρμ + ρ	− ; (12)

(3) baryon number conservation,

ρ = ρn + ρp + ρ� + ρ	− . (13)

When the analytical expressions for energy densities are
substituted into the chemical potentials (6), the chemical equi-
librium conditions are represented as equations for densities
ρa (a = n, p, e−, μ−, �, 	−). Then, equations can be solved
iteratively, and an energy density and a chemical potential are
determined for each baryon component.

ESC gives potentials in hyperonic channels, and are
designed consistently with various data of YN scattering and
hypernuclei. It is important to determine MPP and TBA parts
in channels including hyperons: MPPs are defined universally
in all baryon channels. For TBAs in YN channels, parameters
V0 and η in each YN channel are determined so as to reproduce
the related hypernuclear data: In the �N channels, these pa-
rameters are determined so that the experimental spectra of �
hypernuclei are reproduced by the G-matrix folding potentials
including them. In the 	N channels, the strongly repulsive
	 potentials in nuclear medium are indicated experimentally.
Here, MPP parts are taken into account without TBA parts so
as to reproduce strong 	-nucleus repulsions. Such a task was
performed in [8,9]: Here, the parameter sets in YN channels
are taken from these references, in which the MPP strengths in
YN channels are rather weaker than the MPP ones in NN
channels determined in this work. Though this choice for
MPPs is considered to bring about some overestimation of
the softening effect by hyperon mixing, the conclusion for
radii of neutron stars in this work is not affected.

For the EoS softening, the 	− mixing is more important
than � mixing, because the electron mass reduces the
threshold energy in the equilibrium condition μ	− = μn + μe

in spite of the 	− mass being larger than �. In many
RMF approaches, no 	− mixing occurs due to the condition
of U	− = −(20–30) MeV. In our approach, assuming the
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FIG. 7. Neutron-star masses as a function of the radius R. Solid
(dashed) curves are with (without) hyperon (� and 	−) mixing for
ESC+MPa and ESC+MPb. The dot-dashed curve for MPb is with �

mixing only. Also see the caption of Fig. 3.

universal MPP repulsions among all baryons, there appears
always 	− mixing together with � and �− mixing [9].
However, if extra repulsions among 	nn are assumed, the 	−
mixing disappears. Namely, there appears to be no 	− mixing
if repulsive effects for 	−’s are substantially stronger than
those for nucleons. Such a case can be seen also in Ref. [15].
In the case of �− mixing, neglected in this work, the large
mass of �− makes the softening effect smaller than the 	−
mixing, and the effect of �− mixing on the MR relation is
small [9].

On the other hand, the MR relations of a nuclear system
composed of neutrons and �’s were studied by using the
auxiliary field diffusion Monte Carlo algorithm [25]. In this
case, the maximum mass of 2M� can be realized, because the
softening effect of EOS by � mixing does not occur due to the
extremely strong nn� repulsions.

Using the EoS of hyperonic nuclear matter, we solve the
TOV equation to obtain mass-radius relations of neutron stars
in the same way as the previous cases with no hyperon mixing.
In Fig. 7, neutron-star masses are drawn as a function of radius
R. In these figures, solid curves are for MPa and MPb with
hyperon (� and 	−) mixing, and dashed curves are obtained
without hyperon mixing. The differences between solid and
dashed curves demonstrate the softening of EoS. It is found that
the maximum mass for MPa is still 2M� in spite of remarkable
softening of the EoS by hyperon mixing, but that for MPb is
substantially less than 2M�. The dot-dashed curve for MPb is
obtained by omitting the 	− mixing, that is, including only �
mixing. In this case, the maximum mass turns out to become
2M� owing to the lacki of the large softening effect by 	−
mixing. Note that the hyperon-onset mass in the solid (dot-
dashed) curve is 1.65M� (1.51M�).

The critical densities for ESC+MPa and ESC+MPb (with-
out 	− mixing), whose sound speeds are over the speed of
light, are obtained as 1.15 and 1.26 fm−3, respectively, and the
densities giving the maximum mass are 1.20 and 1.15 fm−3,
respectively. In these cases, the critical density for the violation
of causality condition is noted to be comparable to (the former)
or larger than (the latter) the density giving the maximum

mass, which is different from the cases without hyperon
mixing.

Thus, we can consider the two scenarios for the existence
of neutron stars with 2M�:

(1) MPa-type with � and 	−, where a star mass far larger
than 2M� is reduced to 2M� by strong softening of
EoS as shown by the solid curve for MPa in Fig. 7.

(2) MPb-type with � mixing only (no 	− mixing), where a
star mass is kept to be of 2M� owing to weak softening
of EoS as shown by the dot-dashed curve in Fig. 7.

Now, it should be noted that values of R(1.5M�) are 13.1
and 12.5 km in the cases of (1) and (2), respectively, giving
a difference of 0.6 km. As found in the figure, these values
are not so affected by hyperon mixing, as they originate from
the MPP strengths in respective cases. In the MPa case, for
instance, the softening effect of the EoS for radii R is found to
appear in the region of M > 1.8M�. Thus, even considering
hyperon mixing, we have the same statements on the relation
between MPP strengths and R(1.5M�) values as in previous
sections. If radii R for M = (1.4–1.8)M� are observed with a
precision of ±5%, scenarios (1) and (2) might be distinguished.
Of course, if radii of neutron stars around the maximum mass
are also observed, it will give more decisive information on
hyperon mixing.

One of the highly prioritized targets observed by NICER
is the neutron star PSR 0437−4715, whose mass is (1.76 ±
0.20)M� [26]. Our calculated values for R(1.76M�) are
as follows: In the ESC+MPa case, we obtain 12.9 and
13.0 km with and without hyperon mixing, respectively. In
the ESC+MPb case, we obtain 12.2 and 12.3 km with and
without hyperon (�) mixing. Effects of hyperon mixing are
still small in the case of M = 1.76M�. When the mass is close
to the upper limit of the observed value 1.96M�, we have 11.4
km (12.9 km) in the ESC+MPa case and 11.6 km (11.9 km)
the in ESC+MPb case with (without) hyperon mixing. On the
other hand, in the case of the lower limit of M = 1.56M�
we have 13.1 km (12.5 km) for ESC+MPa (ESC+MPb),
regardless of hyperon mixing. Thus, our prediction for PSR
0437−4715 is summarized as follows: The radius is expected
to be 11.4–13.1 km. If the observed value is 12.9–13.1 km,
the strong softening of EoS by hyperon mixing is indicated to
be in neutron stars of M > 1.8M�.

IV. CONCLUSION

The existence of neutron stars with 2M� gives severe
conditions for the stiffness of the EoS of neutron-star matter.
Though the strong many-body repulsion can make the EoS
stiff enough, the hyperon mixing in neutron-star matter brings
about a remarkable softening of the EoS. One way to solve this
puzzle is to consider many-body repulsions working univer-
sally among baryons. The multi-Pomeron potential (MPP) is
such a model. The strength of the MPP in nucleon sectors can
be determined by fitting the observed angular distribution of
16O + 16O elastic scattering at Ein/A = 70 MeV with use of
the G-matrix folding potential. The neutron-star EoS including
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MPP contributions is stiff enough to give the large neutron-star
mass 2M�, which can be obtained with no ad hoc parameter
for stiffness of EoS in our approach.

The strength of the MPP repulsion plays a role to adjust
the stiffness of the EoS, changing both mass and radius of a
neutron star simultaneously. Then, values of radii R around
a typical mass 1.5M� are determined by MPP strengths only
with almost no effect by hyperon mixing. On the basis of
our analysis using BHF theory and the CVM, we predict
R(1.5M�) = 12.3–13.1 km where the width of calculated val-
ues comes mainly from MPP modeling composed of three- and
four-body repulsions or three-body repulsion only. We obtain
R(1.5M�) = 12.3–12.5 km for the MPb-type model including
three-body repulsion only, and R(1.5M�) = 12.9–13.1 km for
the MPa-type model including three- and four-body repulsions.
Precise measurements by NICER for neutron-star radii within

±5% are expected to determine the stiffness of EoS originating
from MPP repulsions.

Information on hyperon mixing can be obtained indirectly
from precise measurements of radii. If R(1.5M�) is larger
than about 12.9 km, remarkable softening of the EoS by
hyperon mixing has to bring about masses of 2M�. If
R(1.5M�) is smaller than about 12.3 km, the softening of
EoS by hyperon mixing has to be weak in order to keep the
maximum mass of 2M�.
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