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Parity-violating and time-reversal-violating (PVTV) pion-nucleon couplings govern the magnitude of
long-range contributions to nucleon and atomic electric-dipole moments. When these couplings arise from
chiral-symmetry-breaking charge-parity-violating (CP-violating) operators, such as the QCD θ term or quark
chromoelectric dipole moments, one may relate hadronic matrix elements entering the PVTV couplings to nucleon
and pion mass shifts by exploiting the corresponding chiral transformation properties at leading order in the chiral
expansion. We compute the higher order contributions to the lowest order relations arising from chiral loops and
next-to-next-to leading order operators. We find that, for the QCD θ term, the higher order contributions are
analytic in the quark masses, while for the quark chromoelectric dipole moments and chiral-symmetry-breaking
four-quark operators, the matching relations also receive nonanalytic corrections. Numerical estimates suggest
that, for the isoscalar PVTV pion-nucleon coupling, the higher order corrections may be as large as ∼20%, while
for the isovector coupling, more substantial corrections are possible.
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I. INTRODUCTION

The study of parity-violating and time-reversal-violating
(PVTV) interactions can be traced back to the 1950s when
Purcell and Ramsey proposed searching for the existence of
a permanent electric-dipole moment (EDM) of neutron [1].
Today, the subject attracts considerable attention because it
is known that charge-parity violation (CP violation)1 is one
of the necessary ingredients for explaining the imbalance
between the amount of matter and antimatter of the current
universe [2]. The Standard Model (SM) allows CP-violating
interactions through the complex phase in the Cabibbo–
Kobayashi–Maskawa (CKM) matrix [3] but it is insufficient
to account for the total observed asymmetry [4–6]. Therefore,
alternative sources of CP violation (CPV) are required.

Assuming that the extra degrees of freedom (DOFs)
associated with the beyond Standard Model (BSM) CPV are
heavy, they can be integrated out of the theory at low energy
to obtain effective operators of higher dimensions that consist
solely of SM DOFs. The PVTV components of these effective
operators will in turn generate PVTV low-energy observables,
such as EDMs. Current experiments set upper limits on
EDMs, including those of the electron (8.7 × 10−29e cm,
90% confidence level) [7], mercury atom (7.4 × 10−30e cm,
95% confidence level) [8], and neutron (3.0 × 10−26e cm,
90% confidence level) [9,10]. These upper limits imply upper
bounds of the magnitudes of Wilson coefficients of the PVTV
effective operators. When hadrons are involved, translating
EDM limits onto these operator bounds is highly nontrivial.

*cseng@sjtu.edu.cn
1Implying time-violation assuming that charge parity time (CPT) is

conserved.

The matching between low-energy hadronic observables and
the Wilson coefficients of operators in the quark-gluon sector
involves various hadronic matrix elements that are difficult to
evaluate from first-principles due to the nonperturbative nature
of quantum chromodynamics (QCD) at low energy.

In this work we are particularly interested in the PVTV
pion-nucleon coupling constants ḡ(i)

π , where i = 0,1,2 denotes
the isospin [11–15]. The ḡ(i)

π govern the strength of long-range
(pion-exchange) contributions to atomic EDMs as well as to
those of the proton and neutron (see, e.g., Refs. [15,16]).
These interactions can be induced by various PVTV effective
operators at the quark-gluon or quark-photon level such as
the θ term, the quark EDM and chromo-EDM, the Weinberg
three-gluon operator, and various four-quark operators. In
particular, if a specific PVTV effective operator breaks chiral
symmetry, then its P- and T-conserving (PCTC) counterpart
will also generate corrections to pion and nucleon masses.
Consequently, there exist matching formulas that relate the
induced ḡ(i)

π and these mass corrections simply due to chiral
symmetry [11,12,14,15,17]. In terms of the SO(4) representa-
tion of chiral perturbation theory (ChPT), the statement above
reflects the fact that the PCTC and PVTV components of
the effective operator belong to different components of a
single SO(4) representation; therefore, their hadronic matrix
elements are related through the Wigner–Eckart theorem. This
idea is practically beneficial because one may then extract the
PVTV hadronic matrix elements for the ḡ(i)

π from the study of
parity- and time-reversal-conserving (PCTC) hadronic matrix
elements that are the pion and nucleon mass shifts. The
latter may be obtained by lattice gauge theory or other
phenomenological approaches. For example, application to
the θ term with a lattice value of nucleon mass shift yields
ḡ(0)

π ≈ (0.0155 ± 0.0025)θ̄ [18].
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TABLE I. Numerical estimates of the one-loop contribution to the
deviation of the tree-level matching formulas. The numerical values of
δ

(i)
loop are evaluated at the renormalization scale μ = 1 GeV assuming

all the nucleon mass shifts induced by non-quark-mass operators are
zero. Columns two and three indicate whether the leading matching
relation arises at LO, NNLO, or not at all.

Operator ḡ(0)
π matching ḡ(1)

π matching δ
(0)
loop δ

(1)
loop

θ term LO NNLO 0 N/A
Chromo-MDM/EDM LO LO 0.021 −3.1
LR4Q LO LO −0.12 −3.2
Chiral-invariant

operators N/A N/A N/A N/A

It is important to ask how robust these relations are
when taking into account possible higher order contributions
involving chiral loops and higher order terms in the chiral
Lagrangian characterized by additional low-energy constants
(LECs). As a matter of principle as well as for purposes of
numerical precision, one must include these corrections when
applying the matching relations. For instance, Ref. [18] studied
the higher-order effects to the matching formulas induced by a
QCD θ term in a three-flavor ChPT. They found that, when the
matching relation of ḡ(0)

π is expressed in terms of the nucleon
mass splitting, then its form is preserved by the chiral loop
correction. Consequently, the corrections to the leading-order
(LO) matching relations are analytic in the quark masses.

In this work, we extend the study of Ref. [18] to cover
all effective operators up to dimension six that include only
the first generation quarks based on two-flavor heavy baryon
chiral perturbation theory (HBChPT) in the SU(2)L × SU(2)R

representation. First, we perform a general study of how
these operators break chiral symmetry by using the spurion
method. This allows us to implement the effects of the chiral-
symmetry-breaking (CSB) operators to the chiral Lagrangian
in a straightforward manner and obtain the tree-level matching
formulas. Next, we study the chiral one-loop corrections to
both ḡ(i)

π and the hadron mass shifts. The results are expressed
in the most general form so that they may be straightforwardly
applied to any specific effective operator. Based on the general
formalism above, we study higher order effects to the matching
formulas induced by the complex quark mass term (induced
by the QCD θ term), the chromo-EDM, and the left-right
four-quark (LR4Q) operator that are the only three effective
operators in the quark sector that contain both PCTC and
PVTV components simultaneously and at the same time break
chiral symmetry.

Given the length of this paper, it is useful to summarize
here our main results and point the reader to the respective
sections for details. For convenience, we summarize these
features in Table I, whose content we now proceed to explain.
First, matching relations exist only for ḡ(i)

π induced by chiral
noninvariant operators that possess both PCTC and PVTV
components. For these sources, ḡ(i)

π can be expressed in terms
of mass shifts for nucleon and pion. For chirally invariant
sources, their low-energy PCTC and PVTV effects are not
related by any chiral symmetry and are, therefore, mutually

independent. Hence, there exist no matching relations between
ḡ(i)

π and hadron mass shifts induced by these sources. It is also
interesting to notice that ḡ(0)

π depends on the I = 1 nucleon
mass shifts, while ḡ(1)

π which has I = 1 depends on the I = 0
nucleon mass shifts.

Next, we consider higher order effects, including both
one-loop corrections as well as contributions from higher order
LECs. For the loop correction, we find that in many cases a
one-loop diagram that corrects ḡ(i)

π will have a corresponding
diagram with similar structure that corrects the nucleon mass
shift [see, e.g., Figs. 1(a) and 2(a)]. Furthermore, the CSB
vertices in these diagrams are related by the tree-level matching
relations. As a consequence, the one-loop corrections to ḡ(i)

π

and nucleon mass shifts induced by these diagrams satisfy the
same tree-level matching relation. There exist exceptions to
this rule, arising from one or more of the following situations:
(1) when the tree-level matching involves (�m2

π ), the shift
of squared pion mass due to the extra operators, the loop
corrections to this term do not have counterparts that correct
ḡ(i)

π ; (2) the naïve matching between the PVTV tree-pion
coupling ḡ(1)

πππ and (�m2
π ) is spoiled by vacuum alignment,

so that diagrams involving insertion of these operators do
not satisfy the tree-level matching, and (3) there are several
corrections to the I = 0 nucleon mass that do not require
extra CSB operators [such as in Figs. 2(h), 2(i), and 2(k)], so
there are no corresponding diagrams that contribute to ḡ(i)

π .
With these observations in mind, we show that the tree-level
matching for ḡ(0)

π induced by the θ term is preserved under
one-loop correction, confirming the result from Ref. [18],
while matchings induced by other operators such as dipole
operators and four-quark operators are not respected by loop
corrections. On the other hand, contributions from higher order
terms in the chiral Lagrangian do not respect the original
matching relations in general, implying a dependence of the
matching relations on the associated LECs.

Finally, we estimate the numerical size of higher order
corrections to the tree-level matching relation by using
experimental and lattice-calculated hadron mass parameters
as inputs. For each operator CSB operator O, if the tree-level
matching relation has the form Fπ ḡ(i)

π = f (i) where Fπ ≈
186 MeV is the pion-decay constant and f (i) is a function
of hadronic mass parameters as well as the PVTV Wilson
coefficients, we may characterize the correction to the LO
matching relation as

Fπ ḡ(i)
π = f (i)

(
1 + δ

(i)
loop + δ

(i)
LEC

)
, (1)

where δ
(i)
loop and δ

(i)
LEC are relative deviations due to one-

loop correction and higher order LECs, respectively. We are
particularly interested in δ

(i)
loop because δ

(i)
LEC does not involve

chiral logs and is therefore suppressed by usual chiral power
counting. In principle, one could write down explicit expres-
sions for {δ(i)

loop} as we shall present in the following sections;
however, their numerical values cannot be determined because
they involve the isoscalar and isovector nucleon mass shifts
{(�mN )O,(δmN )O} induced by the operator O which is not
the quark mass operator (except for the case of the θ term).
Therefore, in the numerical estimation of {δ(i)

loop} we shall
simply set them to zero. The result is summarized in Table I
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FIG. 1. Loop diagrams that give rise to PVTV pion-nucleon interactions. Each circular vertex denotes a PVTV interaction vertex defined
in Sec. III A. Diagram (g) involves O(E2) NNππ coupling. The last diagram does not contribute to ḡ(i)

π due to the derivative nature of the
chiral-invariant pion-nucleon coupling.

where we find that the tree-level matching formula for ḡ(0)
π is

relatively robust numerically under loop corrections regardless
of choice of the underlying operator, while the status for ḡ(1)

π

in general receives large loop corrections. On the other hand,
the quantity δ

(i)
LEC involves unknown LECs and can only be

estimated at present based on rough dimensional arguments.
Of course, such estimation may never pretend to be any
trustworthy prediction of the actual numerical values of the
LECs; in particular, as pointed out in Ref. [19], it makes no
prediction of their signs. It therefore only serves to provide a
rough estimate of the order of magnitude of the uncertainty
brought up by the LECs. We find that the impact of the LECs
on the ḡ(0)

π matching can be as large as 10%–20% while
their effect on the ḡ(1)

π matching is usually not much larger
than 1%.

Our discussion of this study organized as follows: In Sec. II
we introduce a spurion formalism and give a general discussion
of the possible forms of the spurion that encode the explicit
CSB effects of the effective operators up to dimension six.
In Sec. III we write down the most general form of PVTV
operators as well as PCTC and CSB operators that could
contribute to the loop corrections for ḡ(i)

π and the mass shifts
of the pion and nucleon. These loop corrections are then
computed in Sec. IV in their most general form. Based on
these results, we perform a case-by-case study of the matching

formulas for ḡ(i)
π induced by different effective operators,

including both loop and LEC contributions, in Sec. V. Finally,
we draw our conclusions in Sec. VI.

II. CHIRAL SYMMETRY AND THE SPURION METHOD

It is well known that a massless two-flavor QCD obeys
SU(2)L × SU(2)R chiral symmetry defined by the following
transformation on the quark field:

QR → VRQR, QL → VLQL, (2)

where {VR,VL} are 2 × 2 unitary matrices. Chiral symmetry
is explicitly broken in ordinary QCD only by the quark mass
terms. However, when we consider effects from BSM physics
there may be additional higher-dimensional operators that
break the symmetry as well. In general, these symmetry-
breaking terms can always be expressed as products of QR,QL

with some constant matrices (or products of matrices) in
such as way that if these matrices would transform with a
specific way under the chiral rotation then the corresponding
terms would be chirally invariant. These matrices, known as
spurions, are used to describe the explicit CSB effects in the
low-energy effective theory of QCD because we expect the
latter to obey the same symmetry-breaking pattern as QCD
itself.
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(a)

(d) (e) (f ) (g)

(h) (i) (j)

(k)

(b) (c)

FIG. 2. The nonvanishing one-loop amputated diagram contribution to the hadron mass shifts. Each square denotes a PCTC CSB interaction
defined in Sec. III B. Diagrams (j ) and (k) involve O(E2) NNππ interaction vertexes.

Here we present the most general form of QCD spurion
that encodes the effects from all effective CSB operators
up to dimension six that involve only the light quarks and
massless gauge bosons. Our choice of operators are those
that obey the SM gauge symmetry at high energy (see
Ref. [20] for a complete list of operators). They then undergo
electroweak symmetry breaking (EWSB) where the neutral
Higgs is replaced by its vacuum expectation value (VEV).
These operators can be divided into two categories; namely,
the quark bilinears and the four-quark operators. Operators in
different categories in general take a different form of spurions.

A. Quark bilinears

At dimension four the only CSB terms are the quark
Yukawa coupling terms that then undergo EWSB to give
rise to the quark masses. At the same time, a nonvanishing
QCD θ term may then be rotated away by using the axial
anomaly to be replaced by complex phases in the quark masses
(this procedure will be reviewed in Sec. V A). The resulting
Lagrangian will take the general form

−Q̄RXQL + H.c., (3)

where X is a complex 2 × 2 diagonal matrix in flavor space
and the term would be chirally invariant if X would transform
as X → VRXV

†
L under chiral rotation.

At dimension six the only CSB bilinear operators of quarks
are the ψ2H 3 operators and the dipole-like operators.2 On
the one hand, the ψ2H 3 operators reduce to complex quark
mass terms after EWSB so we do not need to discuss them
separately. On the other hand, the dipole operators have the
general form

Q̄LσμνT AHdRV A
μν, (4)

where T A is a generator of any one of the SM gauge
groups and V A

μν are the corresponding field strength tensor
(a similar structure appears for up-type quarks with dR → uR

and Hj → εjkH
∗
k ). After EWSB, the dipole operators reduce

to the dimension five forms:

q̄Lσμν λa

2
qRGa

μν, q̄LσμνqRFμν,

q̄LσμνqRZμν, ūLσμνdRW+
μν. (5)

We can neglect the last three operators because their effects in
the generation of pure hadronic operators will be suppressed
with respect to the first either by the electromagnetic cou-
pling strength or inverse powers of the heavy gauge boson
masses. The remaining operators are the flavor-diagonal quark

2Another operator of the form i(H̃ †DμH )ūRγ μdR , with H̃j ≡
εjkH

∗
k , will be classified as a four-quark operator after the W boson

is integrated out.
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chromo-magnetic-dipole moment (cMDM) and chromo-
electric-dipole moment (cEDM).

In terms of the chiral spurion, the cMDM and cEDM
operators take the form

Q̄RσμνX
λa

2
QLGa

μν, (6)

where again X is a complex 2 × 2 diagonal matrix. We then
conclude that the quark bilinears appearing in Eqs. (3) and (6)
imply the same form of the spurion; namely,

X = a + bτ3, (7)

where {a,b} are complex numbers. If the spurion would
transform as X → VRXV

†
L under SU(2)L × SU(2)R then the

Lagrangian would be chirally invariant. Furthermore, any
PVTV effects are contained in the imaginary parts of a and b.

When the spurion method is applied to the baryon sector of
the chiral Lagrangian, it is convenient to define the following
quantities:

X̃± ≡ u†Xu† ± uX†u, (8)

where the subscript “+” (“−”) denotes that the matrix is
Hermitian (anti-Hermitian) and u is the matrix function of pion
fields defined in Appendix A. They “transform” under chiral
rotation as X̃± → KX̃±K†. One advantage of this notation
is that it allows us to construct a Lagrangian for which the
PVTV effects come entirely from the spurion matrix X. For
instance, X̃+ is parity even and X̃− is parity odd if X is a real
matrix because u ↔ u† under P. Therefore, in the LO effective
Lagrangian, the spurion involved should be X̃+ and not X̃−
because we require the Lagrangian to be P (and T) even when
the matrix X is real.

B. Four-quark operators

Next we study the most general form of spurion fields
induced by dim-6 four-quark operators. As explained at
the beginning of the section, these operators encode effects
of BSM physics at high scale, which is assumed to obey
the Standard Model SU(2)L × U(1)Y symmetry, so they are
constructed by using the SU(2)L doublet field QL as well
as the singlet fields {uR,dR}. Following the notations in
Ref. [20], these operators can be grouped into the following
categories:

1. (L̄L)(L̄L)

The two independent operators could be chosen as

Q̄Lγ μQLQ̄LγμQL, Q̄Lγ μτ iQLQ̄Lγμτ iQL. (9)

They are both chirally invariant so they do not give rise to any
nontrivial spurion.

2. (R̄R)(R̄R)

There are four independent operators in this category that
can be chosen as

ūRγ μuRūRγμuR, d̄Rγ μdRd̄RγμdR,

ūi
Rγ μuRd̄RγμdR, ūi

Rγ μ λa

2
uRd̄Rγμ

λa

2
dR. (10)

These operators break chiral symmetry as XR or XR ⊗ XR

where the spurion matrix XR = τ3. Chiral symmetry would be
preserved if the spurion matrix would transform as XR →
VRXRV

†
R under chiral rotation. Here, the notation A ⊗ B

means that the matrices A and B appear simultaneously in
a quark bilinear or a four-quark operator, e.g., Q̄ABQ or
Q̄AQQ̄BQ.

3. (L̄L)(R̄R)

There are four independent operators in this category that
can be chosen as

Q̄Lγ μQLūRγμuR, Q̄Lγ μ λa

2
QLūRγμ

λa

2
uR,

Q̄Lγ μQLd̄RγμdR, Q̄Lγ μ λa

2
QLd̄Rγμ

λa

2
dR. (11)

These operators break chiral symmetry through a single
spurion matrix XR .

4. (L̄ R)(L̄ R)

There are two operators in this category; namely,

εij Q̄i
LuRQ̄

j
LdR, εij Q̄i

L

λa

2
uRQ̄

j
L

λa

2
dR. (12)

Both operators are chirally invariant: for instance, the first
operator can be rewritten as εij εi ′j ′

Q̄i
LQi ′

RQ̄
j
LQ

j ′
R/2 so its

SU(2)L and SU(2)R invariances are explicit. Meanwhile, they
allow complex Wilson coefficients that give rise to PVTV
physics. We can then define their “spurion” simply as a
complex number.

5. Induced left-right four-quark operator

Finally there is another four-quark operator that arises
from i(H̃ †DμH )ūRγ μdR . When the W± boson contained in
Dμ is exchanged with the left-handed charge-changing quark
current, one obtains the following four-quark operator after
EWSB:

c4q d̄Lγ μuLūRγμdR + H.c. = −2

3

(
c4qQ̄R

1 + τ3

2
QLQ̄L

1 − τ3

2
QR + c∗

4qQ̄R

1 − τ3

2
QLQ̄L

1 + τ3

2
QR

)

− 4

(
c4qQ̄R

1 + τ3

2

λa

2
QLQ̄L

1 − τ3

2
QR + c∗

4qQ̄R

1 − τ3

2

λa

2
QLQ̄L

1 + τ3

2
QR

)
, (13)
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TABLE II. Complete list of spurions that enter the chiral Lagrangian. For each spurion, we show the constant value that it takes during
its implementation in the Lagrangian (third column) and how it would need to transform in order to leave the Lagrangian chirally invariant
(fourth column). Among all the operators, only the quark bilinears and the induced LR4Q operator are chirally noninvariant and at the same
time contain both PCTC and PVTV components.

Operators Spurion Constant value “Transformation Rule”

Quark bilinears X a + bτ3 X → VRXV
†
L

Four-quark: a a a → a

(L̄L)(L̄L), (R̄R)(R̄R) XR τ3 XR → VRXRV
†
R

(L̄L)(R̄R), (L̄R)(L̄R) XR ⊗ XR τ3 ⊗ τ3

Induced LR4Q c4qXRL ⊗ XLR XRL = (1 + τ3)/2 XRL → VRXRLV
†
L,

+c∗
4qX

†
LR ⊗ X

†
RL XLR = (1 − τ3)/2 XLR → VLXLRV

†
R

where the right-hand side is obtained by using a Fierz transfor-
mation. We see that this operator breaks the chiral symmetry
as c4qXRL ⊗ XLR + c∗

4qX
†
LR ⊗ X

†
RL where XRL = (1 + τ3)/2

and XLR = (1 − τ3)/2 and would be chirally invariant if
XRL → VRXRLV

†
L and XLR → VLXLRV

†
R under a chiral rota-

tion. One observes that the part of the operator proportional to
Re c4q is has the structure Q̄RQLQ̄LQR − Q̄Rτ3QLQ̄Lτ3QR

(and terms with λa insertions), so it is PCTC with isospin
0 or 2. Meanwhile, the part proportional to Im c4q has the
structure Q̄RQLQ̄Lτ3QR − Q̄Rτ3QLQ̄LQR (and terms with
λa insertions). It is PVTV with isospin 1.

Up to this point we have discussed all the possible
operators up to dimension six that would break the QCD
chiral symmetry. A complete list of spurions induced by these
operators can be found in Table II. It is important to note that
only the complex quark mass term, the dipole-like operators,
and the LR4Q operator are chirally noninvariant and contain
both PCTC and PVTV components. These three types of
operators will be relevant in the discussion of the matching
formula for the ḡ(i)

π in the upcoming sections.

III. CHIRAL-SYMMETRY-BREAKING OPERATORS
IN A LINEAR REPRESENTATION

Insertions of the spurion fields we discussed in Sec. II into
the chiral Lagrangian will give rise to CSB operators consisting
of baryons and pions. Among them, the leading PVTV NNπ
operators and the hadron mass operators are of greatest
importance because their Wilson coefficients will enter the
matching formulas for the ḡ(i)

π that is the focus of this work. At
the same time, the existence of such operators automatically
implies the presence of a whole series of CSB operators with
higher powers of pions whose operator coefficients are related
by chiral symmetry. The relation, however, depends on the
explicit form of spurion. Consequently, it is not practical to
write down a single CSB Lagrangian containing terms with an
arbitrary number of pion fields without specifying the form of
spurion.

Nevertheless, a subset of CSB operators with higher powers
of pion fields (e.g. NNππ , NNπππ , and ππππ operators)
must be included in this work because they contribute to
ḡ(i)

π and hadron mass parameters at one loop and will
therefore modify the matching formulas from their tree-level
expressions. For this purpose, it will be convenient to express

the Goldstone bosons (i.e., pions in our case) in the CSB
operators in linear, instead of nonlinear, representation. By
doing so we pay the price of losing the manifest chiral structure
of each term. On the other hand, results of the loop corrections
will be completely general and independent of any particular
choice of spurion. Eventually, when we need to apply the
general result to specific effective operators (spurions) we
simply refer back to the nonlinear representation, expand each
term in powers of pion fields, and match the coefficients with
those in the general linear representation.

We will also include the � baryons as explicit DOFs
since the nucleon-� mass splitting vanishes in the large-Nc

limit [21] and since inclusion of � is generally required in
order to respect 1/Nc power counting. As far as this work is
concerned, the � baryons only appear as virtual particles in
loop corrections to the ḡ(i)

π and nucleon masses.

A. Parity-violating and time-reversal-violating operators

Following the foregoing discussion, we proceed to write
down all possible forms of lowest-order PVTV operators
involving nucleons, pions, and � baryons in the linear
representation of Goldstone bosons that are relevant to this
work. For the coefficient of these operators we adopt the
following unified notation; namely, the coefficient ḡ

(I,j )
K is the

real coefficient of the j th PVTV operator of type K with
isospin I (the superscript j will however be suppressed if
there is only one operator with isospin I ). Because the ḡ(i)

π

can only have isospin I = 0,1,2, for the renormalization of
these operators at leading order we only need to consider
all PVTV operators with I = 0,1,2. Furthermore, we choose
to parametrize ḡ

(I,j )
K in such a way that all of them are

dimensionless by the inclusion of appropriate powers of Fπ in
front of each operator.

1. N Nπ operators

The PVTV NNπ operators are defined as [16]

L = ḡ(0)
π N̄ 
τ · 
πN + ḡ(1)

π π0N̄N − 3ḡ(2)
π IabπaN̄τbN, (14)

where I = (1/3)diag(1 1 − 2) is needed to combine two
isospin triplets into an I = 2 quantity.
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2. ��π operators

The PVTV ��π operators have the general form T̄ a
μ T bμπ ,

where T a
μ is the field representation of the � baryon as

explained in Appendix A. They can be chosen as

L = ḡ
(0)
��π T̄ a

μ 
τ · 
πT aμ + iḡ
(1,1)
��πεabcπb

[
T̄ a

μ τcT
3μ − T̄ 3

μτcT
aμ

]
+ iḡ

(1,2)
��πεab3T̄ a

μ 
τ · 
πT bμ + ḡ
(2,1)
��πIab[πcT̄

c
μτaT

bμ

+πcT̄
b
μτaT

cμ−πaT̄
c
μτcT

bμ−πaT̄
b
μτcT

cμ]

+ ḡ
(2,2)
��πIabπbT̄

c
μτaT

cμ. (15)

Note that the T a
μ (a = 1,2,3) denote a set of three two-

component vectors in isospin space, satisfying τ aT a
μ = 0. This

representation allows us to write down all expressions in terms
of quantities such as τ a and Iab where the indices run from 1
to 3.

3. πππ operators

The PVTV three-pion operators should look like πππ as
operators with derivatives of higher order. In particular, the
only operator relevant to us is the I = 1 operator (the others
have I = 3):

L = ḡ(1)
πππFπ 
π2π0. (16)

It is T odd because the neutral pion field changes sign under T
under our conventions for the pion-nucleon interactions.

4. N Nπππ operators

The PVTV NNπππ operators can be chosen as

L = ḡ
(0)
NN3π

F 2
π

N̄ 
τ · 
πN 
π2 + ḡ
(1)
NN3π

F 2
π

N̄Nπ0 
π2

+ ḡ
(2,1)
NN3π

F 2
π

IabπaπbN̄ 
τ · 
πN + ḡ
(2,2)
NN3π

F 2
π

IabπbN̄τaN 
π2.

(17)

B. Parity-conserving and time-conserving operators

Following the same line of thought as in the previous
section, we construct all relevant PCTC CSB operators that
contribute to the loop correction to hadron mass shifts. Again
these operators are defined by using a linear representation of
the Goldstone bosons.

1. ππ operators

There are only two kinds of CSB ππ operators, which
are the isospin-invariant (I = 0) and isospin-breaking (I = 2)
mass terms respectively:

L = − 1
2

(
�m2

π

)
π2 − 3
2

(
δm2

π

)Iabπaπb. (18)

Here we define (�m2
π ) such that it does not include the

LO-contribution from the quark mass [i.e., the well-known
(m2

π )0 = 2B0m̄ contribution in ChPT, as we shall also discuss
in Sec. V A]. That is, we shall include only (m2

π )0 in the pion
propagator while the (�m2

π ) and (δm2
π ) defined above appear

only in the form of two-pion vertexes in Feynman diagrams, as

depicted in Fig. 2. A similar argument applies for the quantities
(�m�), (δm�), and (δm̃�), which we shall define below: they
appear only in the form of �-� vertex, while the � propagator
contains only δ�; namely, the nucleon-delta mass splitting in
the chiral limit, as defined in Eq. (B1).

2. ππππ operators

There are two four-pion operators up to I = 2. They can be
written as

L = g
(0)
4π (
π2)2 + g

(2)
4π 
π2Iabπaπb. (19)

Again, we define g
(0)
4π such that it does not include the LO

contribution from the quark mass.

3. N N operators

Again there are only two kinds of CSB NN operators,
corresponding to the nucleon σ term and the mass-splitting
term. We write them as

L = (�mN )N̄N + (δmN )

2
N̄τ3N. (20)

Even though the operator N̄N is chirally invariant, it can still
be obtained through an insertion of a spurion (e.g., from the
isospin-invariant part of the quark mass matrix) so it must
included for completeness.

4. N Nππ operators

We are only interested in the I = 0,1,2 operators

L = g
(0)
NNππ

Fπ

N̄N 
π2 + g
(1,1)
NNππ

Fπ

N̄τ3N 
π2

+ g
(1,2)
NNππ

Fπ

N̄ 
τ · 
πNπ0 + g
(2)
NNππ

Fπ

IabπaπbN̄N. (21)

There is another I = 2 operator but it is T odd.

5. �� operators

There are four kinds of �� operators corresponding to
four mass terms. However, here we are only interested in the
I = 0,1,2 operators. They are

L = (�m�)T̄ a
μ T aμ + (δm�)

2
T̄ a

μ τ3T
aμ + 3(δm̃�)IabT̄ a

μT bμ.

(22)

Again we define (�m�) such that it does not include the
original residual mass δ� in the chiral limit. Similar to N̄N ,
the operator T̄ a

μ T aμ is chirally invariant yet it can still be
induced by a spurion insertion so we need to include this
term.

IV. ONE-LOOP CORRECTION TO ḡ(i)
π AND HADRON

MASS SHIFTS

With all the relevant operators defined in Sec. III it is
now straightforward to compute the most general one-loop
corrections to both ḡ(i)

π and the hadron mass shifts. To obtain
the total result one needs to compute both the one-particle
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irreducible (1PI) diagrams and the wave-function renormaliza-
tion graphs. The latter are quite standard and are summarized in
Appendix D.

Terms in the chiral effective Lagrangian at low energy
are arranged according to increasing powers of E, a typical
small energy scale in the theory. A valid power expansion
in HBChPT requires E/(2πFπ ), E/mN � 1. Following the
usual conventions [22], forms such as ∂μ, mπ , and the �-N

mass splitting δ� count as O(E1) while the light quark mass
mq and other quantities linearly proportional to mq count as
O(E2) because, as we shall see later, m2

π ∼ mq . Based on
such power counting, there are seven types of 1PI diagrams
that contribute to the correction of ḡ(i)

π up to next-to-next-to
leading order (NNLO) and they are summarized in the first
seven diagrams in Fig. 1. Together with the wave-function
renormalization, they give

δ
(
ḡ(0)

π

)
loop = 4g2

Aḡ(0)
π

F 2
π

Ia − 40g2
πN�ḡ

(0)
��π

9F 2
π

Id +
(

4ḡ(0)
π

F 2
π

+ 5ḡ
(0)
NN3π

F 2
π

)
Ie + (ZN − 1)ḡ(0)

π + (
√

Zπ − 1)loopḡ
(0)
π ,

δ
(
ḡ(1)

π

)
loop = −12g2

Aḡ(1)
π

F 2
π

Ia +
(

16g2
πN�ḡ

(1,1)
��π

3F 2
π

+ 8g2
πN�ḡ

(1,2)
��π

3F 2
π

)
Id − 40g2

Aḡ(1)
πππ

Fπ

Ic − 80g2
πN�ḡ(1)

πππ

3Fπ

Ib

+5ḡ
(1)
NN3π

F 2
π

Ie + 5m2
π ḡ(1)

πππ

4π2F 2
π

[(γ1 + 4γ2)(L′ + 1) − 2γ2] + (ZN − 1)ḡ(1)
π + (

√
Zπ − 1)loopḡ

(1)
π , (23)

δ
(
ḡ(2)

π

)
loop = 4g2

Aḡ(2)
π

F 2
π

Ia +
(

8g2
πN�ḡ

(2,1)
��π

9F 2
π

+ 40g2
πN�ḡ

(2,2)
��π

27F 2
π

)
Id −

(
2ḡ(2)

π

F 2
π

+ 2ḡ
(2,1)
NN3π + 5ḡ

(2,2)
NN3π

3F 2
π

)
Ie

+ (ZN − 1)ḡ(2)
π + (

√
Zπ − 1)loopḡ

(2)
π ,

with the loop integral functions {Ia} defined in Appendix C. Throughout this paper, the UV divergence of the loop integral
expressed in terms of the quantities L and L′ that are defined as

L′ ≡ L + ln

(
μ

mπ

)2

≡ 2

4 − d
− γ + ln 4π + ln

(
μ

mπ

)2

. (24)

Similarly, we shall study the one-loop corrections to the hadron mass shifts, i.e., (�m2
π ), (�mN ), and (δmN ) defined in

Eqs. (18) and (20). The relevant 1PI diagrams are given in Fig. 2. In the nucleon sector, the most general one-loop corrections to
the nucleon sigma term and mass splitting [defined in Eq. (20)] are given by

δ(�mN )i,loop = (ZN −1)(�mN )i −12(�mN )ig2
A

F 2
π

Ia − 8g2
πN�(�m�)i

F 2
π

Id +3
(
g

(0)
NNππ

)
i

Fπ

Ie + 12
(
�m2

π

)
i
g2

A

F 2
π

Ic +8g2
πN�

(
�m2

π

)
i

F 2
π

Ib

− 3m2
π

(
�m2

π

)
i

8π2F 3
π

[(γ1 + 4γ2)(L′ + 1) − 2γ2] + δiq

{
12g2

A

F 2
π

If + 8g2
πN�

F 2
π

Ig − 3m4
π

16π2F 3
π

[
(γ1 + 4γ2)(L′ +1) + 1

2
γ1

]}
,

δ(δmN )i,loop = (ZN − 1)(δmN )i + 4g2
A(δmN )i
F 2

π

Ia − 40g2
πN�(δm�)i

9F 2
π

Id + 6
(
g

(1,1)
NNππ

)
i
+ 2

(
g

(1,2)
NNππ

)
i

Fπ

Ie. (25)

Here the subscript i denotes the specific choice of effective operator that induces the spurion field, e.g., i = q (quark mass), c
(quark cMDM or cEDM), and 4q (LR4Q). In the pion sector, we concentrate on the isospin-singlet pion mass shift. For the case
of θ -term and dipole operators, this is the only pion mass shift that comes into play. For the case of LR4Q, although the I = 2
pion mass shift is also generated, but it is not independent from its isosinglet counterpart. Therefore, we are allowed to choose
only the I = 0 pion mass shift to enter the matching relations. Its loop correction reads

δ
(
�m2

π

)
i,loop = −11

(
�m2

π

)
i
m2

π

24π2F 2
π

(
L′ + 8

11

)
+ 5m2

π

(
g

(0)
4π

)
i

4π2
(L′ + 1). (26)

V. DISCUSSION OF MATCHING RELATIONS OF ḡ(i)
π

With all the preparations in Secs. II–IV we are now in a
position to discuss the matching relations between the ḡ(i)

π and
the hadron mass shifts induced by various effective operators.
It is obvious that a necessary condition for these matching
relations to exist is that the underlying operator should possess

both PCTC and PVTV components simultaneously. This
simple observation greatly reduces the amount of relevant
operators to four types; namely, (1) the complex quark mass
operator, (2) the dipole-like operators, (3) the LR4Q operator,
and (4) the two chirally invariant (L̄R)(L̄R)-type operators.
We shall apply our general formalism in Secs. II–IV to study
the influences of these four types of operators separately.
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A. Quark mass and QCD θ term

We start by reviewing previous studies of the P- and
T-violation generated by the QCD θ term (see, e.g.,
Refs. [12,18,23] and references therein). The QCD Lagrangian
with a nonzero θ term takes the following form:

L({qiR,qiL}) =
∑

i

[q̄i i /Dqi − q̄iRM0qiL − q̄iLM0qiR]

− 1

4
Ga

μνG
aμν − θ̄

g2
s

32π2
Ga

μνG̃
aμν, (27)

where M0 = diag(m1 m2 . . .) is the real quark mass matrix.
Due to the axial anomaly, if we perform an axial rotation qi →
eiθiγ5qi to the quark field qi , the Lagrangian will change as

L({qiR,qiL}) → L({eiθi qiR,e−iθi qiL})

+
∑

i

θi

g2
s

16π2
Ga

μνG̃
aμν. (28)

Therefore, for a two-flavor QCD with Q ≡ (u d)T , we may
perform the following rotation to eliminate the θ term:

Q → e
i
2 ( θ̄

2 −ατ3)γ5Q. (29)

Here, α is so far a free parameter that will be fixed later by
the requirement of vacuum stability. The resulting Lagrangian
looks like

L = Q̄i /DQ − Q̄RXqQL − Q̄LX†
qQR − 1

4Ga
μνG

aμν, (30)

where now Xq is the complex quark mass matrix that acts as
a spurion as described in Sec. II:

Xq = m̄e−i θ̄
2 {cos α − iε sin α + (−ε cos α + i sin α)τ3},

(31)

with m̄ = (mu + md )/2 and ε = (md − mu)/(mu + md ).
Throughout this paper we take m̄ ≈ 3.6 MeV and ε ≈ 0.33
from the lattice calculation [24] whenever their values are
needed.

1. Tree-level matching

Now we would like to generate PVTV operators in the chiral
Lagrangian by appropriate insertions of Xq . In the pure pionic
sector, the leading operator at O(E2) with an Xq-insertion is

F 2
0 B0

8
Tr[XqU

† + UX†
q]

= F 2
0 B0m̄

2

(
cos α cos

θ̄

2
− ε sin α sin

θ̄

2

)(
1− 2
π2

F 2
0

+ · · ·
)

+F 2
0 B0m̄

(
sin α cos

θ̄

2
+ ε cos α sin

θ̄

2

)

×
(

1 − 2
π2

3F 2
0

+ · · ·
)

π0

F0
, (32)

where F0 is just Fπ in the chiral limit.
Note that the existence of the π0 term makes the vacuum

unstable because one may lower the energy of the system
indefinitely by keep creating neutral pions from the vacuum.

To avoid that, we simply impose the “vacuum alignment”
condition that says the value of α should be chosen such that
the π0 term vanishes [25,26]. For the case that the θ term is the
only source of T violation, the vacuum alignment condition is
simply α ≈ −εθ̄/2 assuming θ̄ is small. The complex quark
mass matrix Xq then turns into

Xq = M0 − i
m̄

2
(1 − ε2)θ̄ . (33)

After imposing the alignment condition we obtain m2
π = 2B0m̄

where m2
π is defined as the squared mass of charged pions π±

(which leads to B0 ≈ 2.7 GeV if we take the lattice value for
m̄ [24]). The mass splitting between charged and neutral pion
occurs at the O(E4) level. Also, note that the requirement
of vacuum alignment kills the π0 term as well as all other
terms that have an odd number of pions. Therefore, the term
in Eq. (32) does not give any T-violating operator. Instead,
we obtain an isospin-invariant mass term for the pion triplet.
Also, an important feature one observes is that, after vacuum
alignment, the PVTV term in X̃q+ is an isoscalar [recall
the definition of X̃± in Eq. (8) and the subscript q denotes
the contribution from the complex quark mass matrix]. That
implies, at leading order of the m2

π expansion, the PVTV
interactions induced by the θ - term are all isoscalars.

In the nucleon sector, the leading term that gives a nonzero
T-violating effect is3

c1N̄X̃q+N + c′
1Tr[X̃q+]N̄N

= 2m̄(c1 + 2c′
1)(N̄N + · · · ) − 2m̄εc1(N̄τ3N + · · · )

−2m̄(1 − ε2)θ̄ c1

F0

(
1 − 2
π2

3F 2
0

+ · · ·
)

N̄ 
τ · 
πN, (34)

where + · · · denotes terms additional pion fields. This simply
corresponds to the pion-nucleon Lagrangian with chiral index
� = 1 by Mereghetti et al. [12]. The first term contributes
to the nucleon sigma term (�mN )q = 2m̄(c1 + 2c′

1) while
the second term contributes to the nucleon mass splitting
(δmN )q = −4m̄εc1. The third term contributes to ḡ(0)

π and
ḡ

(0)
NN3π with ḡ(0)

π = −2m̄(1 − ε2)θ̄c1/F0 and ḡ
(0)
NN3π = − 2

3 ḡ(0)
π

[it is interesting to note that, in the SO(4) representation of
ChPT, e.g., in Ref. [12], the relation between ḡ

(0)
NN3π and ḡ(0)

π

is apparently different: ḡ
(0)
NN3π = −ḡ(0)

π ]. However one is able
to show their equivalence by using the equation of motion
(EOM). Now since both (δmN )q and ḡ(0)

π depend linearly on
c1, one may relate them as

Fπ ḡ(0)
π = 1 − ε2

2ε
(δmN )q θ̄ . (35)

Notice that we have made use of the fact that Fπ = F0 at
leading order. This replacement is crucial so that the same
equation holds even when higher order corrections to the pion-
decay constant are included, as we discuss later. Equation (35)
is exactly the tree-level matching relation between ḡ(0)

π and
(δmN )q . The same procedure is used to determine all other

3The operator coefficients are related to those in Bernard, Kaiser,
and Meißner [27] by c1 = 2B0c

BKM
5 , c′

1 = 2B0c
BKM
1 .
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matching relations at tree level so we may skip the intermediate
steps when we introduce them later.

In the � sector we have an analogous leading term that
gives T violation:

c2T̄
i
μX̃q+T iμ + c′

2Tr[X̃q+]T̄ i
μT iμ, (36)

and we have an analogous coefficient matching:

Fπ ḡ
(0)
��π = 1 − ε2

2ε
(δm�)q θ̄ . (37)

2. Loop correction

Next we consider the one-loop correction to the left-
hand-side (LHS) and right-hand-side (RHS) of the tree-level
matching relation (35). The loop corrections to Fπ ḡ(0)

π and
(δmN )q are given in Eqs. (E1) and (E3), respectively, in
Appendix E. The former is expressed in terms of ḡ(0)

π and
ḡ

(0)
��π that can be related to (δmN )q and (δm�)q by Eqs. (35)

and (37), respectively, because any correction is of higher order
in power counting. With these we obtain

δ
(
Fπ ḡ(0)

π

)
loop = 1 − ε2

2ε
θ̄δ(δmN )q,loop, (38)

i.e., the tree-level matching formula (35) for ḡ(0)
π is preserved

at one loop.

3. Low-energy constants and the higher order matching formula

Higher order terms in the chiral Lagrangian must be
introduced to cancel the UV-divergence in the loop corrections
and make the full expression μ independent. Apart from the
baryon wave function and Fπ renormalization that are well
known, for the case of the θ term CPV source we only need
the O(E4) terms that involve two insertions of X̃q±. Such
terms in the pure pionic sector are introduced in Appendix D.
In the nucleon sector we have

LO(E4)
N = F−3

π B2
0

{
f1Tr

[
X̃2

q+
]
N̄N + f2Tr[X̃q+]N̄X̃q+N

+ f3N̄X̃2
q+N + f4Tr

[
X̃2

q−
]
N̄N

+ f5Tr[X̃q−]N̄X̃q−N + f6N̄X̃2
q−N

} + · · · . (39)

Details of the O(E4) contribution to Fπ ḡ(i)
π and the

hadron masses are summarized in Appendix E 1. After some
rearrangement we are able to match the final result with Eq. (1)
as

Fπ ḡ(0)
π = 1 − ε2

2ε
θ̄(δmN )q

(
1 + δ

(0)
LEC

)
, (40)

where the relative deviation from the LECs is given by

δ
(0)
LEC = − 4m4

πε

(δmN )qF 3
π

(
f r

5 + f r
6

) − 64m2
πε2

F 2
π

(
2Lr

7 + Lr
8

)
.

(41)

Throughout this paper, we use the superscript “r” to represent
a renormalized quantity of which the infinite value L + 1 is
subtracted from the corresponding bare quantity following
the Gasser–Leutwyler subtraction scheme [28], i.e., a bare
quantity A and its renormalized value Ar are related by

A = Ar + B(L + 1) where B is a finite number. The absence
of δ

(0)
loop shows that the LO-matching formula is modified at

higher order but the modification is analytic in the quark
masses (i.e., not logarithmic with respect to pion masses).
This relation has already been studied under the SU(3) version
of ChPT in Ref. [18].

One may perform a quick estimate of the size of δ
(0)
LEC

by using lattice results and dimensional-analysis arguments.
First, for the contribution from Lr

i , we note that it contains a
large prefactor 64 but is also suppressed by the square of the
isospin-breaking parameter ε. Furthermore, we have Lr

7,8 ∼
10−3 from meson data fits [29]. That gives a contribution
of order 10−3 to δ

(0)
LEC, which is very small. On the other

hand, the impact of f r
i is less transparent because the sizes

of f r
5,6 are not well determined. Here we estimate their order

of magnitude based on chiral power counting. For instance, one
may compare the contribution of O(p2) (i.e., linear to m̄) and
O(p4) (i.e., quadratic to m̄) contribution to the nucleon mass;
they are proportional to m̄ci and F−3

π B2
0 m̄2fi , respectively,

as one is able to read off from Eqs. (34) and (39).4 Chiral
power-counting suggests that the latter should be suppressed
with respect to the former by a factor of order (mπ/2πFπ )2.
This implies

F−3
π B2

0 m̄2fi ∼ (mπ/2πFπ )2cim̄, (42)

which leads to fi ∼ 3 × 10−3 for ci ∼ 1. This gives δ
(0)
LEC ∼ 0.1

which is a 10% correction to the tree-level matching relation.

B. The dipole-like operators

Next we study the effect of the leading flavor-diagonal
dipole-like operator; namely, the quark cMDM and cEDM.
As discussed in Sec. II, the spurion for this operator is simply
identical to that for the complex quark mass. The Lagrangian
in the quark-gluon level reads

L =
∑

q=u,d

gs d̃
M
q q̄σμν λa

2
Ga

μνq − i
∑

q=u,d

gs d̃q q̄σμνγ5
λa

2
Ga

μνq

= gsQ̄Rσμν λa

2
Ga

μνXcQL + H.c., (43)

where d̃M
q and d̃q are the cMDM and cEDM of quark q,

respectively. The matrix Xc acts as the spurion for cMDM
and cEDM, as described in Sec. II, and is given by

Xc = 1
2

(
d̃M

0 + id̃0
) + 1

2

(
d̃M

1 + id̃1
)
τ3, (44)

where d̃0(d̃M
0 ) = d̃u(d̃M

u ) + d̃d (d̃M
d ) and d̃1(d̃M

1 ) = d̃u(d̃M
u ) −

d̃d (d̃M
d ) are the isoscalar and isovector cEDM (cMDM)

respectively.

1. Tree-level matching

The implementation of the spurion Xc into the chiral
Lagrangian works exactly in exactly the same way as the

4The factor F −3
π B2

0 is just due to the definition of the coefficients of
the O(p4) counterterms fi so that they are dimensionless.
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complex quark mass. In the pionic sector the only operator
at lowest order is

βF 5
0 Tr[XcU

† + UX†
c]

= 2βF 5
0 d̃M

0

(
1 − 2
π2

F 2
0

+ · · ·
)

+ 4βF 5
0 d̃1

(
1 − 2
π2

3F 2
0

+ · · ·
)

π0

F0
, (45)

where β is a dimensionless constant. This operator will again
induce a pion tadpole term that makes the vacuum unstable.
To cancel this term, we have to include the term with an Xq

insertion given in Eq. (32) and choose an appropriate value
for the free parameter α to eliminate the π0 term induced
by Eq. (45). Assuming no θ term, we obtain a pion mass
shift (�m2

π )c = 8βF 3
0 d̃M

0 as well as the vacuum alignment
condition

α ≈ (−4βF 3
0 d̃1

)/
(B0m̄) = −(

�m2
π

)
c
d̃1

/(
m2

π d̃M
0

)
. (46)

The nonzero value of α leads to an interesting consequence;
namely, in order to study the effect of T violation induced
by the cEDM, it is not enough to consider only terms with
Xc insertions. One needs to include all the terms with Xq

insertions as given in Sec. V A because the quark mass picks
up a complex phase α even without the existence of a θ term.
Also, α is related but should not be confused with the so-called
“induced θ term” introduced by Pospelov and Ritz [30]. To
see their relation, we take the complex quark mass matrix Xq

defined in Eq. (31) (without θ̄ just for simplicity) and expand it
to the first power in α. After plugging in the explicit expression
of α one immediately sees that Xq takes the following form:

Xq = M0 + i
m̄

2
(1 − ε2)θ̄ind − i

2
(
�m2

π

)
c

d̃M
0

m̄

m2
π

D̃, (47)

where M0 is the real quark mass matrix and D̃ = diag(d̃u d̃d )
is the cEDM matrix. The second term in Eq. (47) has the same
form as the second term of Eq. (33) and defines an “induced θ
angle” whose value is given by

θ̄ind = 2
(
�m2

π

)
c
(d̃0 + εd̃1)

/[
m2

π (1 − ε2)d̃M
0

]
. (48)

In the presence of a θ term one needs only to replace θ̄ind by
θ̄ind − θ̄ [see Eq. (33)]. Furthermore, if we assume Peccei–
Quinn mechanism [31] then θ̄ simply relaxes to θ̄ind.

We may now construct other PVTV chiral operators
induced by the quark cEDM remembering that they can be
generated by either the Xc or Xq insertion. It should be
pointed out that the tree-level matching relations we present
below are already well studied by using the chiral SO(4)
formalism [11]. Here we recast the analysis by using the
SU(2)L × SU(2)R formalism and also generalize it to include
the � resonances to show how the same physics works under
different representations. Also, our method has the advantage
that it can be generalized more easily to the three-flavor case
in order to study the role of the strange quark in the matching
relations. In the nucleon sector the leading CSB operators are

c1N̄X̃q+N + c′
1Tr[X̃q+]N̄N + c̃1F

2
0 N̄X̃c+N

+ c̃′
1F

2
0 Tr[X̃c+]N̄N. (49)

Following the same logic as in Sec. V A 1, one finds the
following tree-level matching relations:

Fπ ḡ(0)
π = −(δmN )q

(
�m2

π

)
c

m2
π

d̃1

d̃M
0

+ (δmN )c
d̃0

d̃M
1

,

Fπ ḡ(1)
π = 2

[
−(�mN )q

(
�m2

π

)
c

m2
π

+ (�mN )c

]
d̃1

d̃M
0

, (50)

as well as ḡ
(0,1)
NN3π = −2ḡ(0,1)

π /3. One observes that ḡ(0)
π depends

on both d̃0 and d̃1 while ḡ(1)
π depends only on d̃1. However, if we

take lattice calculations [32,33] that give (�mN )q ≈ −37 MeV
and (δmN )q ≈ 2.26 MeV then we find that ḡ(1)

π is about 30
times more sensitive to d̃1 than ḡ(0)

π provided that there is no
accidental cancelation between the two terms in ḡ(1)

π .
In the � sector, the most general terms at leading order are

c2T̄
i
μX̃q+T iμ + c′

2Tr[X̃q+]T̄ i
μT iμ + c̃2F

2
0 T̄ i

μX̃c+T iμ

+ c̃′
2F

2
0 Tr[X̃c+]T̄ i

μT iμ, (51)

which lead to analogous tree-level matching relations:5

Fπ ḡ
(0)
��π = −(δm�)q

(
�m2

π

)
c

m2
π

d̃1

d̃M
0

+ (δm�)c
d̃0

d̃M
1

,

Fπ ḡ
(1,1)
��π = −2

[
−(�m�)q

(
�m2

π

)
c

m2
π

+ (�m�)c

]
d̃1

d̃M
0

= Fπ ḡ
(1,2)
��π . (52)

2. Loop correction

The one-loop corrections to the LHS and RHS of the
tree-level matching relations (50) can be inferred from
Eqs. (E8) and (E9) in Appendix E. After some straightforward
rearrangement, one obtains

δ
(
Fπ ḡ(0)

π

)
loop = δ

[
−(δmN )q

(
�m2

π

)
c

m2
π

d̃1

d̃M
0

+ (δmN )c
d̃0

d̃M
1

]
loop

− (δmN )q
d̃1

d̃M
0

(
�m2

π

)
c

8π2F 2
π

L′,

δ
(
Fπ ḡ(1)

π

)
loop = 2δ

[
−(�mN )q

(
�m2

π

)
c

m2
π

+ (�mN )c

]
loop

d̃1

d̃M
0

+ 2
(
�m2

π

)
c

d̃1

d̃M
0

[
− (�mN )q

8π2F 2
π

L′

− 4

{
3g2

A

F 2
π

(
Ic− If

m2
π

)
+2g2

πN�

F 2
π

(
Ib− Ig

m2
π

)}]

+ 3m2
π

(
�m2

π

)
c

8π2F 3
π

d̃1

d̃M
0

×
(

(γ1 + 4γ2)(L′ + 1) − 1

2
γ1 − 4γ2

)
, (53)

5One can easily show that iεabcπb[T̄ a
μ τcT

3μ − T̄ 3
μτcT

aμ] +
iεab3T̄ a

μ 
τ · 
πT bμ = −π0T̄
i
μT iμ.
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i.e., the one-loop corrections do not obey the tree-level matching relations and the induced mismatch between the LHS and RHS
of the relations are proportional to (�m2

π )c. For the case of I = 0, the tree-level matching is preserved by the loop correction
only in the d̃1 → 0 limit.

3. Low-energy constants and the higher order matching formula

The relevant LECs that are needed to cancel the UV divergences in the loop diagrams are in the O(E4) Lagrangian and the
O(E2d̃) terms in the chiral Lagrangian. The former have already been discussed in Sec. V A 3 so we shall concentrate on the
latter. In the pionic sector the relevant O(E2d̃) Lagrangian is

LO(E2d̃)
π = 2B0F

3
π {G1Tr[XqU

† + UX†
q]Tr[XcU

† + UX†
c] + G2Tr[XqU

† − UX†
q]Tr[XcU

† − UX†
c] + G3Tr[U †XcU

†Xq

+UX†
cUX†

q]} + F 3
π {G4Tr[∂μU∂μU †]Tr[XcU

† + UX†
c] + G5Tr[∂μU †∂μU (X†

cU + U †Xc)]}. (54)

In the equation above, the E2 factor comes either from a factor of Xq or two derivatives. In particular, the G4 and G5 terms are
required as they cancel divergences of both Fπ and Zπ that receive extra loop corrections due to the generation of (�m2

π )c. In
the nucleon sector, the O(E2d̃) Lagrangian can be chosen as

LO(E2d̃)
N = 2B0{g1Tr[X̃q+X̃c+]N̄N + g2Tr[X̃q+]N̄X̃c+N + g3Tr[X̃c+]N̄X̃q+N + g4N̄{X̃q+,X̃c+}N

+ g5Tr[X̃q−X̃c−]N̄N + g6Tr[X̃q−]N̄X̃c−N + g7Tr[X̃c−]N̄X̃q−N + g8N̄{X̃q−,X̃c−}N}. (55)

With all these, one can straightforwardly deduce the modified matching formula for ḡ(i)
π . While all details are given in

Appendix E 2, the final outcome is

Fπ ḡ(0)
π =

(
−(δmN )q

(
�m2

π

)
c

m2
π

d̃1

d̃M
0

+ (δmN )c
d̃0

d̃M
1

)(
1 + δ

(0)
loop + δ

(0)
LEC

)
,

Fπ ḡ(1)
π = 2

(
−(�mN )q

(
�m2

π

)
c

m2
π

+ (�mN )c

)
d̃1

d̃M
0

(
1 + δ

(1)
loop + δ

(1)
LEC

)
, (56)

where the relative corrections {δ(i)} due to loop and higher order LECs are given by

δ
(0)
loop = m2

π

8π2F 2
π

[
−1 + ln

(
μ

mπ

)2
](

1 − m2
π

(δmN )q

(δmN )c(
�m2

π

)
c

d̃0

d̃M
1

d̃M
0

d̃1

)−1

δ
(1)
loop =

{
3g2

Am3
π

16π (�mN )qF 2
π

+ 8g2
πN�m2

π

(�mN )qF 2
π

(
I r
b − I r

g

m2
π

)
− 3m4

π

16π2(�mN )qF 3
π

[
(γ1 + 4γ2) ln

(
μ

mπ

)2

− 1

2
γ1 − 4γ2

]

+ m2
π

8π2F 2
π

[
−1 + ln

(
μ

mπ

)2
]}(

1 − m2
π

(�mN )q

(�mN )c(
�m2

π

)
c

)−1

, (57)

and

δ
(0)
LEC =

{
− 4m4

πε

3(δmN )qF 3
π

[
f r

2 + f r
3 + 4

(
f r

5 + f r
6

)] + 8m4
π d̃M

0

(δmN )q
(
�m2

π

)
c

[
ε

(
1

3
− d̃M

0

d̃M
1

d̃0

d̃1

)(
gr

3 + gr
4

)

− d̃0

d̃1

(
gr

7 + gr
8

)+ε

3

(
gr

6 + gr
8

)] − 16Fπm2
π d̃M

0(
�m2

π

)
c

[(
2Gr

1 + Gr
3 − 2Gr

4 − Gr
5

) − 2

3
ε

(
d̃M

1

d̃M
0

− 3

2

d̃0

d̃1

)(
2Gr

2 + Gr
3

)]

− 64m2
π

F 2
π

ε2
(
2Lr

7 + Lr
8

)}(
1 − m2

π

(δmN )q

(δmN )c(
�m2

π

)
c

d̃0

d̃M
1

d̃M
0

d̃1

)−1

,

δ
(1)
LEC =

{
m4

π

(�mN )qF 3
π

[
2(1 + ε2)f r

1 + 2f r
2 + (1 + ε2)f r

3 + 4(1 + ε2)f r
4 + 2(ε2 − 1)f r

5 + 2(1 + ε2)
(
f r

5 + f r
6

)]

+ 4m4
π d̃M

0

(�mN )q
(
�m2

π

)
c

[
ε
d̃0

d̃1

(
gr

1 + gr
4 + gr

5 + gr
6 + gr

7 + gr
8

) − (
gr

5 + gr
8

) − ε
d̃M

1

d̃M
0

(
gr

1 + gr
4

)]
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−16Fπm2
π d̃M

0(
�m2

π

)
c

[(
2Gr

1 + Gr
3 − 2Gr

4 − Gr
5

) − 2

3
ε

(
d̃M

1

d̃M
0

− 3

2

d̃0

d̃1

)(
2Gr

2 + Gr
3

)]

− 64m2
π

F 2
π

ε2(2Lr
7 + Lr

8

)}(
1 − m2

π

(�mN )q

(�mN )c(
�m2

π

)
c

)−1

, (58)

respectively. The functions {I r
i } are just the renormalized

version of the loop functions {Ii} defined in Appendix C
following the Gasser–Leutwyler subtraction scheme [28].

One may numerically estimate the loop corrections to
the tree-level matching relations by neglecting the unknown
matrix elements (�mN )c and (δmN )c. In the isoscalar channel,
we find that δ

(0)
loop ≈ 0.021 (taking μ = 1 GeV for the renor-

malization scale), so one has good convergence. On the other
hand, in the isovector channel we have δ

(0)
loop ≈ −3.1, which

does not show any sign of convergence. The reason is that
(�mN )q ≈ −37 MeV is much smaller than δ� and mπ , so
terms in Eq. (58) such as

[δ�/(�mN )q] ln

(
μ

mπ

)2

,

[δ�/(�mN )q](δ�/mπ )2 ln

(
μ

mπ

)2

,

[mπ/(�mN )q] ln

(
μ

mπ

)2

may overcome the usual chiral suppression. This implies
that the matching formula for I = 1 cEDM has very limited
practical use. Fortunately, there is a recent study by de Vries
et al. suggesting that the effect of δ

(i)
loop can be completely

eliminated by reexpressing the tree-level matching relations
(50) in terms of derivative operators [34].

The impact of higher order LECs encoded in δ
(i)
LEC can

also be studied following the power-counting argument in
Sec. V A 3. To make the discussion tractable, let us assume
d̃M

0 ∼ d̃M
1 , d̃0 ∼ d̃1 and take the denominators in δ

(i)
LEC to be

O(1). The contribution from Lr
i is negligible as we discussed

before. The contribution from f r
i to δ

(0)
LEC is around 0.1, similar

to the case of the θ term, while its contribution to δ
(1)
LEC is

expected to be much smaller because it is divided by (�mN )q
instead of (δmN )q . The new LECs that appeared in Eq. (58)
are {Gr

i } and {gr
i }. The estimate of their sizes involves two

steps: first, the contribution from the O(d̃) Lagrangians (45)
and (49) to the pion and nucleon masses can be estimated by
using Weinberg’s counting rule [35]. Then, the effects from
{Gi} and {gi} are expected to receive a further (mπ/2πFπ )2

suppression due to chiral power counting. This implies, by
using Eqs. (E12) and (E13), that

(
�m2

π

)r

c,ct
∼ 16m2

πFπ d̃M
i Gr

i ∼
(

mπ

2πFπ

)2(
�m2

π

)
c

∼
(

mπ

2πFπ

)2 (2πFπ )3d̃M
i

4π
,

(�mN )rc,ct ∼ 4m2
π d̃M

i gr
i ∼

(
mπ

2πFπ

)2

(�mN )c

∼
(

mπ

2πFπ

)2 (2πFπ )2d̃M
i

4π
, (59)

which gives Gr
i ∼ 0.03 and gr

i ∼ 0.02. Applying them to
Eq. (58), we find that the contributions from gr

i to δ
(0)
LEC is

around 0.2 and all other effects are of order 10−2. Hence
the only potentially large LEC corrections to the tree-level
matching relations are the f r

i and gr
i correction to ḡ(0)

π .
Finally, we mention briefly the quark MDM and EDM

operator q̄RσμνqLFμν . Although its form is analogous to that
of the quark cMDM or cEDM, it involves an interaction with
photon that in turn introduces another CSB quantity; namely,
the quark charge matrix. As a consequence, the chiral structure
of the resulting hadronic operators is much more complicated.
Interested readers are referred to Ref. [11] for more discussion.

C. Left-right four-quark

The last type of chirally noninvariant operator that contains
both PCTC and PVTV components simultaneously is the
LR4Q operator. The form of its corresponding spurion is
already explained in Sec. II so we shall go straight to its
application.

1. Tree-level matching

In the pionic sector, the only LO operator we can write
down is

L = ρF 6
0 (c4qTr[U †XRL]Tr[UXLR]

+ c∗
4qTr[U †X†

LR]Tr[UX
†
RL]), (60)

where XRL = (1 + τ3)/2, XLR = (1 − τ3)/2 are the LR4Q
spurion matrices defined after Eq. (13), c4q is the complex
Wilson coefficient of the LR4Q operator and ρ is a real
dimensionless number. Again, this Lagrangian induces a pion
tadpole term that must be removed by including the term with
an Xq insertion and choosing the appropriate value of the free
parameter α. This imposes the vacuum alignment condition
α ≈ −8ρF 4

0 Im c4q/(B0m̄) = −16ρF 4
0 Im c4q/m2

π . Therefore,
to study the T-odd effect from the LR4Q operator, we need
to also include the contribution from Xq with the value of α
chosen above. With these, the relevant quantities one could
extract from Eq. (60) are

(
�m2

π

)
4q

= 64ρF 4
0 Rec4q

3
,

(
δm2

π

)
4q

= −16ρF 4
0 Rec4q

3
= −1

4

(
�m2

π

)
4q

,

ḡ(1)
πππ = −16ρF 2

0 Imc4q = −
3
(
�m2

π

)
4q

4F 2
0

Im c4q

Re c4q

. (61)
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There are several differences compared with the case of quark bilinears. First, there exists an I = 2 pion mass term (recall
its definition in Sec. III B) because the spurion for the LR4Q contains all I = 0,1,2 components while the spurions for quark
bilinears only have I = 0 and I = 1 pieces. Second, we find a nonvanishing PVTV three-pion coupling ḡ(1)

πππ . In the case of the
quark bilinears, the dipole operators and complex quark mass have the same spurion structure. Consequently, if one chooses the
parameter α such that the tadpole contributions from the complex quark mass and dipole operators cancel (vacuum alignment),
the corresponding contributions to ḡ(1)

πππ also cancel. In contrast, the spurion structure for the LR4Q operator differs from that
for the complex quark mass, so the three-pion term is not eliminated together with the pion tadpole.

In the nucleon sector, the leading operators are6

c1N̄X̃q+N + c′
1Tr[X̃q+]N̄N + ˜̃c1F

3
0 {c4qTr[U †XRL]Tr[UXLR] + c∗

4qTr[U †X†
LR]Tr[UX

†
RL]}N̄N. (62)

Again, following the same logic as in Sec. V A 1, they lead to the following tree-level matching relations [14,36–38]:

Fπ ḡ(0)
π = −

3
(
�m2

π

)
4q

4m2
π

(δmN )q
Im c4q

Re c4q

,

Fπ ḡ(1)
π =

[
−

3
(
�m2

π

)
4q

2m2
π

(�mN )q + 4(�mN )4q

]
Im c4q

Re c4q

, (63)

as well as ḡ
(0)
NN3π = − 2

3 ḡ(0)
π and

Fπ ḡ
(1)
NN3π =

[(
�m2

π

)
4q

m2
π

(�mN )q − 32

3
(�mN )4q

]
Im c4q

Re c4q

.

In particular, one observes that, before considering the vacuum alignment, the only PVTV NNπ operator is ḡ(1)
π . Including the

vacuum alignment contribution gives

ḡ(0)
π

/
ḡ(1)

π

∣∣
vac = (δmN )q/2(�mN )q . (64)

Taking the lattice inputs for (�mN )q and (δmN )q gives ḡ(0)
π /ḡ(1)

π ≈ −0.03, i.e., the I = 1 component is the dominant piece as
long as there is no accidental cancellation between the direct and vacuum alignment contribution to ḡ(1)

π . This is consistent with
observations in Refs. [14,37]. This is because the I = 0,2 components of the LR4Q operator is PCTC while the I = 1 component
is PVTV (see the discussion in Sec. II B 5). Finally, in the � sector the leading operators are

c2T̄
i
μX̃q+T iμ + c′

2Tr[X̃q+]T̄ i
μT iμ + ˜̃c2F

3
0 {c4qTr[U †XRL]Tr[UXLR] + c∗

4qTr[U †X†
LR]Tr[UX

†
RL]}T̄ i

μT iμ, (65)

which lead to the following tree-level matching:

Fπ ḡ
(0)
��π = −

3
(
�m2

π

)
4q

4m2
π

(δm�)q
Im c4q

Re c4q

,

Fπ ḡ
(1,1)
��π =

[
3
(
�m2

π

)
4q

2m2
π

(�m�)q − 4(�m�)4q

]
Im c4q

Re c4q

= Fπ ḡ
(1,2)
��π . (66)

2. Loop correction

The one-loop corrections to the LHS and RHS of the tree-level matching relations (63) can be inferred from Eqs. (E15) and
(E16) in Appendix E. After straightforward rearrangement on obtains

δ
(
Fπ ḡ(0)

π

)
loop = δ

[
−

3
(
�m2

π

)
4q

4m2
π

(δmN )q

]
loop

+ (δmN )q
3
(
�m2

π

)
4q

8π2F 2
π

Im c4q

Re c4q

(
L′ + 5

4

)
,

δ
(
Fπ ḡ(1)

π

)
loop = Im c4q

Re c4q

δ

[
−3

2
(�mN )q

(
�m2

π

)
4q

m2
π

+ 4(�mN )4q

]
loop

+ 3

2

(
�m2

π

)
4q

Im c4q

Re c4q

{
(�mN )q
2π2F 2

π

(
L′ + 5

4

)

− 4

[
3g2

A

F 2
π

(
Ic − If

m2
π

)
+2g2

πN�

F 2
π

(
Ib − Ig

m2
π

)]}
+

9m2
π

(
�m2

π

)
4q

32π2F 3
π

Im c4q

Re c4q

[
(γ1 + 4γ2)(L′ + 1) − 1

2
γ1 − 4γ2

]
.

(67)

6One can show that other structures such as c4qTr[U †XRL]N̄uXLRuN + c∗
4qTr[U †X†

LR]N̄uX
†
RLuN + H.c. are not independent from the ˜̃c1

structure we just wrote down.
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Again, one clearly sees that the tree-level matching relations (63) are not obeyed by one-loop corrections. Analogous to the
case of dipole operators, the mismatch between the LHS and RHS of the matching relations is proportional to (�m2

π )4q .

3. Low-energy constants and the higher order matching formula

The O(E2c4q) terms in pion and nucleon sector can be chosen as

LO(E2c4q )
π = 2B0F

4
π {K1(c4qTr[X†

qXRL]Tr[UXLR] + c∗
4qTr[X†

qX
†
LR]Tr[UX

†
RL]) + K2Tr[U †Xq](c4qTr[U †XRL]Tr[UXLR]

+ c∗
4qTr[U †X†

LR]Tr[UX
†
RL])} + F 4

π {K3c4qTr[∂μU †XRL]Tr[∂μUXLR]

+K4c4qTr[∂μU∂μU †]Tr[U †XRL]Tr[UXLR]} + H.c., (68)

LO(E2c4q )
N = 2B0Fπ {h1(c4qTr[X†

qXRL]Tr[UXLR] + c∗
4qTr[X†

qX
†
LR]Tr[UX

†
RL])N̄N + h2Tr[U †Xq](c4qTr[U †XRL]Tr[UXLR]

+ c∗
4qTr[U †X†

LR]Tr[UX
†
RL])N̄N + h3(c4qTr[X†

qXRL]N̄uXLRuN + c∗
4qTr[X†

qX
†
LR]N̄uX

†
RLuN )

+h4(c4qTr[U †XRLU †Xq]N̄uXLRuN + c∗
4qTr[U †X†

LRU †Xq]N̄uX
†
RLuN )

+h5(c4qTr[U †XRL]N̄{u†Xqu
†,uXLRu}N + c∗

4qTr[U †X†
LR]N̄{u†Xqu

†,uX
†
RLu}N )} + H.c., (69)

respectively. One can thus straightforwardly deduce the matching formula for ḡ(i)
π precise to O(E2c4q). With details provided in

Appendix E 3, the final result turns out to be

Fπ ḡ(0)
π = −3

4

(
�m2

π

)
4q

m2
π

(δmN )q
Im c4q

Re c4q

(
1 + δ

(0)
loop + δ

(0)
LEC

)
,

Fπ ḡ(1)
π =

[
−

3
(
�m2

π

)
4q

2m2
π

(�mN )q + 4(�mN )4q

]
Im c4q

Re c4q

(
1 + δ

(1)
loop + δ

(1)
LEC

)
, (70)

with

δ
(0)
loop = − m2

π

2π2F 2
π

[
1

4
+ ln

(
μ

mπ

)2
]
,

δ
(1)
loop =

{
3g2

Am3
π

16π (�mN )qF 2
π

+ 8g2
πN�m2

π

(�mN )qF 2
π

(
I r
b − I r

g

m2
π

)
− 3m4

π

16π2(�mN )qF 3
π

[
(γ1 + 4γ2) ln

(
μ

mπ

)2

− 1

2
γ1 − 4γ2

]

− m2
π

2π2F 2
π

[
1

4
+ ln

(
μ

mπ

)2
]}[

1 − 8

3

m2
π

(�mN )q

(�mN )4q(
�m2

π

)
4q

]−1

, (71)

as well as

δ
(0)
LEC = − 4m4

πε

3F 3
π (δmN )q

[
f r

2 + f r
3 + 4

(
f r

5 + f r
6

)] − 16Fπm4
πRe c4qε

9(δmN )q
(
�m2

π

)
4q

[
3hr

3 + 5hr
4 − 2hr

5

]

−16F 2
πm2

πRe c4q

3
(
�m2

π

)
4q

(−Kr
1 + 6Kr

2 + Kr
3 − 6Kr

4

) − 64m2
π

F 2
π

ε2
(
2Lr

7 + Lr
8

)
,

δ
(1)
LEC =

[
m4

π

F 3
π (�mN )q

[
2(1 + ε2)f r

1 + 2f r
2 + (1 + ε2)f r

3 + 4(1 + ε2)f r
4 + 2(ε2 − 1)f r

5

+ 2(1 + ε2)
(
f r

5 + f r
6

)] + 8

3

Fπm4
πRe c4q

(�mN )q
(
�m2

π

)
4q

[
2hr

1 + hr
3 − hr

4 + 2hr
5

]

−16

3

F 2
πm2

πRe c4q(
�m2

π

)
4q

(−Kr
1 + 6Kr

2 + Kr
3 − 6Kr

4

) − 64m2
π

F 2
π

ε2
(
2Lr

7 + Lr
8

)][
1 − 8

3

m2
π

(�mN )q

(�mN )4q(
�m2

π

)
4q

]−1

. (72)

Similarly, we may estimate the magnitude of the loop correction to the tree-level matching relations. Upon neglecting
the unknown matrix elements (�mN )4q and (δmN )4q , we have δ

(0)
loop = −0.12 and δ

(1)
loop = −3.2, respectively, which implies a

moderate convergence in the isoscalar channel and the nonconvergence in the isovector channel; the ḡ(1)
π matching formula for

LR4Q is therefore not useful in practice. Meanwhile, the magnitudes of the LEC corrections δ
(i)
LEC can be estimated following
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the procedure outlined at the end of Sec. V B 3. The contributions from f r
i and Lr

i are similar to the case of cEDM, while for
the new LECs labeled as {Kr

i } and {hr
i }, we estimate their sizes again by using the Weinberg counting rule. Equations (E19) and

(E20) then give

(
�m2

π

)r

4q,ct
∼ 16m2

πF 2
πRe c4qK

r
i ∼

(
mπ

2πFπ

)2(
�m2

π

)
4q

∼
(

mπ

2πFπ

)2 (2πFπ )4Re c4q

(4π )2 ,

(�mN )r4q,ct ∼ 4m2
πFπRe c4qh

r
i ∼

(
mπ

2πFπ

)2

(�mN )4q ∼
(

mπ

2πFπ

)2 (2πFπ )3Re c4q

(4π )2 , (73)

leading to Kr
i ∼ 0.02 and hr

i ∼ 0.01. With these, we find that
the hr

i contribution to δ
(0)
LEC is around 0.08 while all other

contributions are of the order 10−2. Hence the conclusion we
may draw here is again similar to the case of cEDM.

D. The (L̄ R)(L̄ R) operators

Finally, let us discuss the last class of four-quark operators
that could be T odd; namely, the (L̄R)(L̄R)-type operators
we introduced in Sec. II B 4. Since they are chirally invariant
their “spurion” is nothing but a complex number a. Therefore,
when their effects are implemented into the chiral Lagrangian,
terms proportional to a and a∗ can in principle both appear with
independent coefficients [e.g., via terms like (α1a + α2a

∗)Ô +
H.c. where α1 and α2 are unrelated coefficients] so there is
no definite matching formula between the PCTC and PVTV
observables. Similar considerations apply for other chirally
invariant operators, such as the Weinberg three-gluon operator.
Therefore, we focus only on the chirally noninvariant operators
in this paper.

VI. CONCLUSION

The computation of hadronic matrix elements induced by
effective quark-gluon operators that are relevant for tests of
fundamental symmetries is a nontrivial task. Among them, the
PVTV pion-nucleon couplings ḡ(i)

π that contribute to nucleon
and atomic EDMs are of particular interest in this paper.
These operators can be induced by PVTV effective operators
that are either chirally invariant nor noninvariant. The latter
class is interesting theoretically because the PCTC and PVTV
components of the CSB operator can be grouped into a
single spurion field that enters the effective chiral Lagrangian.
Consequently, there exist matching relations between the ḡ(i)

π

induced by the spurion field and various PCTC and CSB
observables, such as the pion mass and the nucleon mass shifts
that are induced by the same spurion field. These relationships
are analogous to the relationships between matrix elements
of different components of a vector due to the Wigner–Eckart
theorem. The relations between PVTV and PCTC hadronic
matrix elements are extremely useful because one could use
studies of the PCTC hadronic observables (say, through lattice)
to obtain their PVTV counterparts.

A caveat to the use of this formalism is that the matching
formulas are derived at tree level and may receive non-
negligible higher order corrections from loop diagrams and/or
higher order terms in the chiral Lagrangian. To study the higher
order effects, we have performed a general classification of

relevant operators that could generate loop corrections to ḡ(i)
π

and CSB observables, and we have calculated the most general
loop corrections to those quantities. We then applied this
general formalism to study the loop corrections to the matching
formulas induced by all relevant effective operators (of the
lightest generation) up to dimension six. In general, we found
that the matching relations for ḡ(0)

π are relatively stable because
the loop corrections lead to at most O(10%) modifications. On
the other hand, the robustness of the ḡ(1)

π matching formulas is
more complicated because the corrections depend strongly on
the ratio Fπ (�mN )O/(�m2

π )O. We also find that the inclusion
of � resonances in the loop diagrams does not spoil the
matching relation of ḡ(0)

π but does affect the ḡ(1)
π -matching

significantly. For the impact of higher order terms in the chiral
Lagrangian, we find that the largest effects arise from the
corresponding LECs in the nucleon sector, which may give
rise to a 10%–20% modification of the matching relation for
ḡ(0)

π . Contributions from the LECs in the pion sector are in
general not much larger than 1%.
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APPENDIX A: CHIRAL BUILDING BLOCKS
IN SU(2)L × SU(2)R

Here we summarize the building blocks of SU(2)L ×
SU(2)R ChPT that are required to construct a chirally invariant
Lagrangian and implement the effect of chiral symmetry
breaking. For most of the notations and conventions we
follow the pedagogical article by Scherer [39]. For the
pion-decay constant we take Fπ = 186 MeV following the
convention of Ref. [16]. Although this is not the standard
convention in the literature using SU(2)L × SU(2)R ChPT, it
allows us to compare our results more easily with previous
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work on the study of ḡ(i)
π , which mostly adopt the SO(4)

representation:

(1) U = exp{i 2πaτa

F0
} transforms as U → VRUV

†
L under

SU(2)L × SU(2)R.
(2) u = √

U transforms as u → VRuK† = KuV
†
L where

K = K(VR,VL,U ) is a unitary matrix. It reduces to
isospin transformation matrix when VR = VL.

(3) The SU(2) nucleon field: N = (p n)T transforms as
N → KN .

(4) The chiral axial vector uμ = iu†(∂μU )u† is a Hermitian
and traceless operator. It transforms as uμ → KuμK†.

(5) The �-resonance field T i
μ transforms as T i

μ →
K̃ijKT i

μ, where

K̃ij = δij+εijkθk
V + 1

F0

(
πiθ

j
A − πjθ i

A

)+O(θ2,π (2)),

(A1)

satisfying K̃ij K̃ij ′ = δjj ′
. For SU(2)V, the matrix K̃ij

simply reduces to the transformation matrix of an
isospin triplet. Also, in order to eliminate the spin- 1

2 and
isospin- 1

2 components, T i
μ is subject to the following

constraints:

γ μT i
μ = 0,

τ iT i
μ = 0. (A2)

In particular, the first relation, combining with the
(relativistic) free-field EOM (i∂/ − m�)T i

μ = 0, gives
∂μT iμ = 0 that reduces to vμT i

μ = 0 in the HBChPT
formalism. In terms of the physical � fields, T i

μ can be
expressed as

T 1
μ = 1√

2

(
�++ − 1√

3
�0

1√
3
�+ − �−

)
μ

,

T 2
μ = i√

2

(
�++ + 1√

3
�0

1√
3
�+ + �−

)
μ

, (A3)

T 3
μ = −

√
2

3

(
�+

�0

)
μ

.

Details of the inclusion of � resonance in ChPT can
be found in Ref. [22].

(6) ωi
μ = 1

2 Tr[τ iuμ] is a Hermitian operator that trans-

forms as ωi
μ → K̃ijω

j
μ.

APPENDIX B: RELEVANT CHIRALLY
INVARIANT LAGRANGIAN

Here we write down the PCTC, chirally invariant La-
grangian involving pion, nucleon, and �-resonance fields
that is relevant to our work, expanded to O(E2) in
ChPT using the SU(2)L × SU(2)R formalism. It is given
by [22,39,40]

L = F 2
0

16
Tr[∂μU∂μU †] + N̄iv · DN + gAN̄uμSμN

+F−1
0 N̄ [γ1(v · u)2 + γ2u · u]N

− T̄
μ
i [iv · Dij − δ�]Tjμ

+ gπN�

[
T̄

μ
i ωi

μN + N̄ωi
μT

μ
i

] + · · · , (B1)

where Dμ and Dij
μ are the chiral covariant derivatives

on the nucleon and �, respectively, while the �-N
mass splitting is given by δ� = m� − mN . In the ab-
sence of external fields, we have Dμ = ∂μ + 1

2 {u†,∂μu} and

Dij
μ = δijDμ − i

2εijkTr[τ k{u†,∂μu}]. The value of the �-
nucleon-pion coupling constant is given by gπN� ≈ 1.05
according to Ref. [22]. Fitting to scattering observables
yields [39]

γ1 ≈ 0.621, γ2 ≈ −0.984. (B2)

Also, we have dropped the terms that are not needed in our
work, e.g., coupling term of the form N̄ [Sμ,Sν]uμuνN as well
as the ��π interaction terms.

The free propagators of pion, nucleon, and � resonance are

iDπ (k) = i

k2 − m2
π,0 + iε

,

iSN (k) = i

v · k + iε
, (B3)

iD�(k)ijμν = −i

v · k − δ� + iε
P 3/2

μν ξ
ij
3/2,

respectively, where

P 3/2
μν = gμν − vμvν + 4

d − 1
SμSν,

ξ
ij
3/2 = 2

3
δij − i

3
εijkτ k (B4)

are the projection operators for spin- 3
2 and isospin- 3

2 , respec-
tively.

APPENDIX C: LOOP INTEGRAL FUNCTIONS

Here we define several loop integral functions {Ii} that always appear when one calculates loop diagrams given in Figs. 1
and 2:

Ia ≡ μ4−d

∫
ddl

(2π )d
S · l

i

−v · l + iε

i

−v · l + iε
S · l

i

l2 − m2
π + iε

= 3m2
π

64π2

(
L′ + 1

3

)
, (C1)
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TABLE III. Numerical values of the renormalized loop functions with μ = 1 GeV.

I r
a I r

b I r
c I r

d I r
e I r

f I r
g

303 MeV2 5.66 MeV 2.08 MeV 2590 MeV2 −486 MeV2 27 000 MeV3 −273 000 MeV3

Ib ≡ μ4−d

∫
ddl

(2π )d
lα

−i

−v · l − δ� + iε
P

αβ
3/2lβ

i

l2 − m2
π + iε

i

l2 − m2
π + iε

= δ�

8π2
L′ + 1

8π2

⎡
⎣δ� − 2

√
δ2
� − m2

π ln
δ� +

√
δ2
� − m2

π

mπ

⎤
⎦, (C2)

Ic ≡ μ4−d

∫
ddl

(2π )d
S · l

i

−v · l + iε
S · l

i

l2 − m2
π + iε

i

l2 − m2
π + iε

= 3mπ

64π
, (C3)

Id ≡ μ4−d

∫
ddl

(2π )d
lα

−i

−v · l − δ� + iε
P

αβ
3/2gβδ

−i

−v · l − δ� + iε
P

δρ
3/2lρ

i

l2 − m2
π + iε

= 1

8π2

(
2δ2

� − m2
π

)
L′ + δ2

�

4π2
− δ�

2π2

√
δ2
� − m2

π ln
δ� +

√
δ2
� − m2

π

mπ

, (C4)

Ie ≡ μ4−d

∫
ddl

(2π )d
i

l2 − m2
π

= − m2
π

16π2
(L′ + 1), (C5)

If ≡ iμ4−d

∫
ddl

(2π )d
S · l

i

−v · l + iε
S · l

i

l2 − m2
π + iε

= m3
π

32π
, (C6)

Ig ≡ iμ4−d

∫
ddl

(2π )d
lμ

−i

−v · l − δ� + iε
P

μν
3/2lν

i

l2 − m2
π + iε

= δ�

12π2

(
−δ2

� + 3

2
m2

π

)
L′ + 1

72π2

⎡
⎣2δ�

(
6m2

π − 5δ2
�

) + 12
(
δ2
� − m2

π

)3/2
ln

δ� +
√

δ2
� − m2

π

mπ

⎤
⎦, (C7)

with the divergent quantity L′ defined in Eq. (24).
In Table III we give the numerical values of the renormalized loop functions I r

i where the divergent quantity L + 1 is subtracted
and the renormalization scale μ is taken to be 1 GeV.

APPENDIX D: RELEVANT ONE-LOOP CORRECTIONS IN ORDINARY CHIRAL PERTURBATION THEORY

Here we summarize some important results for ordinary ChPT at one loop that are necessary in our work. First we introduce
the relevant O(E3) and O(E4) Lagrangian that are crucial in the cancellation of one-loop UV divergence. They are [28,41]

LO(E3) = B20

(2πFπ )2 B0Tr[X̃q+]N̄iv · DN + · · · ,

LO(E4) = 2B0L4Tr[∂μU∂μU †]Tr[XqU
† + UX†

q] + 2B0L5Tr[∂μU †∂μU (U †Xq + X†
qU )]

+ 4B2
0L6Tr[XqU

† + UX†
q]2 + 4B2

0L7Tr[XqU
† − UX†

q]2 + 4B2
0L8Tr[UX†

qUX†
q + U †XqU

†Xq] + · · · . (D1)

The loop and LEC corrections to ZN and Zπ are given by

ZN − 1 = 9g2
Am2

π

16π2F 2
π

[
−2

3
+ ln

(
μ

mπ

)2
]

− g2
πN�

π2F 2
π

[(
2δ2

� − m2
π

)
L′ + 2δ2

� − 4δ�

√
δ2
� − m2

π ln
δ� +

√
δ2
� − m2

π

mπ

]
− 2Br

20m
2
π

π2F 2
π

,

√
Zπ − 1 = − m2

π

12π2F 2
π

(L′ + 1) − 16m2
π

F 2
π

(2L4 + L5) = 4

3F 2
π

Ie − 16m2
π

F 2
π

(2L4 + L5). (D2)

It is worth pointing out that the wave function renormalization of the nucleon field ZN is finite because its infinity is absorbed
by the LEC B20. Meanwhile, the wave function renormalization of the pion field Zπ remains infinite because the LEC 2L4 + L5
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is not used to subtract the infinity in Zπ . This is not an issue because Zπ is not a physical observable. On the other hand, the
pion-decay constant Fπ is a physical observable; therefore, its renormalization must be finite. The same combination of LECs
2L4 + L5 is used to subtract the divergence entering Fπ instead of Zπ . It gives

Fπ = F0

[
1 + m2

π

4π2F 2
π

(L′ + 1) + 16m2
π

F 2
π

(2L4 + L5)

]
= F0

[
1 − 4

F 2
π

I r
e + 16m2

π

F 2
π

(
2Lr

4 + Lr
5

)]
. (D3)

Also, the one-loop correction to the squared charged-pion mass is useful:

m2
π = m2

π,0

[
1 + 2

F 2
π

I r
e − 32m2

π

F 2
π

(
2Lr

4 + Lr
5 − 4Lr

6 − 2Lr
8

)]
. (D4)

Finally, since the LEC B20 is only used for ZN and not other quantities (as far as this work is concerned), we will not
distinguish the loop and LEC contribution to ZN in the main text. Rather, ZN is simply taken as a finite quantity.

APPENDIX E: SOME IMPORTANT DETAILS IN SEC. V

Here we collect some important intermediate results—including loop corrections, LEC corrections and implications of higher
order vacuum alignment—that are crucial in order to derive the main conclusions in Sec. V yet are too long to be put in the main
text.

1. θ term

First we consider the one-loop renormalization to Fπ ḡ(0)
π . Equation (23) together with Sec. V A 1 gives

δ
(
Fπ ḡ(0)

π

)
loop = Fπ

[
(ZN − 1)ḡ(0)

π +
(

− 2

F 2
π

Ie + 4g2
A

F 2
π

Ia

)
ḡ(0)

π − 40g2
πN�ḡ

(0)
��π

9F 2
π

Id

]
. (E1)

Similarly, the nucleon sigma term and mass splitting (recall their definitions in Sec. III B) also receive loop corrections from
the CSB operators we wrote down in Sec. V A 1. With the identification (g(0)

NNππ )q = −2(�mN )q/Fπ , (g(1,1)
NNππ )q = 0, and

(g(1,2)
NNππ )q = −(δmN )q/Fπ , we obtain

δ(�mN )q,loop = (ZN − 1)(�mN )q −
(

12g2
A

F 2
π

Ia + 6

F 2
π

Ie

)
(�mN )q − 8g2

πN�(�m�)q
F 2

π

Id

+12g2
A

F 2
π

If + 8g2
πN�

F 2
π

Ig − 3m4
π

16π2F 3
π

[
(γ1 + 4γ2)(L′ + 1) + 1

2
γ1

]
, (E2)

δ(δmN )q,loop = (ZN − 1)(δmN )q +
(

− 2

F 2
π

Ie + 4g2
A

F 2
π

Ia

)
(δmN )q − 40g2

πN�(δm�)q
9F 2

π

Id . (E3)

Here we include loop corrections for both (�mN )q and (δmN )q even though the tree-level matching relation only involves the
latter in the case of the θ term, because the former will appear in the matching relations induced by cEDM and LR4Q.

Next we consider the consequences of the introduction of the O(E4) Lagrangian. First, the O(E4) Lagrangian in the pion
sector defined in Eq. (D1) leads to a modification of the vacuum-alignment condition:

α = −εθ̄

2

[
1 + 64m2

π

F 2
π

(1 − ε2)
(
2Lr

7 + Lr
8

)]
, (E4)

where Lr
i are the renormalized O(E4) LECs in the pion sector. This gives rise to an extra O(E4) contribution to ḡ(i)

π :

δ
(
ḡ(0)

π

)
v

= −32(δmN )qm2
πε(1 − ε2)

(
2Lr

7 + Lr
8

)
F 3

π

θ̄ = δ
(
ḡ(0)

π

)r

v
,

δ
(
ḡ(1)

π

)
v

= −64(�mN )qm2
πε(1 − ε2)

(
2Lr

7 + Lr
8

)
F 3

π

θ̄ = δ
(
ḡ(1)

π

)r

v
. (E5)

The subscript “v” denotes the contribution from higher order vacuum alignment.
In the nucleon sector, the O(E4) Lagrangian (39) provides LEC contributions to the nucleon sigma term and mass splitting:

δ(�mN )q,ct = m4
π

F 3
π

[2(1 + ε2)f1 + 2f2 + (1 + ε2)f3],

δ(δmN )q,ct = −4εm4
π

F 3
π

(f2 + f3). (E6)
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The subscript “ct” denotes direct contributions from higher order LECs (which also play the role of counterterms, hence the
naming of the subscript). Meanwhile, the LEC contributions for ḡ(i)

π are given by

δ
(
Fπ ḡ(0)

π

)
ct

= 2(ε2 − 1)
(
f2 + f3 + f r

5 + f r
6

)
m4

π

F 3
π

θ̄ ,

δ
(
Fπ ḡ(1)

π

)
ct

= −2ε(ε2 − 1)
(
2f r

1 + f r
3 + 2f r

4 + 2f r
5 + f r

6

)
m4

π

F 3
π

θ̄ . (E7)

Note that the LECs for Fπ and
√

Zπ − 1 will always cancel each other so they never appear in δ(Fπ ḡ(i)
π )ct (see Appendix D).

2. Dipole-operators

First, the one-loop renormalization to Fπ ḡ(i)
π is

δ
(
Fπ ḡ(0)

π

)
loop = Fπ

[(
4g2

A

F 2
π

Ia − 2

F 2
π

Ie

)
ḡ(0)

π − 40g2
πN�ḡ

(0)
��π

9F 2
π

Id + (ZN − 1)ḡ(0)
π

]
,

δ
(
Fπ ḡ(1)

π

)
loop = Fπ

[
−

(
12g2

A

F 2
π

Ia + 6

F 2
π

Ie

)
ḡ(1)

π + 8g2
πN�ḡ

(1,1)
��π

F 2
π

Id + (ZN − 1)ḡ(1)
π

]
. (E8)

Meanwhile, with (g(0)
4π )c = (�m2

π )c/6F 2
π , (g(0)

NNππ )c = −2(�mN )c/Fπ , (g(1,1)
NNππ )c = 0, and (g(1,2)

NNππ )c = −(δmN )c/Fπ (recall
their definitions in Sec. III B), the one-loop renormalization to hadron mass parameters is

δ(�mN )c,loop = (ZN − 1)(�mN )c − (�mN )c

(
6

F 2
π

Ie + 12g2
A

F 2
π

Ia

)
− 8g2

πN�(�m�)c
F 2

π

Id

+12g2
A

(
�m2

π

)
c

F 2
π

Ic + 8g2
πN�

(
�m2

π

)
c

F 2
π

Ib − 3m2
π

(
�m2

π

)
c

8π2F 3
π

[(γ1 + 4γ2)
(
L′ + 1

) − 2γ2],

δ(δmN )c,loop = (ZN − 1)(δmN )c +
(

− 2

F 2
π

Ie + 4g2
A

F 2
π

Ia

)
(δmN )c − 40g2

πN�(δm�)c
9F 2

π

Id,

δ
(
�m2

π

)
c,loop = −

(
�m2

π

)
c
m2

π

4π2F 2
π

(
L′ + 1

2

)
. (E9)

Next we consider the consequences of the introduction of O(E2d̃) LECs. First, O(E2d̃) terms in the pion sector (54), together
with the O(E4) pion Lagrangian, modify the vacuum-alignment formula as

α = −
(
�m2

π

)
c,0(

m2
π

)
0

d̃1

d̃M
0

+ 64
(
�m2

π

)
c

F 2
π

[(
2Lr

6 + Lr
8

) + ε2
(
2Lr

7 + Lr
8

)] d̃1

d̃M
0

− 16Fπ

[(
2Gr

1 + Gr
3

)
d̃1 − ε

(
2Gr

2 + Gr
3

)
d̃0

]
. (E10)

Note that the divergent pieces of the LECs cancel each other, leaving α finite. This leads to extra vacuum-alignment contributions
to ḡ(i)

π :

δ
(
ḡ(0)

π

)
v

= 64(δmN )q
(
�m2

π

)
c

F 3
π

[(
2Lr

6 + Lr
8

) + ε2
(
2Lr

7 + Lr
8

)] d̃1

d̃M
0

− 16(δmN )q
[(

2Gr
1 + Gr

3

)
d̃1 − ε

(
2Gr

2 + Gr
3

)
d̃0

]
= δ

(
ḡ(0)

π

)r

v
,

δ
(
ḡ(1)

π

)
v

= 128(�mN )q
(
�m2

π

)
c

F 3
π

[(
2Lr

6 + Lr
8

) + ε2
(
2Lr

7 + Lr
8

)] d̃1

d̃M
0

− 32(�mN )q
[(

2Gr
1 + Gr

3

)
d̃1 − ε

(
2Gr

2 + Gr
3

)
d̃0

]
= δ

(
ḡ(1)

π

)r

v
. (E11)

Equation (54) also provides LEC contributions for the I = 0 and I = 2 pion mass shift:

δ
(
�m2

π

)
c,ct

= 32

3
m2

πFπ

[
3(2G1 + G3)d̃M

0 − ε
(
2Gr

2 + Gr
3

)
d̃M

1

] − 16d̃M
0 m2

πFπ (2G4 + G5) − 32m2
π

F 2
π

(2L4 + L5)
(
�m2

π

)
c
,

δ
(
δm2

π

)
c,ct

= 32

3
m2

πFπε
(
2Gr

2 + Gr
3

)
d̃M

1 . (E12)

Note that there is no loop contribution to (δm2
π )c so the corresponding LECs must be finite; therefore, 2G2 + G3 = 2Gr

2 + Gr
3.

Also notice that terms like 2L4 + L5 and 2G4 + G5 come from the wave-function renormalization.
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In the nucleon sector, the introduction of the O(E2d̃) Lagrangian gives the following consequences: First, it modifies the
cMDM-induced nucleon mass shifts:

δ(�mN )c,ct = 4m2
π

[(
d̃M

0 − εd̃M
1

)(
gr

1 + gr
4

) + d̃M
0 (g2 + g3)

]
,

δ(δmN )c,ct = 8m2
π

[
(g2 + g4)d̃M

1 − ε
(
gr

3 + gr
4

)
d̃M

0

]
. (E13)

Also, combining with the O(E4) LECs and the leading-order vacuum alignment, we obtain the LEC contributions for ḡ(i)
π :

δ
(
Fπ ḡ(0)

π

)
ct

= 16
(
�m2

π

)
c
m2

πε

3F 3
π

d̃1

d̃M
0

[
f2 + f3 + f r

5 + f r
6

] + 8m2
π

3

[
3d̃0

(
g2 + g4 + gr

7 + gr
8

) − εd̃1
(
gr

3 + gr
4 + g6 + g8

)]
,

δ
(
Fπ ḡ(1)

π

)
ct

= −4
(
�m2

π

)
c
m2

π

F 3
π

d̃1

d̃M
0

[
2(1 + ε2)f1 + 2f2 + (1 + ε2)f3 + 2(1 + ε2)f4 + (ε2 − 1)f5

+ (1 + ε2)
(
f r

5 + f r
6

)] + 8m2
π

[
d̃1

(
gr

1 + g2 + g3 + gr
4 + g5 + g8

) − εd̃0
(
gr

1 + gr
4 + gr

5 + gr
6 + gr

7 + gr
8

)]
,

δ
(
Fπ ḡ(2)

π

)
ct

= 4
(
�m2

π

)
c
m2

πε

3F 3
π

d̃1

d̃M
0

[
f r

2 + f r
3 + f r

5 + f r
6

] − 8m2
πε

3
d̃1

(
gr

3 + gr
4 + gr

6 + gr
8

)
. (E14)

3. Left-right four-quark

First, the one-loop renormalization to Fπ ḡ(i)
π is

δ
(
Fπ ḡ(0)

π

)
loop = Fπ

[(
4g2

A

F 2
π

Ia − 2

F 2
π

Ie

)
ḡ(0)

π − 40g2
πN�ḡ

(0)
��π

9F 2
π

Id + (ZN − 1)ḡ(0)
π

]
,

δ
(
Fπ ḡ(1)

π

)
loop = Fπ

[(
−12g2

A

F 2
π

Ia − 8

3F 2
π

Ie

)
ḡ(1)

π + 8g2
πN�ḡ

(1,1)
��π

F 2
π

Id −
(

40g2
A

Fπ

Ic + 80g2
πN�

3Fπ

Ib

)
ḡ(1)

πππ

+ 5ḡ
(1)
NN3π

F 2
π

Ie −
15m2

π

(
�m2

π

)
4q

16π2F 4
π

Im c4q

Re c4q

[(γ1 + 4γ2)(L′ + 1) − 2γ2] + (ZN − 1)ḡ(1)
π

]
. (E15)

Meanwhile, for LR4Q-induced hadron mass parameters, with the identification that (g(0)
NNππ )4q = −16(�mN )4q/3Fπ ,

(g(0)
4π )4q = 2(�m2

π )4q/3F 2
π , and (g(2)

4π )4q = 2(δm2
π )4q/F

2
π at tree level, we obtain

δ(�mN )4q,loop = (ZN − 1)(�mN )4q −
(

12g2
A

F 2
π

Ia + 16

F 2
π

Ie

)
(�mN )4q − 8g2

πN�(�m�)4q

F 2
π

Id

+
(

12g2
A

F 2
π

Ic + 8g2
πN�

F 2
π

Ib

)(
�m2

π

)
4q

−
3m2

π

(
�m2

π

)
4q

8π2F 3
π

[(γ1 + 4γ2)(L′ + 1) − 2γ2],

δ
(
�m2

π

)
4q,loop =

3
(
�m2

π

)
4q

m2
π

8π2F 2
π

(
L′ + 4

3

)
,

δ
(
δm2

π

)
4q,loop =

3
(
δm2

π

)
4q

m2
π

4π2F 2
π

(
L′ + 2

3

)
. (E16)

Next, we consider consequences of the introduction of O(E2c4q) LECs. First, O(E2c4q) terms in the pion sector (68), together
with the O(E4) pion Lagrangian, modify the vacuum-alignment condition as

α = −3

4

(
�m2

π

)
4q,0(

m2
π

)
0

Im c4q

Re c4q

+
48

(
�m2

π

)
4q

F 2
π

[(
2Lr

6 + Lr
8

) + ε2(2Lr
7 + Lr

8

)] Im c4q

Re c4q

−16F 2
π Im c4q

(
Kr

1 + 4Kr
2

) +
15

(
�m2

π

)
4q

32π2F 2
π

Im c4q

Re c4q

(L + 1). (E17)
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Unlike the case of the θ term and cEDM, the angle α here is UV divergent. It does not cause any problem though since α itself
is not a physical observable. The modified vacuum-alignment condition leads to extra contributions for ḡ(0)

π and ḡ(1)
π :

δ
(
ḡ(0)

π

)
v

=
48(δmN )q

(
�m2

π

)
4q

F 3
π

[
(2L6 + L8) + ε2

(
2Lr

7 + Lr
8

)] Im c4q

Re c4q

− 16(δmN )qFπ Im c4q(K1 + 4K2)

= δ
(
ḡ(0)

π

)r

v
+

15
(
�m2

π

)
4q

(δmN )q

32π2F 3
π

Im c4q

Re c4q

(L + 1),

δ
(
ḡ(1)

π

)
v

=
96(�mN )q

(
�m2

π

)
4q

F 3
π

[
(2L6 + L8) + ε2

(
2Lr

7 + Lr
8

)] Im c4q

Re c4q

− 32(�mN )qFπ Im c4q(K1 + 4K2)

= δ
(
ḡ(0)

π

)r

v
+

15
(
�m2

π

)
4q

(�mN )q

16π2F 3
π

Im c4q

Re c4q

(L + 1), (E18)

which are also UV divergent. This should not bother us because these divergences, together with the divergences from the
one-loop corrections to Fπ ḡ(i)

π , will be canceled by the O(E2c4q) LECs, as we discuss later.
Finally, Eq. (68) also contributes to the pion mass shifts:

δ
(
�m2

π

)
4q,ct

= −32m2
π

F 2
π

(2L4 + L5)
(
�m2

π

)
4q

− 16F 2
π Re c4q

(
2K4 − 1

3
K3

)
m2

π + 16

3
F 2

πm2
πRe c4q(3K1 + 22K2),

δ
(
δm2

π

)
4q,ct

= −32m2
π

F 2
π

(2L4 + L5)
(
δm2

π

)
4q

− 16

3
F 2

πRe c4qK3m
2
π − 64

3
F 2

πm2
πRe c4qK2. (E19)

The introduction of O(E2c4q) LECs in nucleon sector contributes to the LR4Q-induced nucleon mass shifts:

δ(�mN )4q,ct = 2Fπm2
πRe c4q[2h1 + 4h2 + h3 + h4 + 2h5],

δ(δmN )4q,ct = 4εFπm2
πRe c4q[h3 + h4 − 2h5]. (E20)

Next, combining with the O(E4) LECs and the leading-order vacuum alignment, we obtain the LEC contributions for ḡ(i)
π :

δ
(
Fπ ḡ(0)

π

)
ct

=
4
(
�m2

π

)
4q

m2
πε

F 3
π

Im c4q

Re c4q

[
f2 + f3 + f r

5 + f r
6

] + 4Fπ Im c4qm
2
πε

3
[3h3 + 5h4 − 2h5],

δ
(
Fπ ḡ(1)

π

)
ct

= −
3
(
�m2

π

)
4q

m2
π

F 3
π

Im c4q

Re c4q

[
2(1 + ε2)f1 + 2f2 + (1 + ε2)f3 + 2(1 + ε2)f4 + (ε2 − 1)f5 + (1 + ε2)

(
f r

5 + f r
6

)]
+ 4Fπ Im c4qm

2
π [2h1 + 8h2 + h3 + 3h4 + 2h5],

δ
(
Fπ ḡ(2)

π

)
ct

=
(
�m2

π

)
4q

m2
πε

F 3
π

Im c4q

Re c4q

[
f2 + f3 + f r

5 + f r
6

] + 8Fπ Im c4qm
2
πε

3
[h4 − h5]. (E21)

As we noticed before, one may choose the values of the combinations 3h3 + 5h4 − 2h5, 2h1 + 8h2 + h3 + 3h4 + 2h5, and
h4 − h5 to subtract out the UV-divergences from δ(Fπ ḡ(i)

π )loop + Fπδ(ḡ(i)
π )v together with the residual UV divergences coming

from the LECs fi in δ(Fπ ḡ(i)
π )ct . Details of such subtractions are given in Table IV.

APPENDIX F: DIVERGENCE SUBTRACTION AND RENORMALIZED LOW-ENERGY CONSTANTS

In this section we summarize the divergence subtractions by the counter terms. Following the Gasser–Leutwyler subtraction
scheme, the relation between the bare and renormalized LEC is given by

A = Ar + B

π2
(L + 1), (F1)

where A is the bare LEC, Ar is the renormalized LEC, and B is a finite quantity. Also, since any physical result must be μ
independent, the renormalized LEC Ar must be μ dependent in the following way:

Ar (μ′) = Ar (μ) + B

π2
ln

(
μ′

μ

)2

, (F2)

in order to cancel the μ dependence in the divergent loop integral.
The values of the finite quantity B for different combinations of LECs are summarized in Table IV.
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TABLE IV. Infinity subtraction by the LECs.

A B

2L4 + L5 − 1
64

2L6 + L8 − 3
512

2L7 + L8 0

B20
9π2g2

A

32 + π2g2
πN�

2
m2

π −2δ2
�

m2
π

2f1 + f3,2f4 + f5,f5 + f6 0

f2
Fπ (c1+2c′

1)
2B0

( 9g2
A

16 − 3
8

) + Fπ g2
πN�(c2+2c′

2)

2B0

2δ2
�−m2

π

m2
π

+ Fπ g2
πN�δ�

6m2
π

2δ2
�−3m2

π

m2
π

+ 3(γ1+4γ2)
32

f2 + f3 − Fπ c1
2B0

( 3g2
A

16 + 1
8

) + 5Fπ g2
πN�c2

18B0

2δ2
�−m2

π

m2
π

2G1 + G3 − 3β

16

2G2 + G3 0

2G4 + G5 − β

4

g1 + g4,g3 + g4 0

g5 + g6,g7 + g8

g2 + g3
c̃1+2c̃′

1
4

( 9g2
A

16 − 3
8

) + g2
πN�(c̃2+2c̃′

2)

4
2δ2

�−m2
π

m2
π

− 2g2
πN�βFπ δ�

m2
π

+ 3β(γ1+4γ2)
4

g2 + g4 − c̃1
4

( 3g2
A

16 + 1
8

) + 5g2
πN�c̃2

36
2δ2

�−m2
π

m2
π

g6 + g8 − 2Fπ βc1
B0

( 3g2
A

16 + 1
8

) + 10Fπ g2
πN�βc2

9B0

2δ2
�−m2

π

m2
π

2f4 − f5 − Fπ (c1+2c′
1)

2B0

( 9g2
A

16 − 3
8

) − Fπ g2
πN�(c2+2c′

2)

2B0

2δ2
�−m2

π

m2
π

− 1
4β

(g5 + g8) − Fπ g2
πN�δ�

6m2
π

4δ2
�−3m2

π

m2
π

− 3(γ1+4γ2)
16

2K4 − 1
3 K3 − 2ρ

3

K3 − ρ

4

3K1 + 22K2 − 11ρ

2

K2 − ρ

4

2h1 + 4h2 + h3 + h4 + 2h5 ˜̃c1

( 9g2
A

16 − 1
) + g2

πN�
˜̃c2

2δ2
�−m2

π

m2
π

− 32g2
πN�ρ

3
Fπ δ�

m2
π

+ 4ρ(γ1 + 4γ2)

h3 + h4 − 2h5 0

3h3 + 5h4 − 2h5
32Fπ ρc1

B0

( 3g2
A

64 + 1
2

) − 40Fπ g2
πN�ρc2

9B0

2δ2
�−m2

π

m2
π

2f4 − f5 − 1
6

( 9g2
A

16 − 1
)( 3Fπ (c1+2c′

1)
B0

+ 3 ˜̃c1
4ρ

)
− 1

16ρ
(2h1 + 8h2 + h3 − g2

πN�

6

( 2δ2
�−m2

π

m2
π

)( 3Fπ (c2+2c′
2)

B0
+ 3 ˜̃c2

4ρ

)
+3h4 + 2h5) − Fπ g2

πN�δ�

6m2
π

4δ2
�−11m2

π

m2
π

− γ1+4γ2
2

h4 − h5
4Fπ ρc1

B0

( 3g2
A

16 + 1
8

) − 20Fπ g2
πN�ρc2

9B0

2δ2
�−m2

π

m2
π
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