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The equation of state (EOS) of dense matter is an essential ingredient for numerical simulations of core-collapse
supernovae and neutron star mergers. The properties of matter near and above nuclear saturation density are
uncertain, which translates into uncertainties in astrophysical simulations and their multimessenger signatures.
Therefore, a wide range of EOSs spanning the allowed range of nuclear interactions are necessary for determining
the sensitivity of these astrophysical phenomena and their signatures to variations in input microphysics. We
present a new set of finite temperature EOSs based on experimentally allowed Skyrme forces. We employ a
liquid-drop model of nuclei to capture the nonuniform phase of nuclear matter at subsaturation density, which
is blended into a nuclear statistical equilibrium EOS at lower densities. We also provide a new, open-source
code for calculating EOSs for arbitrary Skyrme parametrizations. We then study the effects of different Skyrme
parametrizations on thermodynamical properties of dense astrophysical matter, the neutron star mass-radius
relationship, and the core collapse of 15 and 40 solar mass stars.
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I. INTRODUCTION

Core-collapse supernovae (CCSNe) and neutron star (NS)
mergers, the birth places of neutron stars and black holes (BH),
can only be understood in the light of the microphysics that
drives them. A clear picture of these astrophysical phenomena
is directly tied to our understanding of the properties of
matter and radiation at high energy densities. Therefore, one
of the essential microphysical ingredients in computational
simulations of these phenomena is the equation of state (EOS)
of dense matter (e.g., [1,2]).

An EOS for CCSNe and NS merger simulations must
encompass a very large range in density, temperature, and
composition. The temperatures encountered in these events
range from zero up to hundreds of MeV, densities from �104

to 1015 g cm−3, and proton fractions y may be close to zero or
as high as 0.60. Over this wide parameter space, matter may
be in a gas, liquid, or solid phase, and in its ground state or in
a highly excited state [1–3].

At low densities and temperatures, isospin symmetric
matter with the same number of protons and neutrons clusters
into heavy nuclei. By making the system isospin asymmetric,
i.e., having an excess of neutrons with respect to protons or
vice versa, nuclei become neutron or proton rich. If the isospin
asymmetry is large enough, nucleons drip out of nuclei to
form a background gas. Keeping proton fraction and density
constant, heavy nuclei split into lighter ones as the temperature
is increased. At very high temperatures all nuclei dissociate
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and only a gas of free nucleons immersed in the electron and
photon gas exists. If, instead, composition and temperature are
kept constant as density is increased, nuclei become more and
more packed. Just below nuclear saturation density, a series of
phase transitions in which nucleons arrange themselves into
complex shapes known as nuclear “pasta” occurs [4,5]. At
even higher densities, nucleons form a liquid state and the EOS
stiffens due to short range nuclear repulsive forces. The EOS
may soften at densities much higher than nuclear saturation
density due to the appearance of heavier leptons, hyperons,
kaon condensates, or a quark-gluon plasma [6–8]. We do not
consider these phases in the present work.

The EOS is poorly constrained in regions of parameter
space relevant for CCSNe and NS mergers, as matter in
these sites is under extreme conditions that cannot be easily
reproduced in laboratory experiments. Hence, any EOS built
for astrophysical applications depends on extrapolations based
on theoretical models of microscopic interactions as well as
astrophysical and experimental inputs. Ideally, these models
should be supported by available nuclear experimental data
[9,10] and make predictions that fulfill known astrophysical
[11–16] and theoretical constraints [17–19].

Broadly, there are two approaches for generating nuclear
interactions used in calculating the properties of dense matter.
Phenomenological interactions employ reasonable forms for
the nuclear interaction and fit the force parameters to the mea-
sured properties of nuclei and other constraints from laboratory
experiments [20–23] and astrophysical observations of NSs
[24]. Since they are constrained mainly by observations of
nearly isospin-symmetric systems accessible in the laboratory,
extrapolating to the highly isospin-asymmetric matter encoun-
tered in NS mergers and CCSNe introduces significant uncer-
tainties. More microscopic treatments, such as chiral effective
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field theory, use interactions that obey symmetries of QCD and
fit the small number of free parameters in the interaction based
on observed properties of the nucleon-nucleon interaction [25].
These approaches are very accurate near nuclear saturation
density and below and able to capture the properties of
highly asymmetric matter [26]. However, difficult to calculate
higher-order interactions become increasingly important with
increasing density rendering the approach impractical well
above nuclear saturation density.

Another source of uncertainty, in addition to the uncertainty
in the form of the effective nuclear interaction, comes from
the many-body techniques used to predict the thermodynamic
properties of an ensemble of nucleons. For a given effective
nuclear interaction, the properties of a system of nucleons
can be calculated exactly using modern quantum many-body
techniques [27,28], but such calculations are too expensive
to cover the wide range of conditions required for an
astrophysical EOS [28,29]. Because of their relative simplicity
and their ability to capture the properties of nuclear matter near
saturation density, phenomenological interactions combined
with mean-field techniques are often applied when calculating
astrophysical EOSs [3,24,30]. For instance, phenomenological
Skyrme models assume a zero-range effective interaction that,
in the mean field approximation,1 results in a parametrized
energy functional that can be fit to measured properties of
nuclei [31].

Nonuniform phases of matter prevail at low temperatures
and subsaturation densities. In addition, there is a high-
density nonuniform phase near nuclear saturation density. The
treatment of these nonuniform phases is another source of
uncertainty in a high-density astrophysical EOS. A number of
different approaches for treating the nonuniform phases have
been used in previous work (in addition to using different
treatments of uniform nuclear matter). For a review, see Oertel
et al. [1] and references therein.

One often used approach is to treat the nonuniform
nuclear matter using the single nucleus approximation (SNA)
[3,30,32–38]. The SNA assumes that there is one represen-
tative nucleus (or, more generally, a high-density structure
such as a pasta phase) and calculates its properties from
equilibrium conditions within a spherical Wigner-Seitz cell,
possibly including surface, Coulomb, and translational energy
corrections using either a liquid-drop or a Thomas-Fermi
model for the surface corrections. At very low temperature
this should be a good approximation, but at intermediate
temperatures an ensemble of nuclei is likely to be present.

A second approach is to use a nuclear statistical equilib-
rium (NSE)-like description of nuclei along with Coulomb
corrections and exclude the low-density gas from regions
inside the nuclei [24,39–44]. This gives a more reasonable
distribution of nuclei at finite temperature and the excluded
volume approximation makes nuclei naturally disappear just
below saturation density. However, such approaches cannot

1The mean field approximation assumes that nucleons only interact
with other nucleons through the average field produced by all of the
other nucleons, removing the possibility of any correlations from the
system.

easily incorporate the presence of nuclear pasta and may have
trouble including the exotic nuclei formed at very high density.
Additionally, a number of works have used a hybrid approach
where NSE is used at low density and the SNA is used closer
to nuclear saturation density [45–49].

Motivated by the need for a wide array of finite-temperature
nuclear EOSs consistent with experimental and observational
constraints, we build an open-source code to construct EOSs
for a wide range of Skyrme interactions available in the
literature and use the code to generate EOS tables using
a broad range of Skyrme interactions. For the inhomoge-
neous phase, we follow the open-source model of Lattimer
and Swesty [3] (hereafter referred to as L&S; available
at http://www.astro.sunysb.edu/dswesty/lseos.html) at high
density and transition to an NSE model at low density. We
extend the L&S model to include nonlocal isospin asymmetric
terms, treat the size of heavy nuclei consistently, and include
an improved method to treat nuclear surfaces. Rather than
use a Gibbs construction to go from inhomogeneous to
homogeneous nuclear matter, we simplify the treatment and
choose either the uniform or nonuniform phase based on
which has a lower free energy, which sets the phase transition
to be first order. Additionally, the algorithm used in the
new EOS code converges across a much wider range of
temperature, density, composition space than the original L&S
code. At very high densities, we allow for additional terms
in the Skyrme parametrization that can be used to stiffen
the high-density EOS while leaving the saturation-density
EOS essentially unchanged. This allows one to use a specific
Skyrme parametrization that agrees with well determined
nuclear matter constraints, but varies the maximum NS mass.

We thoroughly test our new EOSs to ensure thermody-
namic consistency. Using the LS220 parametrization, we
find excellent agreement with the original work of L&S.
We present zero-temperature NS mass-radius relations for
all considered Skyrme parametrizations and demonstrate how
the new high-density adjustments translate to NS structure.
Finally, we employ the open-source general-relativistic GR1D
code [50–52] to carry out spherically symmetric core collapse
and postbounce supernova simulations with our new EOSs.
We consider 15 solar-mass and 40 solar-mass presupernova
stars and follow the 40 solar-mass simulations to black hole
formation. Burrows and Lattimer [53] argued that thermody-
namic quantities obtained in the SNA approximation differ
little from the general case. Our simulations confirm this. The
small differences in the low-density treatment between SNA
and NSE translate to mild variations in the inner core’s collapse
time to core bounce and in the postbounce accretion rate. There
is, however, little impact on the overall postbounce evolution
and black hole formation.

The remainder of this paper is organized as follows. In
Secs. II and III we review, respectively, the formalism to obtain
the EOS in the SNA and the methodology to solve the system
of equations that minimize the free energy of nuclear matter.
We compare the results of our code to those of L&S in Sec. IV.
In the same section, we compare EOSs obtained from different
Skyrme parametrizations, as well as nuclear matter properties
obtained for selected Skyrme parametrizations. In Sec. V, we
study properties of cold NSs obtained for different Skyrme
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parametrizations and the effects to the NS mass-radius curve
obtained from adding extra stiffening terms to the EOS. We
then briefly study adiabatic compression of nuclear matter in
Sec. VI and spherical core collapse of 15 and 40 solar mass
stars in Sec. VII. Due to its relevance for core collapse, in
Sec. VII A, we discuss an implementation of an NSE EOS and
a method to transition from the SNA EOS at high densities
to NSE at low densities. Finally, we conclude in Sec. VIII. In
the appendixes, we provide details left out in the main text,
including the lepton and photon contributions and details on
our NSE treatment. The EOS source code and example EOS
tables are available at https://stellarcollapse.org/SROEOS.

Throughout this paper, we use the convention of measuring
temperature in MeV, setting the Boltzmann constant kB = 1
unless otherwise explicitly mentioned. For thermodynamic
quantities, we use upper case letters when referring to
quantities per volume and lower case letters for specific (per
baryon or per mass) quantities. Furthermore, we define the
zero point of the specific internal energy based on the free
neutron rest mass mn, set the neutron and proton masses mn and
mp to their experimental values unless otherwise noted, and
explicitly include the neutron-proton mass difference where
necessary. Finally, we use the neutron mass mn to convert
from number density (fm−3) to rest-mass density (g cm−3).

II. SINGLE NUCLEUS APPROXIMATION FORMALISM

Here, we describe the formalism we use for determining
a self-consistent EOS from a given Skyrme parametrization
across a wide range of density n, temperature T , and proton
fraction y. At high density, our model closely follows L&S [3],
while at lower densities we employ an NSE EOS, which we
describe in Sec. VII A. We assume that the medium contains
neutrons, protons, alpha particles, electrons, positrons, and
photons. The electrons, positrons, and photons are treated as
uniform free gases and charge neutrality is assumed, so that
the difference between the number of electrons and positrons
per baryon is equal to the number of protons per baryon.
Electron/positron and photon contributions are discussed in
detail in Appendix A. In what follows, nucleonic matter refers
to a bulk system of protons and neutrons with uniform density.
We use uniform matter to refer to a liquid of nucleons and
alpha particles, while we use nonuniform matter to describe
matter including heavy nuclei.

The possible presence of heavy nuclei or pastalike phases
at high density is treated via the single nucleus approximation
(SNA), which is essentially a two-phase construction including
surface effects. In this construction, each heavy nucleus
occupies a volume VN inside a Wigner-Seitz cell of volume
Vcell. We define the volume fraction occupied by heavy nuclei
as u = VN/Vcell. In the interior of the heavy nucleus, nucleonic
matter is assumed to have a constant density (ni) and proton
fraction (yi), and have thermodynamic properties determined
from a Skyrme interaction in the mean field approximation. In
each cell, nuclei are surrounded by a liquid of nucleons and
alpha particles that occupy a volume Vcell − VN . The alpha
particles have density nα and are assumed to be hard spheres
of volume vα = 24 fm−3 [35] that exclude nucleons, so that
they occupy a fraction nαvα of the exterior volume. This leaves

a fraction of the total cell volume uo = (1 − u)(1 − nαvα) for
the exterior nucleons. They have a density no and a proton
fraction yo in this volume. The nucleons in the exterior portion
of the cell are treated using the same Skyrme interaction as
the material inside the nucleus. With these definitions, we can
write the total baryon and proton number densities as

n = uni + (1 − u)[4nα + no(1 − nαvα)], (1a)

ny = uniyi + (1 − u)[2nα + noyo(1 − nαvα)]. (1b)

When u → 0, uniform matter consisting of neutrons,
protons, and alpha particles is recovered. All of the material
is assumed to be in thermal equilibrium and it is therefore
characterized by a single temperature T .

The Helmholtz free energy of the system, from which all
other thermodynamical quantities may be derived, is the sum
of free energies of the individual components, that is,

F = Fo + Fα + Fh + Fe + Fγ , (2)

where Fo, Fα, Fh, Fe, and Fγ are, respectively, the free-
energy densities of the nucleon gas outside the heavy nuclei,
alpha particles, nucleons clustered into heavy nuclei, electrons
and positrons, and photons. The free energies of the leptons
and photons are simply those of arbitrarily degenerate and
relativistic free gases (see Appendix A for details). The alpha
particles are treated as a free Boltzmann gas present only in the
exterior volume, so that their contribution to the free energy is
given by

Fα = (1 − u)nα(μα − Bα − T ), (3)

where Bα is the alpha particle binding energy.2 The alpha
particle chemical potential is

μα = T ln

(
nα

8nQ

)
, (4)

where nQ = (mnT/2πh̄2)3/2. The exterior nucleon contribu-
tion to the free energy is

Fo = uonofB(no,yo,T ), (5)

where fB is the specific free energy of bulk nucleons
(nucleonic matter), which is assumed to come from a particular
model for the properties of bulk nuclear matter. In this work,
we assume that bulk nuclear matter is described by Skyrme
interactions in the mean field approximation as is discussed in
Sec. II A.

The free-energy density of the heavy nuclei is further
decomposed as

Fh = Fi + FS + FC + FT , (6)

where Fi, FS, FC , and FT are, respectively, the free-energy
densities due to the assumed interior bulk nucleon gas, surface

2Unless otherwise noted, we set the binding energy of the alpha
particles to the experimentally measured value, Bα = 30.887 MeV.
This follows the discussion of Horowitz and Schwenk [54] that
noticed that L&S set particle energies with respect to the neutron
vacuum mass, but did not include the neutron-proton mass difference
in their calculations for the alpha particle binding energy.
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effects, Coulomb forces, and bulk translational motion of
the heavy nuclei. The free-energy density of bulk nucleons
inside nuclei is Fi = uinifi , where fi ≡ fB(ni,yi,T ) and ui

is the total heavy nuclei volume. Ignoring the surface volume,
ui = 1 − uo. If the surface, Coulomb, and translational contri-
butions to the free energy are neglected, we would arrive at a
Gibbs two phase construction. These finite size contributions
are important for recovering a semirealistic description of
nuclei and the pasta phases and we describe the models we
use for them below in Secs. II B–II D after discussing bulk
nuclear matter in the next Sec. II A.

A. Bulk nuclear matter

Assuming a Skyrme type interaction in the mean field
approximation, the internal energy density EB of nucleonic
matter with density n, proton fraction y, and temperature T
can be written in the form3

EB(n,y,T ) = h̄2τn

2m∗
n

+ h̄2τp

2m∗
p

+ [a + 4by(1 − y)]n2

+
∑

i

[ci + 4diy(1 − y)]n1+δi − yn�, (7)

where a, b, ci , di , and δi are parameters of the Skyrme
force and τt (t ∈ {n,p}) are the kinetic energy densities of
neutrons and protons. We include in Eq. (7) a summation
over index i in the fourth term as introduced by Agrawal
et al. [55]. The first two right-hand side terms represent the
nonrelativistic kinetic energy density of neutrons n and protons
p, respectively. The term proportional to n2 represents two-
body nucleon interactions while the terms proportional to n1+δi

approximate the effects of many-body or density dependent
interactions. The last right-hand side term includes the mass
difference between neutrons and protons � = mn − mp, since
we measure all energies relative to the free neutron rest mass
mn. The kinetic energy terms depend on the density-dependent
effective nucleon masses m∗

t given by

h̄2

2m∗
t

= h̄2

2mt

+ α1nt + α2n−t . (8)

Here, mt is the vacuum nucleon mass and −t denotes the
opposite isospin of t . The quantities α1 and α2 are also
parameters of the model. Additional terms that mix the neutron
and proton densities in Eq. (8), as used by Chamel et al. [56],
are omitted here.

The temperature dependence of the nuclear force is implic-
itly included in the τt term,

τt = 1

2π2

(
2m∗

t T

h̄2

)5/2

F3/2(ηt ), (9)

3In principle, contributions of spin-orbit and Coulomb interaction
terms should also be included in the equation for the internal energy
EB . However, since they constitute only a small portion of the total
energy, we neglect them.

where the Fermi integral Fk(η) is given by

Fk(η) =
∫ ∞

0

ukdu

1 + exp(u − η)
. (10)

The Fermi integral is a function of the degeneracy parameter

ηt = μt − Vt

T
. (11)

Here, μt is the nucleon chemical potential and Vt is the single-
particle potential,

Vt ≡ δEB

δnt

∣∣∣∣
τt ,τ−t ,n−t

. (12)

The degeneracy parameter ηt can be obtained from the nucleon
density and temperature by inverting the relation

nt = 1

2π2

(
2m∗

t T

h̄2

)3/2

F1/2(ηt ). (13)

We obtain the Fermi integrals and their inverses using the
routines provided by Fukushima [57,58]. These proved to be
fast, accurate, and thermodynamically consistent.

In Eqs. (7) and (8), a, b, ci , di , δi , α1, and α2 are parameters
of the model that are chosen to reproduce observables of
infinite nuclear matter, an idealized system of many nucleons
interacting only through nuclear forces. These parameters are
directly related to the more often used Skyrme parameters xj

and tj (j ∈ {0,1,2}), t3i and σi through [9,59]

a = t0

4
(1 − x0), (14a)

b = t0

8
(2x0 + 1), (14b)

ci = t3i

24
(1 − x3i), (14c)

di = t3i

48
(2x3i + 1), (14d)

δi = σi + 1, (14e)

α1 = 1

8
[t1(1 − x1) + 3t2(1 + x2)], (14f)

α2 = 1

8
[t1(2 + x1) + t2(2 + x2)]. (14g)

For most Skyrme parametrizations, t3i , x3i , and σi are only
nonzero for a single value of i, which we set to i = 1. Even
limiting i to a single value i = 1, we note that if we compare
Eq. (7) with Eq. (2.8) of L&S, we have an extra term, the
one proportional to the parameter d1. This term is necessary
to obtain the correct EOS whenever x31 �= −1/2. This is the
case for almost every Skyrme parametrization found in the
literature, albeit not for that of L&S.

L&S obtain the parameters of the bulk internal energy
density [Eq. (7)] from experimentally determined values
for symmetric matter at saturation density n0, the binding
energy E0, the incompressibility K0, and the symmetry energy
at saturation J . We implement three different methods to
determine the parameters of Eq. (7):

(1) Following L&S, input experimental values for n0, E0,
K0, and J , which are then used to determine a, b, c, and δ. For
consistency with L&S, this assumes d = 0 and α1 = α2 = 0.
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(2) Direct input of the parameters a, b, ci , di , δi , α1, and α2.
(3) Input Skyrme parameters xj and tj (j ∈ {0,1,2,3i}),

and σi , which are used to determine a, b, ci , di , δi , α1, and α2

as shown in Eqs. (14).
The last method has advantages over the first two. First,

specifying only a few known nuclear experimental values
to obtain the Skyrme coefficients (as in L&S) is unlikely to
correctly predict other well determined physical constraints.
Also, direct input of the parameters a, b, ci , di , δi , α1,
and α2 does not uniquely define the surface properties of
nuclear matter for a Skyrme parametrization, specifically the
parameters λ, q, and α discussed in Sec. II B. On the other
hand, input of the Skyrme parameters xj , tj , and σi makes it
straightforward to determine the surface properties of finite
nuclei and to calculate nuclear matter properties that can be
directly compared with experiments. Finally, most studies on
Skyrme parametrizations in the literature explicitly give xj , tj ,
and σi .

For completeness, we give the expressions for the bulk
specific entropy sB , bulk specific free energy fB , and bulk
pressure PB [3,60]:

sB = 1

n

∑
t

(
5h̄2τt

6m∗
t T

− ntηt

)
, (15)

fB = EB/n − T sB, (16)

PB =
∑

t

ntμt − nfB. (17)

B. Nuclear surface

For a given density n, proton fraction y, and temperature
T , nuclear matter may be uniform or phase separate into dense
and dilute phases that are in thermal equilibrium. If the latter
is the case, there will be some energy stored in the surface
between the two phases. L&S parametrize the nuclear surface
free-energy density FS in terms of a surface shape function
s(u), a generalized nuclear size r , and the surface tension per
unit area σ (yi,T ), which is a function of the proton fraction yi

in the dense phase and temperature T . The surface free-energy
density is written as [3,38]

FS = 3s(u)

r
σ (yi,T ). (18)

Both the generalized nuclear size r and the surface shape
function s(u) depend on the geometry of the heavy nuclei
formed. While at low densities nuclei are spherical, as density
increases and approaches nuclear saturation density, nuclei
may assume shapes such as cylinders (think of pasta), slabs,
cylindrical holes, and bubbles (think of Swiss cheese) [4,5],
as well as more exotic shapes [61–63]. In this picture, the
generalized nuclear size r represents the radius of spherical
nuclei or bubbles, the radius of cylinders or cylindrical holes,
or the thickness of slabs. It is unclear what r should be
for more exotic shapes. Following L&S, we do not consider
specific geometries for the heavy nuclei and simply determine
r by solving the nuclear virial theorem; see Eq. (30) and
the discussion in Sec. II C. The surface shape function
s(u), meanwhile, is chosen as an interpolating function that
reproduces the low and high-density limits for the shape of

nuclei, which are, respectively, spheres [limu→0 s(u) = u] and
bubbles [limu→1 s(u) = 1 − u]. The simplest choice for this
function is s(u) = u(1 − u), which is what L&S use4 and we
adopt here.

Following the prescription of [35,38], the surface tension
per unit area, σ (yi,T ), is fitted by

σ (yi,T ) = σsh(yi,T )
2 · 2λ + q

y−λ
i + q + (1 − yi)−λ

, (19)

where σs ≡ σ (0.5,0). The function h(yi,T ) contains the
temperature dependence in the form

h(yi,T ) =
{

[1 − (T/Tc(yi))2]p , if T � Tc(yi);

0 , otherwise .
(20)

In Eqs. (19) and (20), λ, q, and p are parameters to be
determined (see below), while Tc(yi) is the critical temperature
for which the dense and the dilute phases coexist. The dense
phase is assumed to have density ni and proton fraction
yi while the dilute phase has density no � ni and proton
fraction yo.

To obtain the parameters λ, q, and p and a functional
form for Tc(yi), we follow [35,38,59] and study the two
phase equilibrium of bulk nucleonic matter. For a given proton
fraction y, there exists a critical temperature Tc and a critical
density nc in which both the dense and dilute phases have the
same density ni = no and same proton fraction yi = yo (cf.
Figs. (2.3) and (2.4) of [38]). The quantities nc and Tc are
obtained by simultaneously solving [38]

∂PB

∂n

∣∣∣∣
T

= 0 and
∂2PB

∂n2

∣∣∣∣
T

= 0, (21)

for proton fractions y � 0.50. Here, PB is the bulk pressure
given by Eq. (17). Because we ignore Coulomb contributions
to the surface tension, the formalism presented in this section
is almost symmetric under a y → 1 − y transformation. The
symmetry is only slightly broken by the small difference �
in the neutron and proton rest masses, mn = mp + �, which
we ignore here when considering y > 0.5. Once the critical
temperature Tc has been determined for a range of proton
fractions y, we fit it using the function

Tc(y) = Tc0[ac + bcδ(y)2 + ccδ(y)4 + dcδ(y)6], (22)

where Tc0 ≡ Tc(y = 0.5) is the critical temperature for sym-
metric nuclear matter and δ(y) = 1 − 2y is the neutron excess.

After determining Tc(y), we compute the properties of
semi-infinite nucleonic matter, that is, matter for which the
density varies along one direction (the z axis) and is constant
in the remaining two. Ignoring Coulomb effects, we assume
that in the limits z → ±∞ matter saturates at densities ni

and no and proton fractions yi and yo. These two phases are
in equilibrium if their pressures as well as their neutron and
proton chemical potentials are the same, i.e.,

Pi = Po, μni = μno, and μpi = μpo. (23)

4Note that this choice is not obvious in L&S’s paper. It is, however,
what is implemented in their source code.
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Equations (23) are solved simultaneously with

yi = npi

nni + npi

(24)

to obtain the neutron and proton densities of the high and
low-density phases nni , npi , nno, and npo, respectively.

Once the neutron and proton densities of the two coexisting
phases have been calculated, we determine the surface shape
that minimizes σ (yi,T ). Since we assume the system to be
homogeneous across two dimensions, the surface tension per
unit area is given by [59,64]

σ (yi,T ) =
∫ +∞

−∞
[FB(z) + ES(z) + Po

− μnonn(z) − μponp(z)]dz. (25)

Here, Po, μno, and μpo or, alternatively, Pi , μni , and μpi are so-
lutions to Eqs. (23). Meanwhile, FB(z) = n(z)fB(n(z),y(z),T )
is the bulk free-energy density across the z axis, while ES(z)
is the spatially varying contribution to the energy density of
a Skyrme-like Hamiltonian [see Eqs. (1)–(4) of Steiner et al.
[59]]. It has the form [35,59,64]

ES(z) = 1
2 [qnn(∇nn)2 + qnp∇nn · ∇np

+ qpn∇np · ∇nn + qpp(∇np)2], (26)

where nt ≡ nt (z) (t ∈ {n,p}). The parameters qtt ′ are related
to the Skyrme coefficients by

qnn = qpp = 3
16 [t1(1 − x1) − t2(1 + x2)], (27a)

qnp = qpn = 1
16 [3t1(2 + x1) − t2(2 + x2)]. (27b)

As Steiner et al. point out [59], for Skyrme-type forces, the
qtt ′ are constants and the relations qnn = qpp and qnp = qpn

are always true. In the general case, however, qtt ′ may be
density dependent and qnn may be different from qpp, though
qnp = qpn is still expected to hold.

To minimize Eq. (25), we assume that the neutron and
proton densities have a Woods-Saxon form, i.e.,

nt (z) = nto + nti − nto

1 + exp [(z − zt )/at ]
, (28)

where zn and an (zp and ap) are, respectively, the neutron (pro-
ton) half-density radius and its diffuseness [65]. This form has
the expected limits limz→−∞ nt (z) = nti and limz→+∞ nt (z) =
nto. Following Refs. [35,59,64], we set the proton half-density
radius zp at z = 0 and minimize the surface tension per unit
area with respect to the three other variables, zn, an, and ap.
This allows us to tabulate values of the surface tension per unit
area σ (yi,T ) as a function of the proton fraction yi of the dense
phase and the temperature T of the semi-infinite system. This
is used to determine the parameters α and q in Eq. (19) and p
in Eq. (20) performing a least squares fit.

It is worth mentioning that the surface free-energy density
should, in general, include a contribution from the neutron
skin σ → σ + μnνn, where νn is the neutron excess [38,64].
However, we follow L&S, and neglect this term. In future
work, this term should be included since its effects are
important for very neutron rich matter [38].

C. Coulomb energy

Following L&S, we approximate the Coulomb free-energy
density using the static Wigner-Seitz approximation,

FC = 4παC

5
(yinir)2c(u). (29)

Here αC is the fine structure constant, yi is the proton fraction
inside heavy nuclei, ni is the nuclear density also inside
heavy nuclei, r is the generalized nuclear size, and c(u) is
the Coulomb shape function, discussed below.

In this model, only the surface and Coulomb energy
densities depend on the generalized nuclear size r . Thus,
minimizing the total energy density with respect to the nuclear
size r implies that FS = 2FC , known as the nuclear virial
theorem. With this, the generalized nuclear size becomes

r = 9σ

2β

[
s(u)

c(u)

]1/3

, (30)

where

β = 9
[παC

15

]1/3
(yiniσ )2/3, (31)

and σ ≡ σ (yi,T ) is the surface tension per unit area discussed
in Sec. II B. Using the results of this section, the surface and
Coulomb energy densities may be combined in the form

FS + FC = β[c(u)s(u)2]1/3 ≡ βD(u). (32)

This defines D(u) in terms of the surface and Coulomb shape
functions, s(u) and c(u), respectively.

As is the case for the surface shape function s(u) discussed
in Sec. II B, the function c(u) is also chosen to reproduce
known physical limits [3,38,64]. At low densities, nuclei are
spherical and the generalized nuclear size r is the nuclear
radius. Considering the nuclei to occupy a small volume
fraction of the Wigner-Seitz cell, u 	 0, the Coulomb shape
function is given by limu→0 c(u) = uD(u), where D(u) =
1 − 3

2u1/3 + 1
2u [32]. Just below nuclear saturation density,

u 	 1 and nuclei turn “inside out” and low-density spherical
bubbles form inside an otherwise dense nucleonic phase.
Here, the generalized nuclear size r is the bubble radius
and limu→1 c(u) = (1 − u)D(1 − u) [32]. Between these two
limits matter may be more stable assuming nonspherical
shapes, such as cylindrical and planar geometries [4,5].
Using the results of Ravenhall et al. [4] for the structures
that minimize the energy density of nucleonic matter with
nonspherical geometries at zero temperatures, L&S showed
that the function D(u) is well approximated by

D(u) = u(1 − u)
(1 − u)D(u)1/3 + uD(1 − u)1/3

u2 + (1 − u)2 + 0.6u2(1 − u)2
, (33)

again with D(u) = 1 − 3
2u1/3 + 1

2u. For simplicity, we make
the same choice in our implementation.

D. Translational energy

Assuming that the heavy nuclei form a nondegenerate and
nonrelativistic Boltzmann gas with no internal degrees of
freedom that is free to move within a Wigner-Seitz cell, we
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have [38]

FT = u(1 − u)ni

Ā
h(yi,T )(μT − T ), (34)

where

μT = T ln

(
u(1 − u)ni

nQĀ5/2

)
(35)

is the chemical potential of heavy nuclei with nQ =
(mnT/2πh̄2)3/2. Here

Ā = 4πnir
3

3
(36)

is the mass number of the representative heavy nucleus. One
difference between our treatment and that of L&S is that they
choose to set a fixed value for Ā = 60 in the translational
energy calculation. We, on the other hand, compute the value of
the heavy nucleus mass number Ā and the translational energy
FT self-consistently. In order to guarantee that the translational
free energy FT also vanishes at the critical temperature Tc(yi),
as is the case for the surface tension, we set FT to be
proportional to the function h(yi,T ) [35] [see Eq. (20)].

Also, note that the heavy nuclei of course have internal
degrees of freedom. These are accounted for in Fi (see
Sec. II A).

III. SOLVING THE EOS

The model free energy described in Sec. II depends upon
the variables u, r , ni , yi , nno, npo, nα , and T . In thermodynamic
equilibrium, the system will assume a state in which the free
energy is minimized with respect to these variables, subject
to the constraints of fixed baryon density, proton fraction, and
temperature.

Our procedure is to search for extrema in the free-energy
surface, which is done by setting the derivatives of the free
energy to zero and using standard root finding algorithms to
find solutions to the resulting system of equations. First, we
reduce the number of variables by using Eqs. (1) to express
nno and npo in terms of the other variables and automatically
obey baryon number and charge conservation. We then carry
out minimization with respect to five independent variables: r ,
ni , yi , u, and nα . Minimization with respect to r results in the
constraint given by Eq. (30). Setting the derivative of F with
respect to nα equal to zero gives

μα = 2(μno + μpo) + Bα − Povα, (37)

which is just a condition for alpha particles in chemical
equilibrium with the exterior protons and neutrons with an
excluded volume correction. The derivatives with respect to the
interior densities and the volume fraction give the constraints

A1 = Pi − B1 − Po − Pα = 0, (38a)

A2 = μni − B2 − μno = 0, (38b)

A3 = μpi − B3 − μpo = 0. (38c)

In Eqs. (38), we use the quantities

B1 = ∂F̂

∂u
− ni

u

∂F̂

∂ni

, (39a)

B2 = 1

u

[
yi

ni

∂F̂

∂yi

− ∂F̂

∂ni

]
, (39b)

B3 = − 1

u

[
1 − yi

ni

∂F̂

∂yi

+ ∂F̂

∂ni

]
, (39c)

where F̂ = FS + FC + FT . The derivatives of FS , FC , and FT

with respect to the variables u, ni , and yi are readily obtained
from Eqs. (18), (29), and (34), respectively. This system of
equations can then be solved to find the equilibrium values
of the independent variables for fixed n, y, and T . These, in
turn, can be used to calculate the pressure, entropy, and other
thermodynamic quantities required by simulation codes.

We solve this system of nonlinear equations by first using
Eqs. (30) and (37) to explicitly find nα and r . We then search for
solutions to the three remaining constraint equations using the
independent variables ζ = [log10(u), log10(nno), log10(npo)]
and the root finding routines provided by [66]. Solving the
system of equations requires initial guesses for the independent
variables ζ . Often, an initial choice of ζ may not result
in convergence of the root finding algorithm. Therefore, we
perform an extensive search of possible initial guesses when
the root finding algorithm fails, which allows us to gain
convergence over a wider range of thermodynamic conditions
than the original implementation of L&S. Since we are
building tables, rather than using the EOS code directly
in simulations, the increased computational expense is not
burdensome.

In some regions of parameter space, uniform matter has a
lower free energy than the nonuniform phase and is therefore
the favored state. In uniform matter, u = 0 and the free energy
has to be minimized with respect to nno, npo, and nα , since
the portion of the free energy that depends on r , ni , and yi is
multiplied by u. Therefore, the properties of uniform matter
can be found by solving Eq. (37) subject to the neutron and
proton number conservation constraints.

A significant difference between our EOS and that of
L&S is our treatment of the transition between uniform
and nonuniform mattter. L&S assume a continuous transition
between uniform and nonuniform matter that is obtained using
a Maxwell construction. In this picture, two phases with
densities nh and nl , where nh > nl , are in thermal and chemical
equilibrium with each other. The uniform higher density phase
occupies a volume fraction v = (n − nl)/(nh − nl) of the
system, while the nonuniform lower density phase occupies
a volume fraction (1 − v). Hence, the free-energy density in
the boundary between both phases is

F (n,nl,nh,y,T ) = vFh(nh,y,T ) + (1 − v)Fl(nl,y,T ), (40)

and the equilibrium conditions used to obtain nh and nl are

∂F

∂nl

∣∣∣∣
nh,n,y,T

= ∂F

∂nh

∣∣∣∣
nl ,n,y,T

= 0. (41)
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TABLE I. Parameters of the considered Skyrme interactions with the exception of LS220, for which there are multiple ways to set t1, t2, x1,
and x2 to achieve α1 = α2 = 0 in Eqs. (14f) and (14g). Here, t0 is in MeV fm3, t1 and t2 are in MeV fm5, t31 is in MeV fm3+3σ1 , and x0, x1, x2,
x31, and σ1 are dimensionless. See Refs. [9,31,67] for general discussions of these parameters.

Parametrization t0 t1 t2 t31 x0 x1 x2 x31 σ1

KDE0v1 [68] − 2553.08 411.69 − 419.87 14063.61 0.6483 − 0.3472 − 0.9268 0.9475 0.1673
LNS [69] − 2484.97 266.735 − 337.135 14588.2 0.06277 0.65845 − 0.95382 − 0.03413 0.16667
NRAPR [59] − 2719.70 417.64 − 66.687 15042.0 0.16154 − 0.047986 0.02717 0.13611 0.14416
SKRA [70] − 2895.4 405.5 − 89.1 16660.0 0.08 0.0 0.2 0.0 0.1422
SkT1 [71] − 1794.0 298.0 − 298.0 12812.0 0.154 − 0.5 − 0.5 0.089 0.33333
Skxs20 [72] − 2885.24 302.73 − 323.42 18237.49 0.13746 − 0.25548 − 0.60744 0.05428 0.16667
SLy4 [73] − 2488.91 486.82 − 546.39 13777.0 0.834 − 0.344 − 1.0 1.354 0.16667
SQMC700 [74] − 2429.10 370.97 − 96.67 13773.42 0.10 0.0 0.0 0.0 0.16667

Instead of using the L&S procedure, we determine what
type of solutions may exist (uniform, nonuniform, or both)
and solve the necessary system of equations. If only one of the
systems has a physical solution then that is assumed to be the
most stable configuration of nuclear matter. If both systems
have solutions we choose the one with the lowest free energy
as the favorable solution. This assumes that the transition from
uniform to nonuniform matter is first order and, therefore, there
is no coexistent phase as assumed by L&S and no need for a
Maxwell construction.

We note that there are rare cases where nonuniform matter
has lower free-energy density than uniform matter, but we
still set the latter as the favorable configuration. We make this
choice whenever the adiabatic index

� = dlnP

dlnn

∣∣∣∣
s

(42)

of nonuniform matter is negative, implying an unphysical
imaginary speed of sound. This occurs rarely and typically
at intermediate proton fraction y ∼ 0.20 to 0.35, high density
n ∼ 0.08 to 0.11 fm−3, and low temperatures T � 0.5 MeV. In
these cases, uniform and nonuniform matter have very similar
free-energy densities and, therefore, we do not expect that
choosing the phase with slightly higher free-energy density
will affect the EOS significantly.

IV. EQUATIONS OF STATE

The model and approach described in the previous sections
can be used to compute thermodynamically consistent EOSs
for a wide range of Skyrme parametrizations. There are over
200 Skyrme parametrizations in the literature. We focus on
eight parametrizations that are able to reproduce most or all
known experimental nuclear matter constraints according to
Dutra et al. [9]. Since it has seen such wide use, we are also
including the L&S EOS with K0 = 220 MeV although it does
not fulfill many current nuclear physics constraints.

Specificially, we consider the following parametriza-
tions (and provide EOS tables at https://stellarcollapse.org
/SROEOS): NRAPR [59], SLy4 [73], SkT1 [71], SKRA [70],
LNS [69], SQMC700 [74], Skxs20 [72], KDE0v1 [68], and
L&S with K0 = 220 MeV (LS220 hereafter). Note that SLy4
does not fulfill one out of the 11 experimental constraints
studied by Dutra et al.: its isospin incompressibility [Eq. (52)]

is slightly below the experimentally allowed range. We include
it since its zero-temperature variant has seen use in NS merger
simulations (e.g., [75,76]).

We summarize the Skyrme parameters ti , xi , and σ in Table I
for the considered parametrizations. Note, however, that we
exclude the L&S parametrization since there are multiple
ways to set t1, t2, x1, and x2 that reproduce α1 = α2 = 0;
see Eqs. (14f) and (14g). Furthermore, it is not straightforward
to chose a combination of these four parameters that also
reproduces the fit parameters for the surface tension per unit
area σ (y,T ) used by L&S; see Eq. (19) and Table III.

For completeness, we list the zero-temperature properties
of uniform nuclear matter for all parametrizations in Table II.
The included properties of symmetric nuclear matter (SNM)
are the nuclear saturation density n0, defined by

P = n2 ∂εB(n,y)

∂n

∣∣∣∣
n=n0,y=1/2

= 0, (43)

the binding energy of SNM,

ε0 = εB(n0,y = 1/2), (44)

the effective mass of nucleons at saturation density for SNM,
M∗

t = m∗
t (n0,y = 1/2), the incompressibility,

K0 = 9n2
0(∂2εB/∂n2)|n=n0,y=1/2, (45)

and the skewness,

K ′ = −27n3
0(∂3εB/∂n3)|n=n0,y=1/2. (46)

Here, εB = EB/n is the specific energy per baryon of uniform
matter. These quantities define the expansion of the specific
energy of SNM around saturation density,

εB(n,y = 1/2) = ε0 + 1
2K0x

2 − 1
6K ′x3 + O(x4), (47)

where x = (n − n0)/3n0.
The specific energy per baryon of asymmetric nuclear

matter may be expanded around its value for symmetric matter,

εB(n,y) = εB(n,y = 1/2) + S(n)δ(y)2 + O[δ(y)4], (48)

where δ(y) = 1 − 2y is the isospin asymmetry and S(n) is the
density-dependent symmetry energy, which is defined as

S(n) = 1

8

∂2εB(n,y)

∂y2

∣∣∣∣
n,y=1/2

. (49)
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TABLE II. Properties of nuclear matter calculated for the considered Skyrme interactions. n0 (in fm−3) is the saturation density of symmetric
nuclear matter (SNM) and ε0 (in MeV baryon−1) is the binding energy of SNM at n0. Given in MeV baryon−1 are the incompressibility K0,
the skewness K ′, the symmetry energy parameters J , L, Ksym, and Qsym, and the volume part of the isospin incompressibility Kτ,v . M∗

n/mn is
the dimensionless ratio of the neutron effective mass to the neutron rest mass in SNM at n0 and �M∗ (in MeV) is the proton-neutron effective
mass difference in SNM at n0. Also given in MeV is the critical temperature Tc for two-phase coexistence. Small deviations between the LS220
results listed here and the original results of L&S are due to differences in the employed proton masses, the inclusion of the neutron proton mass
difference (see the discussion in Sec. IV A), and from calculating the symmetry energy expansion parameters explicitly from the derivatives of
εB and not from the difference in εB between SNM and pure neutron matter.

Parametrization n0 ε0 K0 K ′ J L Ksym Qsym Kτ,ν M∗
n/mn �M∗ Tc

LS220 [3] 0.1549 −16.64 219.85 410.80 28.61 73.81 −24.04 96.17 −328.97 1.000 1.2933 16.80
KDE0v1 [68] 0.1646 −16.88 227.53 384.83 34.58 54.70 −127.12 484.44 −362.79 0.744 0.7166 14.85
LNS [69] 0.1746 −15.96 210.76 382.50 33.43 61.45 −127.35 302.52 −384.45 0.826 0.8821 14.92
NRAPR [59] 0.1606 −16.50 225.64 362.51 32.78 59.64 −123.32 311.60 −385.32 0.694 0.6224 14.39
SKRA [70] 0.1594 −16.43 216.97 378.73 31.32 53.04 −139.28 310.83 −364.92 0.748 0.7243 14.35
SkT1 [71] 0.1610 −16.63 236.14 383.49 32.02 56.18 −134.83 318.99 −380.68 1.000 1.2933 17.05
Skxs20 [72] 0.1617 −16.46 201.94 425.53 35.50 67.06 −122.31 328.52 −383.37 0.964 1.2015 15.37
SLy4 [73] 0.1595 −16.62 229.90 363.07 32.00 45.96 −119.70 521.48 −322.84 0.695 0.6241 14.52
SQMC700 [74] 0.1704 −16.14 219.59 367.98 33.40 59.14 −140.23 312.66 −395.42 0.755 0.7385 14.72

Sometimes the symmetry energy is defined as S(n) =
εB(n,0) − εB(n,1/2). The two definitions agree up to their
quadratic terms. We plot S(n) for the considered Skyrme
parametrizations in Fig. 1. We show curves for both uniform
matter obtained from Eq. (49) with εB(n,y) given by Eq. (7)
and nonuniform matter, i.e., accounting for the clustering
of nucleons into heavy nuclei, which occurs for densities
n � 0.10 fm−3. For zero-temperature, nonuniform symmetric
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FIG. 1. Density dependence of the symmetry energy S(n) for
all considered Skyrme parametrizations. The thick curves show S(n)
for uniform nuclear matter (neutrons and protons only) obtained from
Eq. (49) with εB (n,y) = EB (n,y)/n given by Eq. (7). The thin curves
correspond to S(n) for the full high-density EOS at zero temperature,
allowing for nonuniform and uniform nuclear matter. At densities
below the transition to uniform matter, S(n) is obtained from Eq. (49)
with εB (n,y) replaced by F/n with F from Eq. (2). Note that the
high-density (n � n0) behavior ofS(n) is highly uncertain. The high-
density shape of S(n) for the Skyrme parametrizations shown here
is a mere artifact of the expansion about n0 and is not necessarily
physical. At low density, the binding energy of nearly symmetric
nuclei increases the value of the symmetry energy for nonuniform
matter.

matter, the only non-negligible density-dependent contribution
comes from the term Fi = uinifB(n,y), which to first order
is approximated by the binding energy of symmetric nuclear
matter n0fB(n0,1/2). At high densities, n � 3n0, nuclear
physics observables are poorly constrained and the behavior of
S(n), obtained as an expansion about n0, is highly uncertain.

Expanding S(n) as a function of x, one obtains

S(n) = J + Lx + 1
2Ksymx2 + 1

6Qsymx3 + O(x4), (50)

where

J = S(n0), (51a)

L = 3n0(∂S/∂n)|n=n0 , (51b)

Ksym = 9n2
0(∂2S/∂n2)|n=n0 , (51c)

Qsym = 27n3
0(∂3S/∂n3)|n=n0 . (51d)

These expansion parameters are listed in Table II. We note
that the symmetry energy parameters J and L for all of the
Skyrme parametrizations, except for LS220, are consistent
with recently conjectured unitary gas constraints [17].

We also show in Table II the volume part of the isospin
incompressibility Kτ,v (e.g., [9]), given by

Kτ,v =
(

Ksym − 6L − Q0

K0
L

)
, (52)

the effective mass of neutrons in SNM M∗
n , the neutron proton

effective mass difference in SNM, �M∗ = M∗
n − M∗

p, and the
critical temperature T0 discussed in Sec. II B. Note that most
parametrizations have Tc 	 15 MeV, the exceptions being the
SkT1 and LS220 parametrizations that have slightly higher
critical temperatures, Tc 	 17 MeV, which is due to their high
effective masses. For completeness, we provide the coefficients
obtained for the critical temperature expansion [Eq. (22)] in
Appendix C.

In Table III, we list the parameters σs , q, λ, and p that
determine the surface tension per unit area, and which we
obtain as described in Sec. II B. We also provide the values

065802-9



A. S. SCHNEIDER, L. F. ROBERTS, AND C. D. OTT PHYSICAL REVIEW C 96, 065802 (2017)

TABLE III. Summary of the surface properties of nuclear matter
obtained for the considered Skyrme parametrizations. SS is the surface
symmetry energy [in MeV; Eq. (53a)], AS is the surface level density
[in MeV−1; Eq. (53b)], σs is the surface tension of symmetric nuclear
matter at zero temperature [in MeV fm−2; Eq. (25)]. q, λ, and p are
the dimensionless surface tension parameters in Eqs. (19) and (20).

Parametrization SS AS σs q λ p

LS220 [3] 45.81 0.1365 1.150 24.40 3.000 2.000
KDE0v1 [68] 78.63 0.1315 1.215 13.54 3.245 1.493
LNS [69] 95.17 0.1089 1.044 7.78 3.507 1.506
NRAPR [59] 92.44 0.1316 1.140 13.96 3.522 1.467
SKRA [70] 86.99 0.1332 1.125 14.26 3.464 1.492
SkT1 [71] 78.71 0.0979 1.090 16.06 3.449 1.606
Skxs20 [72] 106.94 0.1117 1.045 6.48 3.540 1.555
SLy4 [73] 64.31 0.1423 1.247 18.51 3.128 1.474
SQMC700 [74] 98.48 0.1280 1.191 9.90 3.442 1.486

of the surface symmetry energy parameter SS and the surface
level density parameter AS given by

SS = −A1/3

8

(
∂2fS(y,T )

∂y2

)∣∣∣∣
y=1/2,T =0

, (53a)

AS = −A1/3

2

(
∂2fS(y,T )

∂T 2

)∣∣∣∣
y=1/2,T =0

, (53b)

where fS is calculated for a spherical nucleus with mass
number A and density n0, i.e.,

fS(y,T ) = 4πr2
Nσ (y,T )

A
, (54)

with rN = (3/4πn0A)1/3. Compared with the LS220
parametrization, all other Skyrme parametrizations have a
much higher surface symmetry energy parameter SS , lower
values for the parameters q and p, and a higher value for
λ. In Ref. [38], Lim and Lattimer argue that the exponent λ
is expected to be between 2 and 4. This result agrees with
our results, though we find the range of λ to be smaller for
all considered parametrizations, namely 3 � λ � 3.5. Finally,
there are significant differences between the surface properties
we derive here for the SLy4 and those provided by Lim and
Lattimer [38]. The differences reside in Lim and Lattimer
having an extra parameter that accounts for the surface tension
of the neutron skin of nuclei, σ → σ + μnνn, as discussed in
Sec. II B.

A. Comparison with L&S results

Using the same L&S Skyrme parametrization which pre-
dicts a nuclear incompressibility K0 = 220 MeV, we compare
the results from our code, labeled here as LS220†, with
the results of the original L&S implementation available at
http://www.astro.sunysb.edu/dswesty/lseos.html , labeled here
as LS220∗. In order to be consistent in our comparison with the
original L&S implementation, for the cases discussed in this
subsection only, we make the following choices: (1) We set
the alpha-particle binding energy to Bα = 28.3 MeV. (2) We
set mp = mn = 939.5654 MeV. (3) We set the proton-neutron
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FIG. 2. Comparison with L&S. We show the ratio of nuclear
pressure for a range of proton fractions obtained with our LS220†

implementation and with the original L&S implementation LS220∗.
The solid black curve delineates where the heavy-nuclei number
fraction Xi = uni/n changes from zero to a nonzero value. Below
and to the left of the curve, matter is nonuniform, while above and to
the right of the line it is uniform. The dashed line shows where the
nuclear pressure is zero. Differences between LS220† and LS220∗

are largest near this line. The wide horizontal band at the bottom of
the panels marks the region where the original L&S implementation
does not converge for nonuniform nuclear matter and assumes that
the system is uniform.

mass difference to � = 1.29 MeV and carry it explicitly. (4)
We fix Ā = 60 in Eq. (36).

In Fig. 2, we plot the ratio of the total nuclear pressures
(excluding leptons and photons) returned by the two LS220
implementations. We choose proton fractions of y = 0.05,
0.20, 0.35, and 0.50, densities in the range 10−7 fm−3 �
n � 1 fm−3, and temperatures 0.01 MeV � T � 100 MeV.
We choose these ranges since the original L&S implemen-
tation only converges consistently for proton fractions in the
range 0.03 � y � 0.51, densities higher than 10−7 fm−3, and
temperatures higher than 10−1.5 MeV. In our implementation,
however, we are able to compute the EOS for proton fractions
0.001 � y � 0.7, and for temperatures and densities as low as
10−4 MeV and 10−13 fm−3, respectively.

Figure 2 demonstrates that in uniform matter, with the
exception of regions very close to P 	 0, our results and
those of L&S agree within 0.5% or better. For nonuniform
matter and very low temperatures, T � 0.04 MeV, the L&S
implementation is unable to find a nonuniform solution and
assumes the system is uniform. This gives rise to the large
ratio between the pressures in that region. In most of the
nonuniform regions with temperatures above T � 0.04 MeV,
the agreement is, again, within 0.5% or better. Exceptions
occur near the transition from uniform to nonuniform matter
and regions where the nuclear pressure is close to zero. Even
though the ratios are large in these regions, the absolute
pressure differences are relatively small. Differences between
the two implementations also appear in regions of parameter
space with very low proton fraction, represented in Fig. 2
by y = 0.05, and densities 0.006 fm−3 � n � 0.03 fm−3. Dis-
crepancies are also visible in regions of nonuniform symmetric
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nuclear matter at temperatures T 	 10 MeV. In these regions,
the original L&S implementation has convergence issues for
some values of density n and temperature T . At very low
proton fraction, even in regions where both implementations
converge, we observe differences in the calculated pressures
as large as 2%.

We carry out similar comparison studies for other ther-
modynamic quantities, including the specific energy, specific
entropy, proton and neutron chemical potentials, average
nuclear charge and mass, and the mass fractions of protons,
neutrons, alpha particles, and heavy nuclei. In all these
comparisons we find differences that are qualitatively and
quantitatively very similar to what is shown for the pressure in
Fig. 2.

B. Comparing equations of state

We compare full EOSs obtained with the set of considered
Skyrme parametrizations. We focus on SNA EOSs and defer
a detailed discussion of our approach for matching to NSE
at low densities to Sec. VII A. In contrast to the previous
section on the LS220 parametrization, we go back to an alpha
particle binding energy of Bα = 30.887 MeV since all free
energies are computed with respect to the free energy of
a gas of unbound neutrons. We set mp = 938.2721 MeV
and mn = 939.5654 MeV [77]. The proton-neutron mass
difference � = mn − mp is obtained self-consistently. Despite
changing the proton mass, our LS220 implementation uses
the same Skyrme parameters obtained by L&S and used in
Sec. IV A. This results in small differences between the LS220
EOS and the LS220† and LS220∗ EOSs. The differences come
from small changes in the proton effective mass term, Eq. (8).
Finally, we let Ā vary in the translational free-energy density
[Eq. (36)].

In Fig. 3, we plot the pressure per nucleon using the
NRAPR parametrization for proton fractions y = 0.01, 0.10
0.30, and 0.50. We also include in the plots 11 adiabats, s =
10nkB baryon−1 for n = −3 to n = 2 in 0.5 increments, and six
isoergs at ε = −3, 0, 3, 10, 30, and 100 MeV baryon−1. The
pressure per baryon is dominated by the electron and photon
contributions in large portions of density-temperature space.
At the highest temperatures, the electrons, positrons, and
photons behave as an ultrarelativistic gas and drive the strong
temperature dependence of the pressure seen there. At lower
temperatures (T � 1 MeV) and for densities below saturation
density, degenerate electrons give a large contribution to
the pressure and the pressure is relatively insensitive to the
temperature. Nevertheless, throughout the phase diagram,
the nuclear contribution to the pressure is often significant,
although subdominant. At the highest densities (i.e., at and
above saturation density), the pressure is dominated by the
nucleon contributions and the impact of strong interactions.
The EOSs obtained from the other Skyrme parametrizations
considered in this study are qualitatively similar to the EOS
resulting from the NPAPR parametrization and shown in Fig. 3.

In Fig. 4, we plot the temperatures along four adiabats
(s = 0.01, 0.1, 1, and 10kB baryon−1) at a range of proton
fractions. Except for very low entropies, s � 0.1kB baryon−1,
or very high densities, n � 0.1 fm−3, the entropy does not sig-
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FIG. 3. Total pressure per nucleon P/n in MeV baryon−1 for the
NRAPR Skyrme parametrization [59] and proton fractions y = 0.01,
0.10, 0.30, and 0.50. The solid black curves denote, from top to
bottom, the adiabats at entropies s = 10nkB baryon−1 for n = 2 to
n = −3 in −0.5 increments. The dashed black curves correspond,
from right to left, to the isoergs for specific energies ε = 100, 30, 10,
3, 0, and −3 MeV baryon−1. Note that only the y = 0.30 and y =
0.50 panels contain the ε = −3 MeV baryon−1 isoerg. The pressure
per nucleon is dominated by electrons, positrons, and photons in
large portions of the density-temperature space. Only at the highest
densities, at and above saturation density, is the pressure dominated
by the nucleon contributions and the impact of strong interactions.

nificantly depend on the Skyrme parametrization. For uniform
matter, the entropy depends only on the temperature, density,
proton fraction, and nucleon effective masses. Therefore, we
see systematically higher entropies for parametrizations with
smaller effective masses at high density. At lower densities,
variations between EOSs are caused by the different properties
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FIG. 4. Temperature along adiabats with specific entropy s = 10,
1.0, 0.1, and 0.01kB baryon−1 in the single-nucleus approximation
and for all considered Skyrme parametrizations. Note that electrons,
positrons, and photons are included. The adiabats differ mostly
in regions dominated by nucleonic pressure around and above
saturation density n0 ∼ 0.16 fm−3 and for y 	 0.30 and T � 1 MeV,
where the number of free neutrons varies significantly between
parametrizations.

065802-11



A. S. SCHNEIDER, L. F. ROBERTS, AND C. D. OTT PHYSICAL REVIEW C 96, 065802 (2017)

1.0

1.5

2.0

2.5

3.0

1.0

1.5

2.0

2.5

-3 -2 -1 -3 -2 -1 0

Γ

LS220
NRAPR

SLy4

SkT1
SKRA

LNS

Skxs20
SQMC700

KDE0v1

1.0

1.5

2.0

2.5

3.0

y = 0.01 y = 0.10

Γ

log10[n(fm−3)]

1.0

1.5

2.0

2.5

-3 -2 -1

y = 0.30

log10[n(fm−3)]
-3 -2 -1 0

y = 0.50

FIG. 5. Adiabatic index � along the s = 1kB baryon−1 adiabat
for full EOSs in the single-nucleus approximations. At low densities
and proton fractions y � 0.1, electrons dominate and � ∼ 4/3. At
high densities and y = 0.50, � is roughly the same for all EOSs
reflecting the well constrained properties of symmetric nuclear matter.
The sharp discontinuity is due to the transition between nonuniform
and uniform nuclear matter at n 	 0.1 fm−3. It becomes smoother at
lower proton fraction due to large free neutron contributions. Also, as
the proton fraction decreases, differences between parametrizations
increase due largely to variations in the density-dependent symmetry
energy (cf. Fig. 1).

of the single nucleus predicted by the different Skyrme
parametrizations.

In Fig. 5, we compare the adiabatic index �, Eq. (42),
along the s = 1kb baryon−1 adiabats. The largest differences
between the adiabatic indices occur for very low proton
fractions, y � 0.10. This follows from the Skyrme parameters
being chosen to fit properties of isospin symmetric matter
and, therefore, predicting significantly different properties of
matter when extrapolated to large isospin asymmetries. In the
very neutron rich regime, y � 0.10, the LS220 parametrization
shows results that differ from the others not only quantitatively,
but also qualitatively. Unlike the other parametrizations, at
low proton fractions, �LS220 exhibits a peak close to the
phase transition between nonuniform and uniform matter.
The change of �LS220 across the transition is overall much
smoother and occurs at lower densities than for the other
parametrizations.

The composition of nonuniform matter influences the EOS
and can impact neutrino transport in CCSNe. Each Skyrme
parametrization predicts different properties for the equilib-
rium nucleus in the SNA. In Fig. 6, we show the masses Ā of
the SNA nuclei formed along the s = 1kB baryon−1 adiabat for
different Skyrme parametrizations. We compare them with Ā
obtained for ensembles of nuclei in NSE (see Sec. VII A). The
LS220 parametrization produces much heavier nuclei at low y
than any of the other parametrizations. By Eq. (30), the nuclear
size r increases with the surface tension. Therefore, increasing
σ increases Ā, all other things being equal. LS220 has the
weakest y dependence of the surface tension (which results in
a relatively larger surface tension at low y) and the smallest
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FIG. 6. Average heavy nucleus mass number Ā along the s =
1kB baryon−1 adiabat as a function of density for the considered
Skyrme parametrizations in the single-nucleus approximation (SNA)
and, at low densities, for nuclear-statistical equilibrium (NSE) with
23, 807, and 3 335 nuclides (we discuss our NSE treatment and
matching to SNA in Sec. VII A). For the SNA curves, differences
in nuclear sizes result from differences in symmetry energy and
the surface properties obtained for each parametrization. The 3335
nuclide NSE network exhibits large oscillations in Ā. These are due
to nuclear shell effects included implicitly in the nuclear masses.

symmetry energy of any of the Skyrme parametrizations. This
explains the large nuclei predicted by LS220. The Skxs20
and LNS parametrizations predict the lightest nuclei and
have the smallest surface tensions at low y. Except for
some parametrizations at very low proton fractions, the SNA
EOSs produce heavy nuclei that increase with density for
n � 10−4 fm−3 until close to the phase transition to uniform
nuclear matter. This is the region where the nuclear “pasta”
phase is expected to appear. The different masses of nuclei
may significantly alter neutrino cross sections and CCSNe
neutrino spectra as well as the cooling rates of NSs. Since
Skyrme parametrizations are fitted to properties of SNM, all
parametrizations yield similar predictions for Ā at y = 0.5.

Figure 6 includes NSE results for Ā that were obtained
with ensembles of 23, 837, and 3335 nuclides. We see that
Ā predicted by NSE for the s = 1kB baryon−1 adiabat is
rather sensitive to the number of nuclides included. In the
ensemble containing 23 nuclei, which includes nuclides with
Z � 26, the only heavy and neutron rich nuclide included,
66Fe, dominates the composition for neutron rich matter. The
837-nuclide ensemble includes nuclides with Z � 50 and the
dominant nucleus for neutron rich matter is 89Ge.

The 3335-nuclide NSE network includes nuclides up to
Z = 85 and sufficiently many neutron-rich heavy nuclides that
there is no single nuclide that dominates in neutron rich matter.
For SNM, on the other hand, all nuclide ensembles predict very
similar compositions at low densities, n � 10−4 fm−3.

Finally, we present in Fig. 7 the difference between the
neutron and proton chemical potentials, μ̂ = μn − μp, along
the s = 1kB baryon−1 adiabat. The quantity μ̂ is relevant for
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FIG. 7. Neutron-proton chemical potential difference μ̂ = μn −
μp along the s = 1.0kB baryon−1 adiabat as a function of density for
the considered Skyrme parametrizations at proton fractions y = 0.01,
10, 0.30, and 0.50. Note that we multiply μ̂ by a factor of −25 in
the bottom right panel showing the y = 0.5 case. μ̂ is sensitive to
the density dependence of the symmetry energy and the differences
between parametrizations seen here correlate with those in Fig. 1.

charged current neutrino interactions as it enters into the
equilibrium neutrino chemical potential, μν = μe − μ̂, which
determines detailed balance for charged current interactions
and influences how hard it is to turn neutrons into protons
(or vice versa) in the medium. Furthermore, μ̂ is correlated
with the symmetry energy S, which gives a large contribution
to the pressure at high densities. First, we note that for
SNM, all Skyrme parametrizations produce similar curves for
μ̂, especially for densities n � 0.1 fm−3. This is expected,
since the coefficients of each parametrization are chosen to
reproduce properties of uniform SNM where experimental
constraints are abundant.

It is apparent from Fig. 7 that for most proton fractions
the LS220 parametrization predicts the lowest values for
μ̂ in the range 0.01 fm−3 � n � n0 and the highest for
densities above nuclear saturation density. In the neutron rich
regime, the LS220, SLy4, and KDE0v1 parametrizations all
predict μ̂ that increases monotonically with density. The other
parametrizations, on the other hand, have a global maximum
above nuclear saturation density, which occurs in the range
2n0 � n � 4n0 and is higher (lower) for Skxs20 (SKRA) than
for the other parametrizations. In the next Sec. V, we discuss
the effects of this behavior on the radial profile and maximum
mass of cold nonrotating NSs.

V. NEUTRON STAR MASS-RADIUS RELATIONSHIP

We construct the mass-radius relationship of cold neutron
stars (NSs) by solving the Tolman-Oppenheimer-Volkoff
(TOV) equations [78] for neutrinoless beta equilibrated matter
(BEM) near zero temperature. We choose a low temperature
of T = 0.1 MeV, and determine for each density n the proton
fraction y where the neutrino chemical potential is zero, i.e.,
μν = μe − μn + μp = 0. If no such solution can be found,
or the solution implies a large discontinuity from y 	 0 to
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FIG. 8. Pressure P (top panel), specific internal energy ε (plus
an additive constant ε0 = 2 × 1019 erg g−1; center panel), and proton
fraction y for low temperature neutrinoless beta equilibrated matter
(bottom panel). We show results for five select Skyrme parametriza-
tions that span the range of maximum neutron star masses shown in
Fig. 9. The LS220∗ (LS220) curve uses L&S’s (our) implementation
of the L&S K0 = 220 MeV parametrization. Differences between
LS220 and LS220∗ are due to the L&S implementation limit of
proton fractions y � 0.035 and a small difference in the proton
masses used (cf. Sec. IV A). The proton fraction y at high densities,
ρ � 1014.5 g cm−3, mirrors the high-density behavior of the symmetry
energy S(n) (cf. Fig. 1).

y > 0.50, we set the proton fraction to the minimum value
available for a given combination of n and T in the EOS table.

In Fig. 8, we present density-dependent graphs of pressure,
specific internal energy, and proton fractions for the LS220,
NRAPR, SLy4, LNS, and KDE0v1 parametrizations. For
comparison, we also show results obtained with the original
L&S implementation (LS220∗), which converge reliably only
for proton fractions y � 0.035.

Figure 8 reveals some differences between the LS220 and
the LS220∗ curves. These are due to small differences in
chemical potentials between the EOSs owing to the different
treatments of proton masses (cf. Sec. IV A) and to the
L&S implementation limit of proton fractions y � 0.035.
The four other parametrizations shown in Fig. 8, SLy4,
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KDE0v1, NRAPR, and LNS, have very similar qualitative and
quantitative behavior below nuclear saturation density in the
three quantities plotted. For densities above nuclear saturation
density, on the other hand, the EOSs can be separated into
two groups according to their prediction for the BEM proton
fraction. Group I EOSs, which includes the LS220, LS220∗,
SLy4, and KDE0v1 parametrizations, have proton fractions
that increase monotonically above nuclear saturation density.
Meanwhile, group II EOSs, which include the NRAPR and
LNS parametrizations, have BEM proton fractions with a
maximum near nuclear saturation density and that decrease
to zero at higher densities. Group II also includes the other
four parametrizations that we consider in this study (SKRA,
SkT1, Skxs20, and SQMC700) but do not show in Fig. 8.

The two different behaviors in the proton fraction above
nuclear saturation density can be traced back to the symmetry
energy S (shown in Fig. 1) and the related neutron-proton
chemical potential difference μ̂ (see Fig. 7). The EOSs in
group I have S and μ̂ for neutron rich matter that increases
monotonically with density. Therefore, above nuclear satura-
tion density, their proton fraction y for BEM also increases
monotonically with density. In group II, meanwhile, both S
and μ̂ have a maximum at a density above nuclear saturation
and then decrease for higher densities. Figure 7 shows the
density dependence of μ̂ for the s = 1kB baryon−1 adiabat,
which is qualitatively similar to the density dependence near
zero temperature and entropy. In Ref. [67], Stone et al. argued
that a key quantity for distinguishing between these two groups
of Skyrme parametrizations is the density dependence of the
symmetry energy, expressed by the asymmetry parameter

as(n) = εB(n,y = 1/2) − εB(n,y = 0). (55)

Stone et al. argued that parametrizations for which as and
thus μ̂ increases monotonically with density above saturation
density are more realistic since their behavior matches that
observed for realistic nuclear potentials. Realistic nuclear
potentials, such as the Argonne v18 [80], CD-Bonn [81], and
Nijmegen II [82] are obtained by fitting 40 to 60 adjustable
parameters to thousands of experimental data points of free
nucleon-nucleon scattering and properties of the deuteron.

In Fig. 9, we show the NS mass-radius curves that we
obtain by solving the TOV equations with our EOSs. We
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Nättilä et al.
QMC+model A

FIG. 9. Mass-radius curves for cold, beta-equilibrated neutron
stars (NSs) obtained by solving the Tolman-Oppenheimer-Volkoff
equations for the considered Skyrme parametrizations. We summarize
NS properties in Table IV. The gray strip represents the mass of
the NS PSR J0348 + 0432, MJ0348+0432 = 2.01 ± 0.04M� [79]. The
yellow region indicates the NS mass-radius constraints from model
A of Nättilä et al. [12]. Besides the LS220 parametrization, only
SLy4 and (barely) KDE0v1 and NRAPR satisfy the Mmax � 2 M�
constraint. Differences between our implementation of LS220 and
the original L&S implementation (LS220∗) are due to the lower limit
of y � 0.035 in the latter (cf. Fig. 8).

also indicate the mass of the currently most massive known
NS (PSR J0348+0432 [79]) and the 2σ confidence region
for the NS mass-radius relationship given by “model A” of
Nättilä et al. [12]. Nättilä et al. obtained these constraints via
a Bayesian analysis of type-I X-ray burst observations. For
completeness, we summarize in Table IV key properties of
the TOV NS sequences obtained with all considered Skyrme
parametrizations.

We note from Fig. 9 that there is a small difference between
the mass-radius relation curves for NSs obtained with the
LS220 and LS220∗ EOSs for low-mass NSs. Recall that
LS220 represents results from our full SNA implementation
of the LS220 parametrization and LS220∗ represents results
obtained with an EOS table generated with the original code by
L&S. The differences in the M-R curves come from pressure

TABLE IV. Summary of neutron star (NS) properties for the considered Skyrme parametrizations. Mmax is the maximum NS mass, Rmax is
the radius of the maximum-mass NS, (cs/c)max is its central speed of sound relative to the speed of light c, and (nc/n0)max is its central density
relative to saturation density n0. R1.4, (cs/c)1.4, and (nc/n0)1.4 are the radius of a 1.4M� NS, its central speed of sound, and its central density,
respectively.

Parametrization Mmax (M�) Rmax (km) (cs/c)max (nc/n0)max R1.4 (km) (cs/c)1.4 (nc/n0)1.4

LS220 [3] 2.04 10.61 0.880 7.18 12.66 0.556 2.84
KDE0v1 [68] 1.97 9.80 0.966 7.75 11.67 0.617 3.46
LNS [69] 1.72 9.29 0.839 8.58 11.02 0.612 4.18
NRAPR [59] 1.94 9.94 0.913 7.94 11.87 0.594 3.46
SKRA [70] 1.77 9.48 0.852 8.98 11.31 0.600 4.15
SkT1 [71] 1.85 9.74 0.868 8.30 11.55 0.595 3.73
Skxs20 [72] 1.74 9.63 0.811 8.86 11.52 0.587 4.12
SLy4 [73] 2.05 9.99 0.990 7.47 11.72 0.624 3.35
SQMC700 [74] 1.76 9.40 0.853 8.60 11.16 0.609 4.06
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differences in the range 1013 g cm−3 � ρ � 1014 g cm−3 that
are a result of the lower proton fraction limit of y = 0.035 for
LS220∗.

Most of the considered Skyrme parametrizations are unable
to support a 2M� NS. To date, the most massive observed
NSs have masses MJ1614−2230 = 1.97 ± 0.04M� [11] (re-
cently revised to 1.928 ± 0.017 by Fonseca et al. [83]) and
MJ0348+0432 = 2.01 ± 0.04M� [79]. The latter is shown as a
gray strip in Fig. 9. Besides the LS220 parametrizations, only
the NRAPR, SLy4, and KDE0v1 EOSs can account for the
existence of 2M� NSs.

The radius R1.4 of a canonical 1.4M� NS was constrained
by Lattimer et al. to be in the range 10.5–12.5 km [84], by
Guillot et al. to be in the 10−11.5-km range ([85] as updated
by [14]), and by Nättilä et al. to be R1.4 = 12.0 ± 0.7 km
[12]. As shown in Table IV, the results for R1.4 from all
considered Skyrme parametrizations are in agreement with
these constraints. Combining the results for R1.4 with the lower
limit of the maximum NS mass from observations, we see
that LS220, NRAPR, SLy4, and KDE0v1 parametrizations
are the ones which more closely fulfill current astrophysical
constraints. Note, however, that the LS220 parametrization is
an outlier and predicts R1.4 about 1 km larger than the upper
limit obtained by Guillot et al.

We plot density and proton fraction profiles for 1.4M�
NSs in Fig. 10 and for maximum mass NS configurations
in Fig. 11. We note that the LS220 parametrization predicts
lower densities and higher central proton fractions than the
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FIG. 10. Radial rest-mass density (top panel) and proton fraction
profiles (bottom panel) of cold, beta-equilibrated 1.4M� neutron stars
(NSs) obtained with the considered Skyrme parametrizations. Note
that LS220 is an outlier, yielding the lowest central density, the largest
radius, and the highest central proton fraction. This is due primarily to
its large L parameter and the linear behavior of its density-dependent
symmetry energy, which results in the smallest symmetry energies
below saturation density and the largest symmetry energies above
saturation density of all the EOS considered here (cf. Fig. 1). We
summarize key NS quantities in Table IV.
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FIG. 11. Radial rest-mass density (top panel) and proton frac-
tion (bottom panel) profiles of cold, beta-equilibrated maximum-
mass neutron stars (NSs) as predicted by the considered Skyrme
parametrizations. Note that the maximum mass varies between
parametrizations. Table IV summarizes key NS quantities for
all parametrizations. As in the 1.4M� NS case shown in Fig. 10,
the LS220 parametrization is an outlier and yields the lowest central
density, the highest central proton fraction, and the largest radius for
its maximum-mass NS configuration.

other parametrizations. This results from the LS220 EOS
being stiffer than all other considered EOSs and having
significantly different predictions for the density-dependent
symmetry energy S(n) [cf. Eq. (50) and Table II]. In the
maximum mass all NSs have central densities far above n0

and we can again separate the EOSs into two groups. In
group I, which encompasses the LS220, SLy4,and KDE0v1
parametrizations, the proton fraction increases toward the
center of the NS. In contrast, for group II, which includes
the other six parametrizations, the proton fraction decreases
toward the center of the NS, even reaching y = 0 for SKRA,
SkT1, and SQMC700.

High-density EOS modifications

Most Skyrme parametrizations fail to produce 2M� NSs
(see, e.g., [9] and Table IV). Since 2M� NSs have been
observed in nature [11,79,83], a Skyrme parametrization
intended for astrophysical simulations should satisfy this lower
limit on the maximum NS mass. However, Skyrme parameters
are often chosen to produce properties of nearly symmetric
nuclear matter in the range ∼n0/2–3n0 while densities in the
center of a NS near maximum mass may reach ∼10n0 and
matter may be very neutron rich. Under these conditions, the
properties of matter are still fairly unconstrained. Therefore,
Skyrme interactions are not expected to be valid beyond a
density n ∼ 3n0 ∼ 0.5 fm−3 [9,67]. Thus, the maximum NS
mass should not be necessarily used to invalidate a Skyrme
parametrization. Ideally, a model of high-density matter should
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FIG. 12. Mass-radius curves for cold, beta-equilibrated neutron
stars (NSs) obtained with the SkT1 parametrizations and its various
high-density modifications. The gray strip represents the mass
PSR J0348 + 0432MJ0348+0432 = 2.01 ± 0.04M� [79] and the yellow
region indicates the NS mass-radius constraints from model A of
Nättilä et al. [12].

be matched to the Skyrme model at high densities. Dutra et al.
use the Skyrme interaction up to about 3n0 and match it to
a different high-density EOS at higher densities [9]. For n �
3n0, they chose a zero-temperature full quark-meson-coupling
(FQMC) model [86], which includes a full baryon octet in
the high-density matter and predicts 2M� NSs, in agreement
with observations. Since we are interested in finite-temperature
EOSs, we instead propose a direct modification of the Skyrme
parametrization that affects its behavior at high densities, but
leaves the EOS properties at and below saturation density
unchanged.

For most Skyrme parametrizations the terms ci and di

in Eq. (7) are only nonzero for a single value of i, i.e.,
i = 1. In our formalism the generalization to include extra
nonzero ci and di terms is straightforward. The choice of
number of i > 1 terms added in a given parametrization as
well as the choice for the exponents δi that accompany the
extra terms is arbitrary. Ideally, the extra i > 1 terms do
not change the EOS significantly in regions where it is well
constrained, i.e., it barely changes the properties of nuclear
matter at saturation density. However, the extra terms should
improve the EOS agreement with experimental constraints

above nuclear saturation density or, at least, help reproduce
known observables, such as the lower limit on the maximum
NS mass. Furthermore, it may be desirable to maintain the
properties of a given parametrization at saturation densities,
while stiffening or softening it at higher densities.

With this in mind, we proceed as follows: we add an extra set
of terms {c2,d2,δ2} to the sum in Eq. (7) with δ2 > 3. We adjust
the values of c2 and d2 to minimally impact the properties of
saturation-density matter. As an example of this high-density
EOS modification, we consider the SkT1 parametrization,
which predicts a maximum NS mass of Mmax = 1.85M�. We
add extra terms to it so that the contribution to the nuclear
incompressibility K0 = K(n0,0.5) [see Eq. (45)] from the
i = 2 term is 1% of the i = 1 term contribution, i.e.,

δ2

δ1

δ2 − 1

δ1 − 1

c2 + d2

c1 + d1

n
δ2
0

n
δ1
0

= 0.01. (56)

This choice, along with δ1 < δ2 � 10, leaves all nuclear
matter properties at saturation density n0 well within current
known experimental constraints, but significantly increases the
pressure at high densities.

We study here six modified SkT1 parametrizations. Besides
the choice defined by Eq. (56), we chose the exponent values
δ2 = 4 and 5, and set the constants c2 and d2 such that c2 = 0,
or d2 = 0, or c2 = d2.

In Fig. 12, we plot NS mass-radius curves for these modified
parametrizations. We summarize key properties of the TOV NS
sequences in Table V. Both figure and table show, as expected,
that the higher the exponent δ2 and the larger c2 is with respect
to d2, the stiffer the EOS for cold BEM becomes. This results
in a higher maximum NS mass and a larger radius for the
1.4M� NS. The main drawback of the proposed modifications
is that the speed of sound increases significantly for densities
above 3n0. It becomes superluminal at densities lower than
those at the center of maximum-mass NSs (cf. Table V).
Nevertheless, the modifications can be useful for studying
the impact of a higher maximum NS mass on astrophysical
simulations while keeping the properties of saturation-density
nuclear matter fixed. A thermodynamically consistent method
to modify nonrelativistic equations of state so that they respect
causality at high densities has recently been suggested [87].
We postpone its implementation to future work.

TABLE V. Summary of neutron star (NS) properties for the SkT1 parametrization and its high-density modifications. Mmax is the maximum
NS mass, Rmax is the radius of the maximum-mass NS, (cs/c)max is its central speed of sound relative to the speed of light c and (nc/n0)max is
its central density relative to saturation density n0. R1.4, (cs/c)1.4, and (nc/n0)1.4 are the radius of a 1.4M� NS, its central speed of sound, and
its central density, respectively. Note that the central speed of sound in the maximum-mass NS is superluminal for most of the modified EOSs.

Parametrization Mmax (M�) Rmax (km) (cs/c)max (nc/n0)max R1.4 (km) (cs/c)1.4 (nc/n0)1.4

SkT1 [71] 1.85 9.74 0.868 8.30 11.55 0.595 3.73
δ2 = 4, c2 = 0 1.85 9.65 0.891 8.49 11.55 0.597 3.69
δ2 = 4, c2 = d2 1.96 9.59 1.091 8.11 11.63 0.608 3.55
δ2 = 4, d2 = 0 2.04 9.58 1.209 7.92 11.68 0.616 3.45
δ2 = 5, c2 = 0 1.88 9.56 0.989 7.85 11.60 0.602 3.37
δ2 = 5, c2 = d2 2.19 9.56 1.533 6.84 11.73 0.638 3.12
δ2 = 5, d2 = 0 2.32 9.88 1.615 6.23 11.83 0.655 2.98
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TABLE VI. Ranges in density n, temperature T , and proton
fraction y, and the number of EOS table points in each dimension
for our standard-resolution EOS tables. The high-resolution tables
have the same range, but contain twice the number of points in each
dimension.

Parameter Minimum Maximum Points

log10[n(fm−3)] − 12.2 0.8 391
log10[T (MeV)] − 3.0 2.4 163
y 0.005 0.655 66

VI. ADIABATIC COMPRESSION

To check the thermodynamic consistency of our code and of
the EOS tables it generates, we perform adiabatic compression
tests. An isolated system that is slowly compressed from a
lower to a higher density should retain its initial entropy.
To test this, we generate EOS tables for different Skyrme
parametrizations in the ranges of density n, temperature T ,
and proton fraction y, given in Table VI. We set the table
resolution to 30 points per decade in temperature and density
and 1 point every 0.01 in proton fraction. We also consider
tables with double the resolution across each EOS dimension.
The lower resolution is similar to that of the tables available at
https://stellarcollapse.org/equationofstate. These older tables
are described by O’Connor and Ott in [50] and have been used
frequently in astrophysical simulations. Following [50], we
interpolate trilinearly in n, T , and y. We find T for a given
n, y, and specific internal energy ε or specific entropy s via
Newton-Raphson root finding.

In our adiabatic compression tests, for a given proton
fraction, we set the system to an initial temperature T =
10−2 MeV and determine the initial densities for which the
entropy has values of 0.1, 0.2, 0.5, and 1.0kB baryon−1. Every
step, the density is increased by δn = 10−3n until the system
reaches a density of 1 fm−3 or its temperature exceeds the
maximum of our tables (Tmax = 250 MeV). As the system
is compressed, we integrate the first law of thermodynamics
using a fourth-order Runge-Kutta integrator and determine the
ratio of the entropy s(n) to the initial entropy s0 as a function of
density. As a representative example result, we show in Fig. 13
the fractional changes in entropy during the compression for
both the high-resolution and standard-resolution SLy4 tables.

We see from Fig. 13 that for specific entropies of
s � 0.5kB baryon−1 and proton fractions y � 0.3, even the
standard-resolution tables yield nearly perfectly adiabatic
compression. This bodes very well for stellar collapse and
CCSN simulations, since entropies always stay higher than
0.5kB baryon−1 and proton fractions below ∼0.3 are not
reached until the final phase of collapse.

At lower entropies and proton fractions, we observe sub-
stantial deviations from adiabatic compression with entropy
errors of order 10% or greater with the standard-resolution
tables. This issue is largely numerical and due to interpolation
and root-finding errors, since the high-resolution tables yield
much better results. However, large changes in entropy can still
occur near the first-order phase transition between nonuniform
and uniform nuclear matter near n 	 10−1 fm−3.
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FIG. 13. Relative error in the specific entropy as a function of
density during adiabatic compression tests with the full EOS based
on the SLy4 parametrization and the single-nucleus approximation
at all densities. The different panels show results for proton fractions
y = 0.01, 0.10, 0.3, and 0.5. All curves start at T = 0.01 MeV
and we choose the initial densities to obtain starting values of the
specific entropy of s0 = 0.1, 0.2, 0.5, and 1.0kB baryon−1. Thick
(thin) curves correspond to tests with the high (standard) resolution
tables (cf. Table VI). In most cases the thick lines (obtained from
high resolution tables) are very close to 1 at all densities and lie
on top of each other, which may make their visualization difficult.
For s0 � 0.5kB baryon−1 and proton fractions y � 0.3, the standard-
resolution tables perform very well. In stellar collapse, the specific
entropy always stays higher than 0.5kB baryon−1 and proton fractions
below ∼0.3 are not reached until the final phase of collapse. Errors at
lower s0 and y are largely numerical and are reduced by employing
the high resolution table. However, large changes in entropy can still
occur near the first-order phase transition between nonuniform and
uniform matter at n 	 0.1 fm−3.

For comparison, we carry out adiabatic compression
tests also for the tables of [50]. We find that even
our standard-resolution tables yield smaller entropy er-
rors than any of the EOS tables of [50] available at
https://stellarcollapse.org/equationofstate.

Finally, adding a transition from SNA to NSE at low
densities, as we discuss below in Sec. VII A, only leads to
small quantitative changes compared to the results presented
in this section.

VII. APPLICATION TO STELLAR CORE COLLAPSE

We carry out a set of example core collapse and postbounce
CCSN simulations to investigate how our new EOSs perform
in this important astrophysical scenario and how they influence
core collapse, postbounce evolution, and black hole formation.
Before discussing the CCSN simulations, we describe how we
modify our EOSs at low density to include an ensemble of
nuclei in NSE.

A. Nuclear statistical equilibrium (NSE)

NSE holds for temperatures T � 0.5 MeV at which
forward and backward nuclear reaction rates are so high that
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equilibrium is obtained faster than any other time scale in the
system. At low density and moderate temperatures, the NSE
equilibrium state of matter includes an ensemble of nuclear
species (nuclides) and SNA is not a good approximation
for describing the thermodynamics. SNA predicts different
thermodynamic quantities, average nuclear binding energies,
and neutrino opacities than a model assuming NSE [88,89].
Furthermore, SNA predicts a single average nucleus whose
properties can differ significantly from the observed properties
of nuclei due to shell closures, pairing, and many body-body
effects missing from the simple liquid-drop SNA. Conversely,
NSE breaks down at high densities when interactions between
the nuclear interior and the surrounding medium become
important. This can be partially overcome by including
excluded volume corrections in the NSE formulation [40].
However, such an approach does not account for changes in
nuclear shapes and requires a very large, neutron rich ensemble
of nuclei to reasonably reproduce the high density, low proton
fraction composition. To alleviate the aforementioned issues
with the SNA while still retaining its advantages at high
density, we transition from SNA to an NSE EOS at densities
where nuclear interactions are small and SNA and NSE can be
smoothly matched.

Another reason for transitioning from the SNA to NSE
is that at low density and temperature, the abundances of
nuclei can fall out of equilibrium, which requires smoothly
transitioning from material in NSE to following a network
of reactions between separate nuclides. To perform such a
transition in a thermodynamically consistent manner, the same
set of nuclei and nuclear partition functions must be used
to calculate both the equilibrium number densities and for
the nonequilibrium evolution. The SNA will not satisfy this
consistency condition, but it can be easily enforced by using
an NSE EOS at moderate temperature and density.

For completeness, we provide a full discussion of our
standard treatment for an ensemble of nuclei in NSE in
Appendix B. Once the free-energy densities for the SNA
and NSE phases, FSNA and FNSE, respectively, have been
determined, we combine the two using a density dependent
function χ (n), i.e.,

FMIX = χ (n)FSNA + [1 − χ (n)]FNSE . (57)

Here, the SNA (NSE) subscripts denote the contribution to the
thermodynamical quantities from the high-(low-)density parts
of the EOS. FSNA is given by Eq. (2) while FNSE is given by
Eq. (B6). The limits of the function χ (n) are chosen so that it
goes to zero at low densities and to one at high densities. We
mix the two using the smooth choice for χ (n),

χ (n) = 1

2

[
1 + tanh

(
log10(n) − log10(nt )

nδ

)]
, (58)

where n is the density of the system, nt is the center of
the transition, and nδ is its width. We set the center of the
transition density nt = 10−4 fm−3 (	1.7 × 1011 g cm−3) and
its dimensionless width nδ = 0.33. This choice guarantees
that the transition happens in a region where differences in
the nuclear contributions to the total pressure, entropy, and
energy density in the NSE and SNA treatments are relatively
small, at least for matter with small isospin asymmetry, where

EOS constraints are more accurately known. Furthermore,
this transition is at sufficiently low densities that the EOS is
dominated by the electron (photon) contribution at low (high)
temperatures. At the same time, the transition density is high
enough that above nt we expect large deformed nuclei and the
pasta phases to dominate, which are well described in the SNA
approximation.

Because χ (n) is density dependent, the transition procedure
introduces corrections to the pressure and other derivatives
with respect to density in the transition region that are of order
FSNA − FNSE. For example, in the mixing region, the pressure
is given by

PMIX = n2 ∂(FMIX/n)

∂n

∣∣∣∣
T ,y

= χ (n)PSNA + [1 − χ (n)]PNSE

+ n
∂χ (n)

∂n
(FSNA − FNSE). (59)

Other quantities are readily computed. In practice, we find that
the corrections due to χ (n) are small compared to the other
contributions to the free energy. Although this procedure is
ad hoc, it results in a thermodynamically consistent EOS and
does not require the calculation of a more complicated phase
transition.

B. Stellar collapse

To study the impact of our new EOSs on stellar collapse,
we employ the open-source spherically symmetric (one-
dimensional) general-relativistic hydrodynamics code GR1D
[50–52]. For simplicity and efficiency, we employ its neu-
trino leakage/heating scheme described in [50] and postpone
detailed radiation-hydrodynamics studies using GR1D’s two-
moment transport solver to future work. Deleptonization
during the collapse phase is handled via a parametrization
of the proton fraction y as a function of rest-mass density
ρ as proposed by Liebendörfer [90] with the parameters
given in [50]. GR1D’s EOS routines interpolate tabulated
thermodynamic variables such as pressure, specific internal
energy, specific entropy, etc., linearly in log10 ρ, log10 T , and
y, and do not obtain them via the interpolated free energy (and
its derivatives). This means that thermodynamic consistency
is not guaranteed, is subject to interpolation errors and EOS
table resolution, and must be checked [91].

We study core collapse and postbounce evolution in two
progenitor stars: (1) In the 15M� progenitor of Woosley and
Weaver (W&W hereafter) [92], which has been used widely
in the literature. (2) In the 40M� progenitor of Woosley and
Heger (W&H hereafter) [93], which has a very massive, high-
compactness core and is expected to form a black hole (BH)
[51]. For the 15M� progenitor, we use a computational grid
with 1000 grid cells, constant cell size of 100 m out to a radius
of 20 km, and then geometrically increasing cell size to an
outer radius of 10 000 km. For the 40M� progenitor, whose
collapse we evolve until BH formation, we use 1500 grid cells,
a constant cell size of 75 m out to 25 km, and geometrically
increasing cell size to an outer radius of 10 000 km.
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Stellar evolution codes use EOSs (e.g., [94]) that can
differ substantially from the EOSs presented in this paper.
On the one hand, in the NSE region, the predicted pressure,
entropy, etc., depend on the number of nuclides tracked in
the stellar model. On the other hand, in the non-NSE region,
compositional details will depend on the employed nuclear
reaction network and, again, composition will affect the
thermodynamical variables. These differences between EOSs
are not negligible for core collapse simulations: at the onset
of collapse, small variations in the pressure profile between
stellar and core collapse EOSs can alter the hydrodynamics of
the core, and may accelerate or delay collapse.

In order to start our simulations in a way that is as
consistent as possible with the hydrodynamical structure of
our progenitor models, we map the stellar rest-mass density
ρ, proton fraction y, and pressure P to GR1D, and then find
temperature T (and specific internal energy, entropy, etc.)
using the EOS table. We stress that our approach for setting up
the initial conditions results in differences between the original
stellar profile and the GR1D initial conditions in all quantities
except ρ, y, and P . Also note that for the purpose of this
study, we assume NSE throughout the part of the star mapped
to GR1D’s grid. This is an approximation that will need to be
relaxed in the future, since the outer regions of the core and
the silicon-rich and oxygen-rich layers are not in NSE.

In most of our core collapse simulations, we use our
standard-resolution EOS tables described in Table VI. Our
adiabatic compression tests in Sec. VI suggest that higher
resolution tables lead to more accurate adiabatic collapse
results, in particular for low entropies. However, in our
collapse simulations, entropies are always sufficiently high that
using our standard-resolution tables yields excellent results.
Tests with the high-resolution tables show only negligible
differences in the simulation results. Only in the case of very
stiff EOSs, such as SkT1∗ (see below), do we find it necessary
to use higher-resolution tables to accurately track simulations
on the route to BH formation at central proto-NS densities
above ∼1015 g cm−3.

1. 15M� progenitor

We follow core collapse and postbounce evolution up to
1.2 s after bounce in the 15M� progenitor. While this star is
expected to explode in nature (e.g., [95]), we use the default
scaling factor fheat = 1 for neutrino heating in GR1D and do not
obtain an explosion in our GR1D simulations. This is consistent
with more elaborate 1D radiation-hydrodynamic simulations
(e.g., [96]).

In a first set of simulations, we focus on the effects of
different Skyrme parametrizations. We employ ten different
EOSs—the nine Skyrme parametrizations discussed in Sec. IV
and one of the modified versions of the SkT1 parametrizations
stiffened at high density studied in Sec. V. We call this
parametrization SkT1∗ and use δ2 = 5, d2 = 0, which pro-
duces the highest cold NS mass for SkT1. We merge the SNA
Skyrme EOSs with an NSE EOS containing 3335 nuclides
following the prescription detailed in Sec. VII A. We employ a
transition density nt = 10−4 fm−3 (ρt 	 1.67 × 1011 g cm−3)
and dimensionless width of nδ = 0.33 [cf. Eq. (58)].
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FIG. 14. Results from core collapse simulations with the 15M�
progenitor and EOSs generated with various Skyrme parametrizations
and a 3335-nuclide NSE EOS at low densities. From top to bottom,
we show 1.2 s of postbounce evolution of the central density
ρc, central temperature Tc, and central specific entrop sc. Note
that the entropy stays roughly constant (modulo mild numerical
oscillations) throughout the postbounce evolution, as it should for
thermodynamically consistent EOSs. As postbounce accretion adds
mass to the proto-NS, it contracts, which is marked by an increase in
ρc and softer EOSs result in a steeper increase. The splitting of the Tc

evolutions into two groups of parametrizations can be understood by
considering that those resulting in lower temperatures have a larger
effective nucleon mass (see Sec. II A and Table II).

The time from the onset of collapse to core bounce is
approximately the same for all simulations, tbounce = 0.331 ±
0.008 s, since it is mostly a function of the low-density part
of the EOS, which is the same for all tables which include
NSE at low densities. In Fig. 14, we plot the postbounce
evolution of the central density, central temperature, and
central specific entropy resulting from the ten different Skyrme
parametrizations. As the proto-NS’s mass increases due to the
settling of material that accretes through the stalled supernova
shock, its core is adiabatically compressed since the time scale
for neutrino diffusion is much longer than the accretion time
scale. Core density and temperature increase, while the central
entropy stays nearly constant over the 1.2 s of postbounce
time we simulate. The latter is a further demonstration of
the thermodynamic consistency of our EOSs. We attribute the
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small wiggles and the small secular drift in the central entropy
to interpolation errors and the finite resolution of our EOS
tables.

The postbounce central density and temperature evolutions
shown in Fig. 14 exhibit significant dependence on Skyrme
parametrization. The ordering of the central density evolution
and its slope roughly follows the stiffness of the EOS. Softer
EOSs (lower maximum NS mass) have higher densities at
bounce and a steeper postbounce slope in ρc than stiffer
EOSs. The two bracketing cases are SLy4 (Mmax ∼ 2.05M�)
and Skxs20 (Mmax ∼ 1.74M�). Note that the SkT1 and the
SkT1∗ parametrizations start out at the same ρc at bounce,
but that the slope of ρc in the SkT1∗ simulation becomes
gradually shallower as the proto-NS contracts. This is a
direct consequence of the stiffened high-density part of
SkT1∗.

The Tc evolution in Fig. 14 is divided into two groups.
In the first group, containing LS220, Skxs20, SkT1, and
SkT1∗, Tc right after bounce is ∼13–15 MeV and it rises to
Tc ∼ 19–22 MeV within the first second after bounce. For the
second group, containing all other parametrizations, we find
Tc ∼ 17–19 MeV right after bounce, rising to ∼28–30 MeV
a second after bounce. These pronounced differences in core
temperatures result from different treatments of the nucleon
effective masses in Eqs. (7) and (8) with the parameters
in Table II. At a fixed density and proton fraction, the
thermal contribution to the free energy of uniform matter only
depends on the chosen Skyrme parametrization through the
effective masses, at least in the mean field approximation.
For nonrelativistic particles, temperature enters the baryon
entropy for fixed neutron and proton densities only through the
combinations m∗

t T . Therefore, if m∗
t � mt , then temperatures

at similar density and entropy will be smaller than in cases
where m∗

t < mt . This explains the Tc grouping in Fig. 14.
In a second set of simulations with the 15M� progenitor,

we investigate the sensitivity of the collapse and postbounce
evolution to the number of nuclides included in the low-density
NSE part of the EOS. We choose the frequently used LS220
Skyrme parametrization for the high-density SNA part and
match it to a set of low-density NSE EOSs with 23, 82, 206,
837, and 3335 nuclides, using the same matching parameters
as before. Each larger list of nuclides includes all of the
nuclides of the smaller nuclide lists and we provide all
lists at https://stellarcollapse.org/SROEOS. We also carry out
a simulation with an EOS table that uses the SNA at all
densities.

Since the low-density EOS is dominated by relativistic
degenerate electrons, differences in the number of NSE nuclei
have only a mild effect on the collapse dynamics. We find
times to core bounce that vary by less than 2 ms. The SNA
simulation reaches bounce at 0.334 s, while all simulations
that include nuclides in NSE reach bounce within a very
similar time, tbounce = 0.332 ± 0.001 s. The close agreement
of the SNA and NSE bounce times is particular to the
LS220 parametrization and the 15M� progenitor. For the
same progenitor and other parametrizations, we find that SNA
simulations reach bounce up to 20–30 ms later than NSE
simulations. For other progenitor stars that have lower-density
cores at the onset of collapse, the differences can be even
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FIG. 15. Results of core collapse simulations with the 15M�
progenitor and the LS220 Skyrme parametrization. We compare
results obtained for pure SNA (at all densities) with results from
simulations that use SNA at high densities, smoothly matched to
an NSE EOS with varying number of nuclides at low densities (see
Sec. VII A for details). From top to bottom, we plot the postbounce
evolution of shock radius Rs , accretion rate Ṁ300 at a radius of 300 km,
average nuclear mass number 5 km above the shock, and difference
in specific internal energy, �ε 5 km above and 5 km below the shock.
Note that the pure-SNA simulation predicts a slightly larger shock
radius than the SNA+NSE simulations between ∼50 and ∼80 ms
after bounce. This is a consequence of the SNA simulation having a
slightly lower accretion rate and slightly less bound nuclei crossing
the shock in that interval.

larger (see Sec. VII B 2, where we discuss results for a 40M�
progenitor).

In Fig. 15, we plot the postbounce evolution of the shock
radius, the mass accretion rate at a radius of 300 km, average
nuclear mass number Ā at 5 km above the shock, and the
difference �ε in specific internal energy between 5 km above
and 5 km below the shock. We focus on the first 150 ms of
postbounce evolution.

Figure 15 shows that the the shock radius and the post-
bounce accretion rate are only mildly sensitive to differences
between SNA and NSE at low densities. Furthermore, the
number of nuclides included in the NSE EOS also has little
effect on the collapse properties. One notes that the SNA EOS
leads to higher early accretion rates and a slightly earlier drop
in the accretion rate, since the density discontinuity that is
present at the edge of the iron core in the 15M� progenitor
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TABLE VII. Bounce time tbounce, BH formation time tBH, tBH − tbounce, and protoneutron star maximum gravitational mass Mg for the 40M�
progenitor of W&H. Results are for EOSs using different Skyrme parametrizations in the single-nucleus approximation (SNA) and in the SNA
merged with an NSE EOS at nt = 10−4 fm−3 with nδ = 0.33; see Sec. VII A. SkT1∗ is the modified versions of the SkT1 parametrization
studied in Sec. V with δ2 = 5 and d2 = 0.

EOS SNA+NSE SNA

tbounce (s) tBH − tbounce (s) tBH (s) Mg (M�) tbounce (s) tBH − tbounce (s) tBH (s) Mg (M�)

LS220 [3] 0.490 0.595 1.085 2.260 0.513 0.565 1.078 2.275
KDE0v1 [68] 0.490 0.927 1.417 2.425 0.515 0.914 1.429 2.441
LNS [69] 0.490 0.537 1.027 2.234 0.525 0.515 1.040 2.255
NRAPR [59] 0.491 0.902 1.393 2.418 0.531 0.873 1.404 2.442
SKRA [70] 0.491 0.746 1.237 2.345 0.532 0.716 1.248 2.371
SkT1 [71] 0.489 0.497 0.986 2.204 0.530 0.478 1.008 2.214
SkT1∗[71] 0.489 0.782 1.271 2.327 0.532 0.741 1.273 2.334
Skxs20 [72] 0.488 0.448 0.936 2.182 0.545 0.406 0.951 2.182
SLy4 [73] 0.493 1.053 1.546 2.488 0.630 0.936 1.566 2.525
SQMC700 [74] 0.493 0.671 1.164 2.310 0.741 0.488 1.229 2.368

reaches small radii and the shock earlier. This is also reflected
in the shock radius evolution, which shows a pronounced
excursion when the density drop reaches the shock. This
excursion is larger for the simulation with the pure SNA EOS
since less energy is needed to break up the nuclei formed just
above the shock radius (bottom panel of Fig. 15). We find that
these qualitative findings are independent of the high-density
part of the EOS.

From the third panel of Fig. 15, showing the average nuclear
mass Ā just above the shock, we note that Ā and the nuclear
binding energy predicted by the LS220 SNA is very different
from what NSE predicts. It also appears that one needs in
excess of ∼82 nuclides for NSE to predict a converged Ā,
though this is likely sensitive to the specific set of nuclides
included. The large differences in Ā and nuclear binding
energy translate to the differences in �ε shown in the bottom
panel. These, in turn, explain the different shock radii plotted
in the top panel and discussed in the above.

2. 40M� progenitor

The 40M� progenitor is expected to result in BH formation
with no or only a very weak explosion (e.g., [51]). We carry
out two sets of simulations with this progenitor. In the first set,
we employ ten different Skyrme parametrizations combined
with a 3335-nuclide NSE EOS at low densities using the same
matching parameters as in the previous Sec. VII B 1. In the
second set, we use the same Skyrme parametrization, but with
SNA at all densities. We summarize key simulation results in
Table VII for both sets to facilitate comparison.

In Fig. 16, we present the postbounce central density ρc,
central temperature Tc, and central entropy sc evolutions in
the model set with an NSE treatment at low densities. First,
we note that the central entropy stays roughly constant as it
should (modulo numerical noise) throughout the evolution to
BH formation. Proto-NS collapse and BH formation is marked
by a dramatic increase in the slope of ρc, which is mirrored
by Tc. At this point, the GR1D simulations crash, since the
formulation of Einstein’s equations used in GR1D does not

permit the evolution to continue beyond BH formation (see
[50] for details).

The time to BH formation is sensitive to the Skyrme
parametrization and set by accretion rate and the maximum
proto-NS mass that can be supported by the parametrization.
Comparing the maximum mass entries in Table IV with
those in Table VII, we note that the maximum proto-NS
mass is systematically 0.2–0.6M� higher than the maximum
cold NS mass. As shown by O’Connor and Ott [51], this
is a consequence of thermal pressure support in the proto-
NS mantle where shocked material is compressed, reaching
temperatures in excess of 100 MeV at late times. As discussed
in the context of the 15M� progenitor in Sec. VII B 1, Skyrme
parametrizations that yield small effective nucleon masses
result in higher temperatures. In turn, such parametrizations
produce proto-NSs with more thermal pressure support and
see a greater increase in the maximum mass from cold NS
to hot proto-NS. For example, LS220, which has m∗

t = mt

and a maximum cold NS mass of 2.04M�, has a proto-NS
mass of 2.26M� at BH formation (�M = 0.22M�). The
SLy4 parametrization has a cold NS mass of 2.05M�, but its
proto-NS collapses at a mass of 2.488M� (�M = 0.438M�).
This is a direct consequence of SLy4’s low effective nucleon
masses (m∗

t = 0.695mt ; cf. Table II) and the consequently
much higher temperatures reached in its proto-NS.

Like LS220, the SkT1 parametrization also has large
effective nucleon masses, resulting in lower temperatures.
Its maximum cold NS mass is 1.846M� and the proto-NS
collapses at 2.204M� (�M = 0.358M�). Its variant SkT1∗

that we stiffened at high density (see Sec. V and Table V) has
a maximum cold NS mass of 2.318M�. Interestingly, its proto-
NS collapses at a mass of only 2.327M� (�M = 0.009M�).
This at first surprising result can be understood by considering
that the SkT1∗ stiffening affects only the cold high-density
core, but not the hot proto-NS mantle, where most of the extra
mass is located. The softness of the SkT1 parametrization
combined with the relatively modest temperatures reached in
the mantle thus explain our result for SkT1∗’s proto-NS mass
at BH formation.
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FIG. 16. From top to bottom we plot the postbounce time
evolution of the central density ρc, central temperature Tc, and
central specific entropy sc for the black hole (BH) formation
simulations with the 40M� progenitor. Proto-NS collapse and BH
formation are marked by a sudden extreme steepening of the ρc

slope. The different graphs correspond to simulations with different
Skyrme parametrizations. We employ a 3335-nuclide NSE EOS
at low densities (cf. Sec. VII A). Note that the specific entropy
stays, as it should, roughly constant (modulo numerical noise that
can be reduced with higher-resolution EOS tables) throughout the
postbounce evolution and up to BH formation. Thermal pressure
support in the proto-NS mantle plays an important role in supported
proto-NS masses that are 0.2–0.6M� higher than the maximum cold
NS mass. Thermal contributions are largest for those parametrizations
that result in low effective nucleon masses and higher proto-NS
temperatures.

In Table VII, we compare the times to core bounce and
BH formation between simulations run with SNA at high
densities and an NSE EOS at low densities (SNA+NSE) and
with SNA at all densities. First we note that in the SNA+NSE
case the time to core bounce is insensitive to the Skyrme
parametrization since the transition to dynamical collapse is
controlled by the NSE part that is identical in all simulations. In
the pure SNA simulations, this is different and the time to core
bounce can vary by hundreds of milliseconds between some
parametrizations. This is a consequence of the metastability of
the inner iron core at the onset of collapse where small EOS
differences can have substantial impact on when the collapse
becomes fully dynamical.

Finally, comparing BH formation times tBH (measured from
the start of the simulation) predicted by SNA+NSE and pure
SNA simulations for a given Skyrme parametrization, we note
that tBH appears insensitive to the low-density EOS treatment.
This can be understood by recalling that much of the material
that is accreted by the proto-NS to reach its maximum mass
comes from regions in the outer core and silicon and oxygen
shells. These regions are initially in hydrostatic equilibrium
since our simulations preserve the pressure stratification from
the precollapse stellar profile. Once the rarefaction wave from
the core’s collapse reaches these regions, they proceed to col-
lapse with supersonic velocities in free fall. Hence, the collapse
of the outer regions is much less sensitive to variations in the
EOS than the collapse of the initially metastable inner core.

VIII. CONCLUSIONS

In the 26 years since the seminal Lattimer and Swesty
(L&S) paper [3] describing their finite-temperature nuclear
equation of state (EOS), much progress has been made in both
astrophysics simulation capability and in experimental and
astrophysical constraints on the nuclear EOS. The L&S EOS
has had tremendous impact on simulations of core-collapse
supernovae (CCSNe) and neutron star (NS) mergers. This is
due not least to L&S providing their EOS code as open source
to the community.

In this study, we built upon the work of L&S and presented
a generalized method for generating EOSs for CCSN and
NS matter, using the compressible nonrelativistic liquid-drop
model with the Skyrme interaction. With this paper, we make
publicly available a modern, modular, and parallel Fortran
90 code for building EOS tables for application in CCSN
and NS merger simulations. The code and EOS tables for the
Skyrme parametrizations considered in this paper are available
at http://stellarcollapse.org/SROEOS.

Our method differs from the original L&S approach in
the following significant ways: (1) EOSs can be generated
for most5 Skyrme parametrization in the literature and for
future parametrizations. This feature will facilitate EOS pa-
rameter studies in astrophysics simulations within a consistent
EOS framework. (2) Our method includes nucleon effective
masses different from the rest masses and we obtain nuclear
surface properties self-consistently for each parametrization.
(3) Instead of relying on Maxwell constructions that must be
pre-computed for each parametrization, we treat the transition
from nonuniform to uniform nuclear matter as a first-order
phase transition that is determined as the EOS is calculated.
(4) The EOS obtained in the single-nucleus approximation
(SNA) can be smoothly merged at low densities with a nuclear-
statistical-equilibrium (NSE) EOS containing thousands of
nuclides. (5) We provide for the possibility of introducing
additional terms to Skyrme parametrizations that stiffen the
EOS above saturation density. (6) Our method converges

5Our method cannot presently handle Skyrme parametrizations that
mix proton and neutron densities and kinetic energy densities in the
nucleon effective masses [compare Eq. (8) with Eq. (5) of Dutra
et al. [9]].
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reliably over a wide range of temperatures (10−4 MeV � T �
102.5 MeV), proton fractions (10−3 � y � 0.7), and densities
(10−13 fm−3 � n � 10 fm−3). This makes it easy to generate
EOS tables covering the space in (n,T ,y) required for
simulations of CCSNe and NS mergers.

Using our new method, we generated EOS tables for
nine Skyrme parametrizations: the L&S parametrization with
K0 = 220 MeV (LS220) [3], NRAPR [59], SLy4 [73], SkT1
[71], SKRA [70], LNS [69], SQMC700 [74], Skxs20 [72], and
KDE0v1 [68]. We thoroughly tested these EOSs, demonstrated
thermodynamic consistency, and showed that our method
can reproduce the results of the original L&S routines. We
computed cold beta-equilibrated NS mass-radius relationships
for all EOS and explored the ad hoc high-density modifications
that stiffen the EOS. We showed that these modifications can
raise the maximum NS mass above the astrophysical lower
limit of 2M� while leaving EOS properties at saturation
density largely unaffected.

As a first application of our new EOS tables to astrophysics
simulations, we considered the spherically symmetric col-
lapse and postbounce CCSN evolution in 15M� and 40M�
progenitor star models. We tracked the 40M� models to
black hole (BH) formation. We compared SNA and NSE
treatments of the EOS at low densities and found that subtle
differences in the thermodynamics can affect the inner core’s
collapse time to core bounce and the postbounce accretion
rate. Overall, as pointed out by Burrows and Lattimer [53], the
thermodynamical properties are similar in both approaches
and small differences translate to only minor variations in the
postbounce evolutions.

In the case of BH formation, we find that the maximum
proto-NS mass supported by a given EOS correlates with the
maximum cold NS mass of the employed Skyrme parametriza-
tion, but is also highly sensitive to the treatment of the nucleon
effective masses. The maximum proto-NS mass is typically
substantially higher than the maximum cold NS mass due to
thermal pressure support from compression-heated accreted
outer core material. EOSs with lower effective nucleon masses
lead to higher temperatures and thus more pressure support and
a higher maximum proto-NS mass.

Our goal with this study was to build a new and robust
method for generating finite-temperature nuclear EOS tables.
These can facilitate CCSN and NS merger simulations that
explore the sensitivity of these phenomena to EOS parameters
and predict multimessenger (neutrino, gravitational wave,
nucleosynthetic) signatures whose observation could help
constrain the EOS. We have realized this goal for the
nonrelativistic temperature-dependent liquid-drop model with
Skyrme interaction. Much work lies ahead to generalize our
method to include other mean-field parametrizations of nuclear
interactions. A further important step will be to couple our
new EOS tables to an efficient nuclear reaction network for
accurately treating the regime in density, temperature, and
composition space that is not in NSE.
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APPENDIX A: LEPTONS AND PHOTONS

We use the Timmes EOS to determine the properties of
photons and leptons [94]. The only leptons considered here
are electrons and positrons. The photon gas is assumed to be
generated by a blackbody in local thermodynamic equilibrium.
Its pressure, internal energy, and entropy are given by

Prad = 4σSBT 4

3c
, Erad = 3Prad, Srad = 4Erad

3T
, (A1)

where σSB is the Stephan-Boltzmann constant and c the speed
of light. The electron and positron contributions are determined
assuming charge neutrality, i.e.,

yn = nele − npos. (A2)

Recall that y is the proton fraction of the system and n the
baryon number density. Here nele and npos are, respectively,
the electron and positron number densities given by

nele = Kβ3/2[F1/2(η,β) + F3/2(η,β)], (A3a)

npos = Kβ3/2[F1/2(κ,β) + F3/2(κ,β)], (A3b)

where we define the constant K = 8π
√

2m3
ec

3/h3 with me

being the electron mass. Furthermore, β = T/(mec
2) is the

relativity parameter, η = μ/T is the degeneracy parameter
of electrons where μ is the electron chemical potential, and
we define κ = −η − 2/β. The function Fk(η,β) is the Fermi-
Dirac integral,

Fk(η,β) =
∫ ∞

0

uk(1 + 0.5βu)1/2

1 + exp(u − η)
du. (A4)

Note that the Fermi integral, Eq. (10), is a special case of the
Fermi-Dirac integral with β = 0. The degeneracy parameter η
is found from the solution of Eq. (A2) and can be used to obtain
the thermodynamic variables of the electron and positron gas.
Their pressures and energies per volume are given by

Pele = 2K

3
mec

2β5/2

[
F3/2(η,β) + β

2
F5/2(η,β)

]
, (A5a)

Ppos = 2K

3
mec

2β5/2

[
F3/2(κ,β) + β

2
F5/2(κ,β)

]
, (A5b)
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Eele = Kmec
2β5/2[F3/2(η,β) + βF5/2(η,β)], (A5c)

Epos = Kmec
2β5/2[F3/2(κ,β) + βF5/2(κ,β)]

+ 2nposmec
2, (A5d)

where the subscripts ele and pos refer, respectively, to electrons
and positrons. Meanwhile, their entropy densities are

Sele = Pele + Eele

T
− neleη, (A5e)

Spos = Ppos + Epos

T
− nposκ. (A5f)

For details on how these calculations are performed
see [94].

APPENDIX B: NUCLEAR STATISTICAL EQUILIBRIUM

In NSE, the chemical potential of nuclear species i is
given by

μi = mi + Ec,i + T ln

[
ni

gi(T )

(
2π

miT

)3/2
]
,

= Ziμp + (Ai − Zi)μn, (B1)

where mi is the mass, Ai is the nucleon number, Zi is the
proton number, ni is the number density, and gi(T ) is the
internal partition function of species i. We use the partition
functions of Rauscher and Thielemann [97] and nuclear masses
from the JINA REACLIB database. See Cyburt et al. [98] and
references therein. The partition function tables and nuclear
mass tables are available at http://stellarcollapse.org/SROEOS.
The Coulomb correction in the Wigner-Seitz approximation is

Ec,i = 3αCZ2
i

5ri

(
1

2
ui − 3

2
u

1/3
i

)
, (B2)

where the nuclear radius ri = (3Ai/4πn0)1/3, ui =
yn/n0Ai/Zi , and αC is the fine structure constant. Imposing
mass and charge conservation, this system of equations can
be solved for the composition. When calculating NSE, we
assume that the neutrons and protons are arbitrarily degenerate,
nonrelativistic particles. We neglect Coulomb corrections for
the protons.

TABLE VIII. Coefficients for the fit of the proton-fraction
dependence of the critical temperature Tc(y) given by Eq. (22). These
coefficients depend on the Skyrme parametrization and we provide
them here for completeness. Tc is in MeV while ac, bc, cc, and dc are
dimensionless.

Parametrization Tc ac bc cc dc

LS220 [3] 16.80 1.0000 −1.0000 0.0000 −0.0000
KDE0v1 [68] 14.85 1.0035 −1.1600 0.7797 −1.6822
LNS [69] 14.92 1.0017 −1.2052 0.2432 −0.6667
NRAPR [59] 14.39 1.0029 −1.0029 0.4679 −0.9929
SKRA [70] 14.35 1.0031 −1.1227 0.4336 −0.9523
SkT1 [71] 17.05 1.0022 −1.1921 0.4371 −0.7393
Skxs20 [72] 15.37 1.0017 −1.3778 0.4015 −0.6087
SLy4 [73] 14.52 1.0038 −1.0127 0.7771 −1.6520
SQMC700 [74] 14.72 1.0022 −1.1794 0.3284 −0.8968

The pressure, energy density, and entropy density of the
nuclei ensemble in NSE is given by

Pn =
∑

i

ni

{
T + ∂Ec,i

∂ ln n

}
, (B3)

En =
∑

i

ni

{
3

2
T + Ec,i − Bi + T

d ln gi

d ln T

}
, (B4)

Sn =
∑

i

ni

{
5

2
+ ln

[
gi

ni

(
miTi

2π

)3/2
]

+ d ln gi

d ln T

}
, (B5)

where Bi is the binding energy of species i relative to Ai

neutrons. The contribution of the nucleons is given by the
expressions in Sec. II A with the Skyrme parameters set to
zero. The free-energy density of the nuclei ensemble is set by

FNSE = En − T Sn. (B6)

APPENDIX C: CRITICAL TEMPERATURE
COEFFICIENTS

In Sec. II B we present a method for determining the critical
temperature Tc below which nuclear matter may phase separate
into two phases of different densities, ni and no, and proton
fractions, yi and yo. In Table VIII, we present the coefficients
calculated for the critical temperature approximation Tc ≡
Tc(yi), Eq. (22). Since we do not obtain the surface properties
for the LS220 parametrization, we set the coefficients Tc(yi) to
match those of L&S. Note that for all other parametrizations
we have ac 	 1.00 and bc 	 −1. In fact, the EOSs we calculate
are not significantly altered by enforcing ac = 1 and bc = −1.
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