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Nonradial oscillation modes of compact stars with a crust
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Oscillation modes of isolated compact stars can, in principle, be a fingerprint of the equation of state (EoS)
of dense matter. We study the non-radial high-frequency l = 2 spheroidal modes of neutron stars and strange
quark stars, adopting a two-component model (core and crust) for these two types of stars. Using perturbed fluid
equations in the relativistic Cowling approximation, we explore the effect of a strangelet or hadronic crust on the
oscillation modes of strange stars. The results differ from the case of neutron stars with a crust. In comparison
to fluid-only configurations, we find that a solid crust on top of a neutron star increases the p-mode frequency
slightly with little effect on the f -mode frequency, whereas for strange stars, a strangelet crust on top of a quark
core significantly increases the f -mode frequency with little effect on the p-mode frequency.
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I. INTRODUCTION

The Advanced Laser Interferometer Gravitational-Wave
Observatory (LIGO) has ushered in a new era of compact star
observations with the recent direct detections of gravitational
waves from the inspiral and merger of binary black holes
[1–3]. While the study of electromagnetic radiation from the
surfaces of neutron stars has already yielded information on
the state of high density matter inside [4–11], gravitational
waveforms arising from quadrupolar deformations of neutron
stars due to tidal effects, vibrations, rotation, or elastic strain
in the crust can provide additional constraints [12,13]. With
current sensitivities, detectable signals come from transient
but violent events such as the merger and ringdown of
colliding neutron star and black hole binaries [14,15]. Weaker
signals are expected from oscillations of isolated compact stars
[16,17], sustained through instabilities [18] or at least excited
temporarily before they are damped by fluid viscosity and
gravitational waves. The classification of these modes and
their study is a mature field [19–23].

Focusing on nonradial modes of oscillation in isolated
compact stars, the even-parity or spheroidal modes arise from
density and pressure perturbations to the star, while odd-parity
axial modes are nontrivial only for rotating stars. Lugones
and Vásquez Flores [24] recently compared the spectrum of
spheroidal f,p,g modes for hadronic, strange, and hybrid
stars, in order to find distinguishing features among them.
All these modes couple to gravitational radiation, hence
it is important to determine the corresponding (complex)
oscillation frequencies. From their conclusion for the f mode,
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it appears difficult (though possible in some cases) to discern
hadronic stars from strange stars around the observed mass
range of 1.4M�–2M�. However, for the first p mode, there is a
wide separation in the frequencies for the hadronic and strange
stars in this mass range. One can potentially exploit this feature
of the spectrum to constrain the mass and radius of the compact
star independently. The g mode arises when considering
effects of chemical inhomogeneity, nonzero temperature, or
discontinuity between two otherwise homogeneous phases
[20]. Lugones and Vásquez Flores [24] conclude that the
quark-hadron discontinuity in hybrid stars leads to higher
frequency g modes than those driven by chemical composition
or temperature effects. Mapping out the oscillation spectrum
is clearly important as a first step towards more complex
calculations in numerical relativity that can serve as templates
for gravitational waveforms in detectors [16]. Several other
works have also discussed the differences in mode frequen-
cies between neutron stars and strange/hybrid stars [25–27],
adopting a stellar model with homogeneous phases.

The main aim of this paper is to consider the effect of
a crust on the spectrum of spheroidal modes in a neutron
or strange star, and compare to modes for homogeneous,
zero-temperature stars. While the crust is only a small
fraction of the total stellar mass, it can change the oscillation
frequencies of the spheroidal and toroidal modes from the
homogeneous case. Toroidal and core-crust interface modes
have also been connected with quasi-periodic oscillations in
magnetar flares [28] and gamma-ray burst (GRB) precursors
[29] respectively. Our two-component model for neutron stars
includes a Baym-Pethick-Sutherland (BPS) crust, while for
strange stars we consider a crust made of strangelets [30,31] or
a thin hadronic crust. This extends the scope of previous works
where homogeneous phases were considered [22,24,25]. Our
interest is in the effects of a crust for two reasons: one is that,
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whereas isolated neutron stars are expected to have a solid
crust, only a few works address its effects on the f,p modes
for neutron stars in the relativistic Cowling approximation,
e.g., [32]. Original works such as [33,34] found very little
modification of the f,p modes due to the crust, but it is
worth revisiting this problem since these works typically use
an old parametrization of the equation of state, and employ
a Newtonian approximation. Our present work is the first
to study the effect of a crust on the nonradial modes in
strange stars, including relativistic effects. Another reason
for studying crustal effects is the finding from an exploration
of the toroidal r modes [35,36]: if strange stars are to be
a viable model for rapidly rotating compact stars, given the
observed spin frequencies [37] and a maximum mass around
2M�, a crystalline (superconducting) quark crust on top of
the homogenous superconducting quark phase is needed. We
would naturally like to ask if and how spheroidal modes of bare
strange stars are modified by a crust, although in this paper we
limit ourselves to nonsuperconducting quark matter, leaving
the crystalline supersolid crust to a future study. In this context,
Mannarelli et al. [38] recently explored torsional oscillations
of strange stars with such a supersolid crust. Since we discuss
strange stars, it is pertinent that quantum chromodynamics
(QCD) at large baryon density and low temperature favors a
maximally symmetric phase of homogeneous superconducting
quark matter called the color-flavor-locked (CFL) phase [39].
Stellar oscillations in CFL matter have only just started to
receive attention [40]. However, at compact star densities,
the phase of matter is less certain. For example, the core
may be in the kaon-condensed CFL phase while the crust
can be in the crystalline superconducting phase [41]. By
adopting a two-component model that can be extended to color
superconductivity in the core and crust of the strange star, we
hope to get closer to realistic models of such stars.

We proceed in Sec. II to describe the EoS used in this paper
to model self-bound strange stars with a quark crust as well as
neutron stars with a BPS crust. In Sec. III, we use these models
to calculate the f,p-mode frequencies and compare to results
for homogeneous strange stars and neutron stars. In Sec. IV,
we summarize our conclusions in the context of discerning
strange quark stars from neutron stars as gravitational wave
sources. The Appendix contains the oscillation equations in
the relativistic Cowling approximation that we solve to find
the oscillation modes.

II. EQUATION OF STATE: CORE AND CRUST

In this section, we present the EoS used in modeling a
compact star (either neutron or strange star) with a crust. The
mass M and radius R are determined by solving the Tolman-
Oppenheimer-Volkov (TOV) equations with this EoS, which
also provides the background for the perturbations.

Strange quark stars. The core is assumed to consist of
homogeneous, charge neutral three-flavor interacting quark
matter. For simplicity, we describe this phase using the simple
thermodynamic bag model EoS [42] with O(m4

s ) corrections
that account for the moderately heavy strange quark. Pertur-
bative interactions to the pressure Pq of noninteracting quark
matter [43] may be subsumed into a parameter (1 − a4) ∼

FIG. 1. Mass-radius relation for homogeneous quark stars de-
scribed by the EoS [Eq. (1)] with B = 48.34 MeV/fm3 (μcrit =
300 MeV) and B = 55.61 MeV/fm3 (μcrit = 310 MeV). The inter-
action parameter a4 = 0.7 and ms = 100 MeV. Measured limits on
the mass of PSR J1614-2230 (1.97 ± 0.04 M�) and PSR J0348-0432
(2.01 ± 0.04 M�) are shown.

O(α2
s ) ≈ 0.3 as suggested in [42], extending the applicability

of the model to stars as heavy as ≈ 2M�. The core EoS is [44]

Pq,core = 1
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where ε is the energy density of homogeneous quark matter
[also to O(m4

s ) in the bag model]. B is the bag constant, fixed by
requiring that the first-order transition between neutral quark
matter and the vacuum (P = 0) occur at a quark chemical
potential μq = μcrit < mN/3 [31]. This is consistent with the
hypothesis of absolute stability for three-flavor quark matter,
meaning such matter is self-bound. Corrections due to the
superconducting gap � may be included in the EoS as in [35],
but we prefer to avoid a proliferation of parameters in this
initial study. In any case, effects of the quark BCS gap on
the oscillation spectrum of homogeneous strange stars have
been studied recently [40]. Figure 1 shows the mass-radius
relationship for homogeneous quark stars for different values
of the bag constant B.

A two-component structure for strange quark stars was
suggested in [30] and developed further in subsequent works
[31,45]. Models of strange stars that consist entirely of
homogeneous strange quark matter or a thin nuclear crust
suspended on top have large quark density as the quark
surface is approached and the pressure goes to zero. They
also predict large electric fields at the surface (or just below,
in the case of a nuclear crust). The two-component model
we use differs from these in that it considers a heterogeneous
crust on top of fluid quark matter. Relaxing the condition of
local charge neutrality allows quarks and electrons to form a
mixed phase, with the result that it smooths the density gradient
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and produces negligible electric fields at the star’s surface.
Short-range (screened) electric fields inside the mixed phase
can be tolerated if the Gibbs free energy is lowered sufficiently.
The thickness of such a crust would be small but on the same
order as the crust of a neutron star, approximately 104 cm, and
amount to no more than 1% of the stellar radius. Assuming
that the crust is in this nonsuperconducting, globally neutral
mixed phase of (positively charged) strangelets and electrons,1

the composition of the crust changes with depth as the quark
phase fraction x increases from zero at the surface to one
in the homogeneous phase.2 Phase coexistence (neglecting
momentarily the contribution from surface tension) with stable
strangelets requires that the pressure inside and outside the
strangelet be the same, which means that the quark pressure
Pq(μq,μe) in the mixed phase is zero, so that the pressure in
the crust is only due to electrons. It is given by [30]

Pcrust = μ̃4
e

12π2
, (2)

μ̃e = nQ

χQ

(1 −
√

1 − ξ ), ξ = 2P0χQ

n2
Q

, (3)

where μ̃e is the electron chemical potential, nQ(μq,ms) and
χQ(μq,ms) represent the quark charge and quark susceptibility
(both slowly varying in the mixed phase), and P0 is the pressure
of quarks without electrons, which varies considerably in the
mixed phase. These generic relations can be concretely imple-
mented in any specific model of quark matter, so long as we
work to second order in the (small) electron chemical potential.
Just as for the core, we adopt the bag model EoS to describe the
crust strangelets with O(m4

s ) corrections, from which it follows
that, to the same order, μe/μq ≈ 0.05, nQ(μq) = m2

sμq/(2π2)
and χQ(μq) = 2μ2

q/π
2. Homogeneous quark matter gives way

to the mixed phase crust at a radius r = rc where ξ |r=rc
= 1,

i.e., μ̃e|r=rc
= m2

s (12μ2
q − m2

s )/48μ3
q . We construct the crust

as an overlying layer that begins at μq = μcrit.3 Hydrostatic
equilibrium yields the crustal profile for r � rc:

μe(r) = nQ

χQ

(
1 −

√
2GM

R2

χQε0

n2
Q

(r − rc)

)
, (4)

where ε0 is the pressure of three-flavor interacting quark
matter without electrons, taken here for the same bag model
parameters as above. For the crust, we take into account
the Debye screening effect which preferentially fractionates
quark matter into strangelets with size R∗ ∼ λD , the Debye
screening length. The analysis in [31] shows that, for surface

1We include QCD-inspired corrections for the strangelets as with
the homogeneous phase [43].

2This chemical composition gradient can lead to crustal g modes
which we do not calculate in this work, but have been discussed for
neutron stars in [46].

3We include the slight difference between inside and outside
pressure for the strangelets due to surface tension in our numerical
results. This leads to a slightly higher chemical potential for the
strangelet compared to μcrit.

TABLE I. Numerical values of the charge-to-baryon ratio (Z/A),
strangelet size R∗, crust thickness �R, and shear modulus at the base
of the crust for various combinations of μcrit and ms as computed
from the interacting bag model EoS. Mass and radius values for
row 1: 2.236M�, 12.327 km; row 2: 1.755M�, 10.290 km; row 3:
1.140M�, 7.895 km.

μcrit ms Z/A R∗ �R Shear
(MeV) (MeV) (fm) (m) (keV/fm3)

280 100 0.039 8.32 23.01 1.04
290 150 0.079 7.91 94.44 87.5
300 200 0.125 7.87 236.66 1699

tension below a critical value, there is an optimal strangelet
size R∗ ≈ yλD with λD = 1/

√
4παeχQ, where αe is the fine

structure constant and the dimensionless parameter y is in the
range 1.60–2.77. Since the phase fraction f of the strangelets
turns out to be quite low, we work in the approximation of
isolated strangelets and ignore the possibility of Wigner-Seitz
cells and lattice structures for the mixed phase, but in principle
these can be studied using the results of [45]. The energy
density of the mixed phase crust is contributed mainly by the
strangelets:

εcrust = f ε0; f = μ̃3
e

3π2nQ

(
1 − χQμ̃e

nQ

)−1

. (5)

Equations (2) and (5) form a parametric EoS for the crust
that is smoothly joined to the underlying homogeneous core
at ξ = 1. The Debye length, and hence the strangelet size, is
almost constant across the crust, while the strangelet fraction
f changes as μ̃e changes with P0. The models with crust have
their surface at μq = μcrit, so they have very nearly the same
mass and radius as the bare strange star models. Plausible
values of some parameters describing crust properties for a
strange quark star are shown in Table I.

Neutron stars. As for strange stars, it is preferable to take
advantage of the same underlying physical model to describe
both the core and crust, so that the interface is obtained on
physical grounds rather than ad hoc matching. With a unified
model, changes in the mode spectrum due to a crust can be
identified in a systematic manner. We use the smooth analytical
parametrization of [47] which is applicable from the core
to the outer crust, terminating at density ρ � 105 g/cm3.
Below 105 g/cm3, the neutron star ocean and atmosphere
make no discernible change to the high-frequency modes, so
we may define the surface of the star at the termination of
the outer crust. The ocean and atmosphere, which support
thermal gradients, are important for g modes which are not
considered here. Based on a fit to either the FPS or SLy
EoS at ρ � 5 × 1010 g/cm3, the EoS of Haensel and Pichon
[48] for 108 � ρ � 5 × 1010 g/cm3, and the BPS EoS [49]
for 105 � ρ � 108 g/cm3, the unified EoS is parametrized as
a log10(P )- log10(ρ) relation. Defining ξ = log10[ρ/(g/cm3)]
and ζ = log10[P/(dyn/cm2)], the analytic representation of
the unified EoS that is appropriate for nonrotating neutron stars
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is

ζ = a1 + a2ξ + a3ξ
3

1 + a4ξ
f0(a5(ξ − a6))

+ (a7 + a8ξ )f0(a9(a10 − ξ ))

+ (a11 + a12ξ )f0(a13(a14 − ξ ))

+ (a15 + a16ξ )f0(a17(a18 − ξ )), (6)

where f0(x) = 1
(ex+1) and the 18 fit parameters a1–a18 are given

in Table 1 of [47], for the FPS and SLy EoS. We use the SLy
EoS for our calculations. The crust begins in this model at
ξ = 14.22 (about 1.66 × 1014 g/cm3), and at this density one
switches from fluid oscillation variables y to crust variables z
(see Appendix).

Shear modulus for the neutron star crust. The shear
modulus of the crust is an essential input to the pulsation
equations that determine the eigenfrequencies of the nonradial
modes. Typically, the f -mode frequency is not expected to
change significantly on account of the crust, since the mean
density of the star is hardly affected. On the other hand, the
dispersion for the acoustic p modes is expected to change, as
shown by a leading order local analysis [33]. However, we
will find that this is not necessarily the case for strange stars
with a strangelet crust. In addition, there exist shear-driven
oscillations that are localized to the crust, as well as interface
modes. The numerical values of all these modes depend on the
shear modulus. There are numerical calculations of the shear
modulus of the neutron star crust in the literature [50,51]. The
commonly used analytic expression for the shear modulus of
the solid crust is given in the work of Strohmayer [34]:

μ = 0.1194

1 + 1.781
(

100
�

)2

ni(Ze)2

a2
, (7)

where Z is the atomic number of the most stable nucleus
(ion), e is electron charge, a is the inter-ion separation and
ni is ion density. For simplicity, we neglect the effect of the
variation in �, the Coulomb parameter, in the crust. � goes
from ∼200 at the ocean-crust boundary to 106 at the crust-core
boundary for cold neutron stars (Fig. 2 in [34]), so, except for
a small region near the ocean-crust boundary, this turns out
to be a good numerical approximation to make in Eq. (7).
Given that the crust in our chosen EoS model extends from
105 g/cm3 to 1.66 × 1014 g/cm3, we will use Z,ni values in
two separate regimes. For the density regime 5 × 105 � ρ �
1.66 × 1014 g/cm3, we use the step-like Z values tabulated in
[48]. With these values of ni,Z across the crust, we can find a,
the inter-ion separation which is given by a = [3/(4πni)]1/3.
Since μ changes in step-like fashion as we march upward in
density up to the drip density ρdrip = 4.33 × 1011 g/cm3, we
obtain ni for each density step by using the relation Zni = ne

where ne = μ3
e/(3π2) with μe taken from [48]. Beyond drip

density, i.e, 4.33 × 1011 � ρ � 1.66 × 1014 g/cm3, we switch
to the results of Douchin and Haensel [52], which is consistent
with the parametrized EoS we have chosen. This procedure
specifies the shear modulus across the span of the crust, from
the ocean-crust boundary, through neutron drip, and down to
the bottom of the inner crust (i.e, crust-core boundary).

III. PULSATION EQUATIONS

As mentioned in the Introduction, the study of nonra-
dial oscillation modes has a long history, starting with the
foundational works of Cowling [53], Pekeris [54], and Kopal
[55]. The procedure for computing the spectrum of adiabatic
nonradial oscillation modes of zero-temperature stellar objects
in general relativity was laid out in [23,56]. The perturbations
can be classified as polar (spheroidal) or axial (toroidal)
depending on the parity of the spherical harmonic functional
dependence, and are decoupled for nonrotating stars. For
the p modes the restoring force is the pressure, while for
the f mode it is a mixture of pressure and buoyancy. The
importance of these modes is evident from the fact that they
can couple strongly to gravitational waves, which carry away
the pulsation energy and damp out these modes on timescales
of seconds or less [57]. In addition, their excitation in a
protoneutron star can lead to the transfer of kinetic energy to
the surrounding environment with observable consequences
[58]. There are also core and surface g modes, driven by
composition or temperature gradients, which can be studied
within more complicated models of the EoS. This last class of
nonradial modes, along with discontinuity g modes, are lower
in frequency (10 mHz – 10 Hz) and consequently outside the
range of earth-based interferometric detectors. However, the
f modes are within the accessible range of ∼2–3 kHz for
spherical detectors [59], while the p modes are too high in
frequency for current detectors.

To solve for the spheroidal modes, we use the relativistic
Cowling approximation, which neglects the back-reaction
of the perturbed fluid on the gravitational potential, but
takes general relativity into account for the structure and
fluid perturbations. The Cowling approximation is expected
to make at most 10% difference to the calculation of the
eigenfrequencies of the p and f modes, and is widely used in
the literature [24,32,60,61]. The calculation with the complete
linearized system of equations in general relativity without
the Cowling approximation, which also yields the damping
times for these modes, will be taken up in a following work.
The system of four fluid equations in general relativity that we
solve for the coupled core and crust are detailed in [32], as well
as the Appendix of this paper for the sake of completeness.
For a two-component star, the crust eigenfunctions (two for
the fluid displacement and two for the traction) are connected
to those in the core through the condition of continuity of
the radial displacement and traction, while the horizontal
component of the traction vanishes for an ideal fluid [33].
Additional boundary conditions are imposed to ensure that
the eigenfunctions are regular at the center of the star, that
the pulsation amplitude is normalized to unity at the stellar
surface, and that the Lagrangian fluid displacement vanishes
there.

IV. NUMERICAL RESULTS

Using the compact star models and pulsation formalism
mentioned in the previous sections, we compute the frequency
of the f mode and lowest p mode. The case of a homogeneous
star can be used as a baseline to compare with oscillation modes
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FIG. 2. Mass-radius curves for bare strange, hadronic, and hybrid
stars based on the EoS discussed in the text. The values of B and a4

are varied to obtain configurations of bare/hybrid stars of varying
maximum mass.

for a star with a crust. Homogeneous configurations may be
broadly categorized into hadronic stars, hybrid stars, or bare
strange stars. Mass-radius relations for a representative set of
hadronic stars, hybrid stars with quark matter, and strange stars
are shown in Fig. 2. In addition to the SLy EoS, we have used
the GM1 [62] and NL3 [63] EoS based on relativistic mean
field descriptions of dense nuclear matter to construct hadronic
stars. For bare strange stars, we employ just the EoS in Eq. (1)
for quark matter with fixed values for B and a4, whereas for
hybrid stars we also add the GMI or NL3 parametrizations
atop the quark core.

In Fig. 3, we present a comparison of the f -mode fre-
quencies for the hadronic star, based on the SLy EoS, with and
without a solid (BPS) crust. The legend “fluid crust” means that
we employ Eqs. (A13) and (A14) of the Appendix, effectively
setting the shear modulus to zero at all densities. The legend
“solid crust” means that we employ Eqs. (A7)–(A10) of the

FIG. 3. The f -mode frequencies for a hadronic star for SLy EoS
with and without a solid BPS crust, compared with the GM1 and NL3
EoS.

FIG. 4. The f -mode frequencies for a single-component (core
only) strange quark star compared to the case with a strangelet crust.
A large upward shift of 150–200 Hz occurs upon the addition of a
strangelet crust.

Appendix and include the nonzero shear modulus. It is evident
that the addition of a solid crust makes no discernible change
to the f -mode frequency. The mode frequencies in both cases
are in the range of 2.45–2.90 kHz as the mass changes from
1.4M� to 2M�. In comparison to the f -mode frequencies for
the case of homogeneous stars or hybrid stars studied in [24],
based on the GM1 and NL3 EoS, the SLy EoS gives higher
frequencies, as the mean density is higher (smaller radius for
the same mass).

From Fig. 4, we see that the trend for strange stars is clearly
different from hadronic stars. The f -mode frequencies are in
the 2.20–2.70 kHz range and do not change appreciably with
stellar mass up to about 1.5M�, and begin a steep rise when the
maximum mass (typically about 2M�) is approached. Beyond
this value, the f -mode frequency shows some back-bending
effect, but the star is already subject to radial instabilities
at this point. Hadronic stars have f -mode frequencies that
rise approximately linearly with the square root of the mean
density for 1.4M�–1.8M�. For homogeneous quark stars in
this mass range, the f -mode does not scale simply with the
square root of the mean density, rather, with a fractional power
of the bag constant. This agrees qualitatively with the results
of [24,64]. Surprisingly, we observe a large upward shift in the
f -mode frequency of about 200 Hz when a strangelet crust is
added to the strange star, an effect that appears in the entire
mass range up to the maximum mass. Since the strangelet
crust does not change the mean density from the homogeneous
case, this large effect is due to the fact that the crust
fundamentally changes the surface boundary condition for
the f mode from the self-bound case—the pressure, which
in the strangelet phase comes essentially from electrons, not
quarks, vanishes at zero (electron) density, rather than at high
(quark) density. Thus, the crust does have a significant impact
on the f -mode frequency for strange stars. We find the same
effect if we replace the strangelet crust with a thin hadronic
crust. This means that the f -mode frequency can be useful in
determining if there is a large quark core underneath a thin
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FIG. 5. The p-mode frequencies for a hadronic star for SLy EoS
with and without a solid BPS crust. The acoustic wave speed is
affected by the shear modulus of the crust, which implies that p-mode
frequencies are slightly higher than the homogeneous case.

crust. However, it cannot discern between a strangelet and
hadronic crust. Essentially, the f -mode frequency is sensitive
to the nature of matter in the core (self-bound or gravitationally
bound) irrespective of the nature of the crust.

Turning now to the p-mode frequency, Fig. 5 shows results
for hadronic stars with and without a solid crust using the SLy
EoS. We see that the p-mode frequencies are also higher for
the SLy EoS than in the case of the GM1 and NL3 EoS [24],
due to the higher acoustic speed in the former. However, now
we also notice that the addition of a solid BPS crust slightly
alters the frequencies in the range 1.0M�–2.0M�. Since some
fraction of the star by volume is in the crust phase, this effect
on the acoustic wave speed is a measure of the shear modulus
of the crust relative to that of the compression modulus.

Finally, we compare the p modes of strange stars with
and without a strangelet crust in Fig. 6. Here, we find that

FIG. 6. The p-mode frequencies for a single-component (core
only) strange quark star compared to the case with a strangelet crust.
The mode frequencies show very little change upon addition of the
strangelet crust.

the crust makes essentially no difference to the frequencies.
At first sight, this may be surprising, since the p modes were
certainly affected, albeit slightly, by the shear modulus of the
crust in the case of hadronic stars. However, for the strangelet
crust, the shear modulus is much smaller than that of a
nuclear crust except very close to the interface. The reason
is that the shear modulus is proportional to the ionic density
[Eq. (7)], which is much smaller for the strangelet crust. Since
strangelets have approximately the same size but a much
higher charge-to-baryon ratio Z/A than neutron-rich nuclei,
the strangelets are distributed very sparsely in the crust. This
makes the shear modulus quite low, and as a result it does not
impact the p-mode frequency. Confirming this assertion, if
we replace the strangelet crust with a hadronic crust, which
has higher shear modulus on average, we again find that the
p-mode frequency is slightly higher than for bare strange
stars. Therefore, the p-mode frequency is sensitive to the type
of crust, as well as the nature of matter in the core (self-bound
or gravitationally bound).

V. CONCLUSIONS

We studied the nonradial spheroidal modes of oscillation in
neutron stars and strange quark stars, including the effects of
a BPS crust in the former case and a strangelet or hadronic
crust in the latter case. Since nonradial oscillation modes
couple to gravitational wave signals, mapping out the mode
spectrum as a function of stellar parameters is a useful step in
developing gravitational wave templates for pulsating compact
stars. The effect of a crust in the two kinds of stars is markedly
different. In general, strange quark stars reveal trends in
oscillation spectra that do not resemble those of neutron stars.
For homogeneous configurations (no crust), the f mode is
mostly flat with varying stellar mass in the case of strange
stars, but increases linearly in the case of neutron stars. The
addition of a BPS crust does not change the f -mode frequency
for neutron stars, but a strangelet or hadronic crust increases
the frequency significantly for quark stars. Since adding a crust
to a uniform quark core does not change the average density,
we believe this result is unique to self-bound stars with a crust.
It is an exciting possibility that gravitational waves could be
used to discover large quark matter cores, even if enveloped
by a crust of any kind.

For homogeneous strange stars, the p-mode frequency,
which depends on the sound speed, decreases with stellar mass
at fixed B or even if B and the surface chemical potential μcrit

are varied self-consistently. This is contrary to the behavior
of neutron stars, and is due to the self-bound nature of quark
matter. Therefore, it appears possible that p modes can also
be used to clearly distinguish between neutron and strange
stars. However, these frequencies are beyond the reach of
current detectors. For a neutron star or bare strange star with a
hadronic crust, the p-mode frequency increases slightly across
the typical mass range, while adding a strangelet crust has no
effect on these modes.

While the strangelet crust faces challenges in explaining
the data on QPOs in magnetar oscillations [28], it may
support shear (s mode) and interfacial modes (i mode) that
are resonantly excited by tidal interaction in binary systems.
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Tsang et al. [29] have shown that the energy pumped into this
mode as a result can shatter the crust of a neutron star, leading
to precursor bursts in the short GRB spectrum. It would be
interesting to explore if a crust made of strangelets can support
such a mode.

In this work, we have used the relativistic Cowling
approximation, which ignores the back reaction of the fluid
perturbations on the gravitational potential, while treating
those fluid perturbations relativistically. The accuracy of this
approximation can be gauged by a comparison to work of
Kruger et al. [65], who use full general relativity and find an
f -mode frequency of 1.938 kHz and p1-mode frequency of
6.315 kHz for the SLy4 EOS and a stellar mass of 1.45M�.
For the same mass, our SLy EOS with crust, and using the
relativistic Cowling approximation, gives somewhat higher
numbers, e.g., 2.42 kHz for the f mode. When we adopt
full general relativity, we indeed find an f -mode frequency
of 1.939 kHz, in close agreement with the work of Kruger
et al. These values agree within 1% to results in the work of
Bernuzzi et al. [66] who also study the fluid SLy EOS with a
1.4M� star. So, our reported mode frequency values are likely
to be systematically higher by about 0.5 kHz from the true
result due to the relativistic Cowling approximation.

Finally, this work assumes ideal and nonrotating nature of
the fluid comprising the compact star. In addition, only the real
part of the oscillation frequency is computed. The damping
time of these oscillations is necessary in producing templates
for gravitational wave observatories. Recent estimates in full
general relativity (no Cowling approximation) [40] show that
the damping times for f modes are about 1 second, while that
for p modes is 10 seconds or more. That work was restricted
to the case of homogeneous nonrotating compact stars, so the
effect of the crust and rotation on damping times remains to
be calculated along similar lines. Despite the simplicity of
the strange star model chosen for this work, our results are
significant because they are the first in the field to study the
effect of a strangelet crust for strange stars, and to bring out
the differences between neutron stars and strange stars with a
heterogeneous composition. There remains more work to do in
this direction as the era of gravitational waves begins in earnest.
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APPENDIX

In this Appendix, we present the oscillations equations and
the boundary and junction conditions that are needed for the
numerical evaluation of the spheroidal modes. The pulsation
equations were obtained in the framework of the relativistic
Cowling approximation.

For the background unperturbed state, we assume the usual
Schwarzschild line element:

ds2 = −e2νdt2 + e2λdr2 + r2dθ2 + r2 sin2 θ dϕ2. (A1)

The total stress-energy tensor is given by

Tαβ = ρuαuβ + pqαβ − 2μ�αβ, (A2)

where μ is the isotropic shear modulus, and a linear relation-
ship between the shear strain and stress tensor is assumed.
ρ and p refer to the mass-energy density and the isotropic
pressure, respectively. uα denotes the fluid four-velocity and
qαβ is a projection operator with respect to u. Finally, �αβ = 0
in the strain-free state of the equilibrium configuration.

After including the fluid perturbations in the equations of
energy and momentum conservation, the system of perturba-
tion equations can be obtained. In terms of the spheroidal radial
perturbations Sl(r) and Hl(r), the variables in the oscillation
equations z1 to z4 are defined as

z1 = Sl(r), (A3)

z2 = 2α1e
−λ d

dr
[reλSl(r)]+

(
�−2

3
α1

){
e−λ

r2

d

dr
[r3eλSl(r)]

}
−{l(l + 1)Hl(r)}, (A4)

z3 = Hl(r), (A5)

z4 = α1

(
e−2λr

dHl(r)

dr
+ Sl(r)

)
, (A6)

where α1 = μ
p

. z1 − z4 obey the following oscillation equa-
tions that are solved for in the solid crust:

z′
1 = a1z1 + a2z2 + a3z3, (A7)

z′
2 = a4z1 + a5z1 + a6z2 + a7z3 + a8z4, (A8)

z′
3 = a9z1 + a10z4, (A9)

z′
4 = a11z1 + a12z2 + a13z3 + a14z4, (A10)

where the coefficients are

a1 = −1

r

(
1+2α2

α3
+rλ′

)
, a2 = 1

rα3
, a3 = α2

rα3
l(l + 1),

a4 = 1

r
{−3 − rλ′ + (ν ′ + ν ′′)/ν ′ − e2λc1σ̄

2}(1 + ρ/p)ν ′,

a5 = 4α1

rα3
(3α2 + 2α1), a6 = 1

r

(
ρ

p
rν ′ − 4

α1

α3

)
,

a7 = 1

r

{
(1 + ρ/p)rν ′ − 2α1

(
1 + 2α2

α3

)}
l(l + 1),

a8 = 1

r
e2λl(l + 1), a9 = −1

r
e2λ, a10 = e2λ

rα1
,

a11 = −1

r

(
−(1 + ρ/p)rν ′ + 6�

α1

α3

)
, a12 = − α2

rα3
,

a13 = −1

r

{
c1σ̄

2(1+ρ/p)rν ′+2α1 − 2α1

α3
(α2+α3)l(l + 1)

}
,

a14 = −1

r

(
3 + rλ′ − ρ

p
rν ′

)
,

and the various quantities which appear in the coefficients are

α2 = � − 2

3
α1, α3 = � + 4

3
α1, (A11)

c1 = M

R3
re−2ν(ν ′)−1, (A12)
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where M , R are the mass and the radius of the star respectively,
and σ̄ = σ

√
R3/M is the dimensionless frequency.

In the fluid regions, the oscillation equations are

y ′
1 = b1y1 + b2y2, (A13)

y ′
2 = b3y1 + b4y2, (A14)

where

y1 = Sl(r), y2 = (rν ′)−1δUl(r) = c1σ̄
2Hl, (A15)

and the coefficients are given by

b1 = −1

r
{3 − (1 + ρ/p)rν ′/� + rλ′},

b2 = −1

r

(
(1 + ρ/p)rν ′/� − l(l + 1)

c1σ̄ 2

)
,

b3 = 1

r
(e2λc1σ̄

2 + rAr ), b4 = −1

r
(U + rAr )

with the Schwarzschild discriminant

Ar = 1

ρ + p

dρ

dr
− 1

�p

dp

dr
. (A16)

To calculate the frequency of the modes, Eqs. (A7)–(A10) are
numerically integrated in the solid crust, and Eqs. (A13) and
(A14) in the fluid core.

The outer boundary condition is given at the stellar surface
by �p = 0, which reduces to

y1 − y2 = 0, (A17)

and the inner boundary condition is the regularity condition at
the stellar center given by

c1σ̄
2y1 − ly2 = 0. (A18)

Finally the jump conditions at the interface are given by

y1 = z1, V1(y1 − y2) = z2, z4 = 0. (A19)
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