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Final state interactions and the extraction of neutron single spin asymmetries from semi-inclusive
deep-inelastic scattering by a transversely polarized 3He target
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The semi-inclusive deep-inelastic electron scattering off transversely polarized 3He, i.e., the process e + �3He →
e′ + h + X, with h being a detected fast hadron, is studied beyond the plane-wave impulse approximation. To
this end, a distorted spin-dependent spectral function of a nucleon inside an A = 3 nucleus is actually evaluated
through a generalized eikonal approximation, in order to take into account the final state interactions between
the hadronizing system and the (A − 1) nucleon spectator one. Our realistic description of both nuclear target
and final state is a substantial step forward for achieving a reliable extraction of the Sivers and Collins single
spin asymmetries of the free neutron. To illustrate how and to what extent the model dependence due to the
treatment of the nuclear effects is under control, we apply our approach to the extraction procedure of the neutron
single spin asymmetries from those measured for 3He for values of the kinematical variables relevant both for
forthcoming experiments at Jefferson Laboratory and, with an exploratory purpose, for the future Electron Ion
Collider.
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I. INTRODUCTION

In recent years, special efforts on both experimental and
theoretical sides have been focused on semi-inclusive deep
inelastic scattering (SIDIS), i.e., the process A(l,l′h)X where,
in the final state, a scattered lepton l′ and a hadron h are
detected in coincidence, after the interaction of a lepton l with
a hadronic system A. Nowadays, it is clear that inclusive deep
inelastic scattering (DIS), i.e., the process A(l,l′)X, despite
intense experimental investigations in recent decades, cannot
answer a few crucial questions on hadron structure. Indeed,
at least three long-standing problems cannot be explained
through DIS measurements, namely (i) the fully quantitative
description of the so-called EMC effect (i.e., the modification
of the nucleon partonic structure due to the nuclear medium
[1]); (ii) the solution of the so-called “spin crisis,” i.e., the fact
that the nucleon spin does not originate from only the spins of
its valence quarks [2]; (iii) the measurement of the chiral-odd
parton distribution function (PDF) called transversity (see,
e.g., Refs. [3,4] and references therein quoted) that comple-
ments the leading-twist collinear description of a polarized
nucleon. As is well known, transversity is related to the amount
of transversely polarized quarks inside a transversely polarized
nucleon and it is not measurable in DIS, where a flip of the
quark chirality cannot take place. Through DIS processes, on
both proton (see, e.g., Refs. [5,6]) and nuclear targets (see,
e.g., Refs. [7–9]), it is possible to investigate only partonic
distributions of longitudinal momentum (i.e., parallel to the
direction of the incoming lepton) and helicity. Therefore,
in order to access information on the transverse structure

of the target, either in coordinate or momentum space, one
necessarily has to go beyond DIS measurements (see, e.g.,
Refs. [10] and [11] for recent reviews on nucleon and nuclear
targets, respectively).

SIDIS processes are an important tool for increasing our
knowledge of hadron dynamics. Indeed, if the detected hadron
is fast, it likely originates from the fragmentation of the active
quark, after absorbing the virtual photon. Hence, the detected
hadron opens a valuable window on the motion of quarks inside
the parent nucleon, before the interaction with the photon
occurs. In particular, their transverse motion, not seen in the
collinear case, represents the subject of intense experimental
efforts in the study of SIDIS reactions, through which one can
access the so-called transverse-momentum-dependent parton
distributions (TMDs) (see, e.g., Ref. [4]). Those distributions
provide a wealth of information on the partonic dynamics,
eventually shedding light on the challenging three issues
listed above. Besides the main topic represented by TMDs,
one should remember that the detected hadron carries also
information on the hadronization mechanism itself. The SIDIS
cross sections can be parametrized, at leading twist, by six
TMDs; this number reduces to three in the collinear case (with
only two TMDs measurable in DIS [4]) and increases to eight
once the so-called time-reversal odd TMDs (i.e., the Sivers
[12] and Boer-Mulders [13] functions) are considered [4].

It should be emphasized that, in order to experimentally
investigate the wide field of TMDs, one should measure
cross-section asymmetries, using different combinations of
beam and target polarizations (see, e.g., Ref. [14]). Moreover,
for completing the study of TMDs, one should achieve a sound
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flavor decomposition, possible only by collecting a detailed
knowledge of the neutron TMDs. The present investigation
moves from the observation that free neutron targets are not
available and nuclei have to be used as effective neutron targets.
In particular, the study of the neutron spin structure is highly
favored by choosing a polarized 3He target, as it has been done
extensively in DIS studies. In the 1990s, procedures to extract
the neutron spin-dependent structure functions from 3He data
in the DIS regime, taking properly into account Fermi motion
and binding effects, were proposed [15] and successfully
applied (see, e.g., Ref. [16]). Such a detailed description
of the target nucleus was obtained in plane-wave impulse
approximation (PWIA) by using the so-called spin-dependent
spectral function, whose diagonal elements yield the probabil-
ity distribution to find a nucleon with a given momentum,
missing energy, and polarization inside the nucleus. It is
worth noting that, within PWIA, accurate 3He spin-dependent
spectral functions, based on realistic calculations of both the
target nucleus and the spectator pair in the final state (fully
interacting through the NN interaction adopted for 3He), have
been built and used in the past 20 years [17–22].

The question whether similar procedures can be extended
to SIDIS is of great relevance, due to the several experiments
that exploit a polarized 3He target (see, e.g., Ref. [23]),
for accessing the transverse momentum and spin of the
partons inside the neutron. For instance, wide interest has
arisen about the possibility to use a transversely polarized
3He target for measuring azimuthal single spin asymmetries
(SSAs) of the neutron, which are sensitive to time-reversal odd
TMDs and to the Collins fragmentation functions (FF) [24]
generated by leading twist final state interactions [25]. In the
first measurements of SSAs, through SIDIS off transversely
polarized proton and deuteron targets, the proton SSAs were
found to be sizable [26], while those of deuteron were found
to be negligible [27], pointing to a large cancellation between
the proton and neutron contributions. A high luminosity
environment coupled to a suitable neutron target, as a polarized
3He (at level of 90%, an effective neutron target), allows one
first to better assess the flavor separation and then accurately
test its sensitivity to quark angular momenta. Because of
the need for increasing experimental knowledge on neutron
TMDs through independent measurement, an experiment of
SIDIS off transversely polarized 3He was soon proposed
[28]. As is well known, some significant steps have been
already carried out along the suggested path, since azimuthal
asymmetries in the production of leading π± (K±) from
transversely polarized 3He have been already measured at
Jefferson Laboratory (JLab), with a beam energy of 6 GeV
[29], and new experiments will be soon performed after
completing the 12-GeV upgrade [30].

In view of those experimental efforts, a realistic PWIA
analysis of SIDIS off transversely polarized 3He has been
performed [31]. A realistic spin-dependent spectral function,
corresponding to the nucleon-nucleon AV18 interaction [32],
has been used for the description of nuclear dynamics and
the issue of the extraction of the neutron information from
3He data has been addressed. According to Ref. [31], one
can safely extend this to SIDIS, where both PDFs and FFs
are involved, as the model-independent extraction procedure

is based on the realistic evaluation of the proton and neutron
polarizations in 3He and widely used in inclusive DIS [16]. As
a matter of fact, such an extraction procedure is able to take into
account effectively the momentum and energy distributions of
the polarized bound nucleons in 3He.

In general, SIDIS off nuclear targets can happen through at
least two, rather different, sets of processes:

(1) The standard reaction (most familiar), where a fast
hadron is detected mainly in the forward direction,
implying that the hadron has been produced by the
leading quark. Therefore, this reaction, representing
the dominant mechanism in the kinematics of the JLab
experiments of Refs. [29,30], can be used to investigate
TMDs inside the hit nucleon.

(2) The spectator SIDIS, where a slow (A − 1) nucleon
system, acting as a spectator of the photon-nucleon
interaction, is detected, while the produced fast hadron
is not.

The spectator SIDIS process has been proven very useful to
investigate the unpolarized DIS functions F1,2(x) of a bound
nucleon, and therefore to clarify the origin of the EMC effect
(see, e.g., Refs. [33–37]). At the same time, this process can
also provide useful information on quark hadronization in a
medium, complementary to that obtained so far by the standard
SIDIS process. It is noteworthy that the polarization degrees
of freedom of the target substantially enrich the wealth of
information one can gather, as shown in Ref. [38], where
a spectator SIDIS, with a detected deuteron, off a polarized
3He target was studied. Through such a polarized SIDIS, one
can obtain fresh information on the spin-dependent structure
functions g1,2(x) for bound nucleons and, ultimately, on the
origin of the polarized EMC effect.

In polarized (as well as unpolarized) SIDIS processes, the
effects of the final state interaction (FSI) that occur among
the hadronizing system (produced after the quark-photon
knockout) and the (A − 1) spectator system has to be carefully
analyzed. For the case of a polarized 3He, this study started
in Ref. [38], where the trinucleon distorted spin-dependent
spectral function has been introduced but restricted to the
deuteron spectator system. In order to realistically take
into account the abovementioned FSI, a generalized eikonal
approximation (GEA) has been adopted, i.e., a framework
successfully introduced for describing unpolarized SIDIS
off nuclei [33]. To apply such a distorted spin-dependent
spectral function to the standard polarized SIDIS by 3 �He,
one has to consider all the possible states of the two-nucleon
spectator system. But due to FSI between the spectator system
and the quark debris, produced after DIS off an internal
nucleon with given polarization, this distribution function is
remarkably more complicated than the PWIA spin-dependent
spectral function, adopted in the description of both DIS
by unpolarized 3He [15] and SIDIS [31]. However, efforts
for evaluating a realistic distorted spin-dependent spectral
function are worth attempting since its thorough knowledge
represents a fundamental help for reliably disentangling TMDs
from the nuclear structure, in the experimental cross sections.
In perspective, an experimental check of the robustness of
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the description of the nuclear effects could be in principle
carried out by exploiting the isodoublet nature of the trinucleon
bound states. In the case of a polarized 3H, one could extract
(i) the proton polarized structure functions when a spectator
SIDIS is considered or (ii) the relevant TMDs when a standard
SIDIS is investigated. The proton information extracted from
3H could be compared with the ones gathered using free
proton targets, shedding light on the relevance and nature
of nuclear effects. Nowadays, the use of a polarized 3H
target seems too challenging, but it is worth mentioning that
important achievements have been obtained in the past decade
in handling such a problematic target, as demonstrated by
the final approval (with scientific rating A), at JLab, of an
experiment dedicated to DIS by a 3H target [39].

As a concluding remark, it should be pointed out that, at the
present stage, the needed relativistic description of SIDIS is
restricted to the kinematics and the elementary cross section,
as discussed in the following sections. Indeed, in order to
embed the very successful nonrelativistic phenomenology of
the nuclear structure, developed over the past decades, in
a fully Poincaré covariant approach, one could exploit the
light-front framework, that originates from the seminal work
by Dirac on the forms of relativistic Hamiltonian dynamics
[40]. A thorough formal investigation of a light-front spin-
dependent spectral function for a J = 1/2 target, in impulse
approximation, has been recently presented in Ref. [41] (see
also Refs. [42,43] for preliminary results). Obviously, this
distribution function is the first step for constructing a Poincaré
covariant description of SIDIS reactions, since in analogy with
the transition from the PWIA spectral function to the distorted
one, FSI effects have to be taken into account also in the
Poincaré covariant approach.

Aims of the present paper are first to extend the calculation
of the distorted spin-dependent spectral function of 3He
performed in Ref. [38], in order to include the excited states of
the two-nucleon spectator system (recall that in Ref. [38] only
the deuteron state was retained). As a second step, we apply
our formalism to the standard SIDIS process, with kinematical
conditions typical of experiments to be performed in the next
years at JLab and in the future (possibly near) at the Electron
Ion Collider (EIC), focusing on the extraction of quark TMDs
inside the neutron, i.e., the needed ingredients for making
complete the flavor decomposition. One can easily realize
that, since in standard SIDIS the final fast hadronic state can
reinteract with a two-nucleon scattering state, this process is
much more involved than spectator SIDIS, where FSIs occur
between the final hadronic state and the detected deuteron.

The paper is organized as follows. In Sec. II, we present the
basic formalism for the cross section, valid for the standard
SIDIS process, where a hadron h is detected in coincidence
with the scattered charged lepton. The main quantities relevant
for the calculations are presented and the PWIA framework
is reviewed, to better appreciate the difference with the FSI
case, discussed in the next sections. In Sec. III, the SIDIS
reaction �3He(e,e′h)X is investigated in detail, introducing the
distorted spin-dependent spectral function, that represents the
main ingredient of our method for implementing FSI effects,
through a generalized eikonal approximation. In Sec. IV, the
dependence of the nuclear hadronic tensor upon the target

polarization is studied. In Sec. V, the expressions to be used
for evaluating the nuclear SSAs, both in PWIA and with
FSI taken into account, are presented and a strategy for the
extraction of the neutron information is discussed. In Sec. VI,
the results for the distorted spectral functions and light-cone
momentum distributions are presented and compared with
the corresponding PWIA calculations; furthermore, the finite
values of the momentum and energy transfers corresponding
to the actually proposed experiments are adopted for the
evaluation of the 3He Collins and Sivers asymmetries and
for the extraction of neutron asymmetries with FSI effects
taken into account and implementing the comparison with the
PWIA calculations. Eventually, in the last section, conclusions
are drawn and perspectives presented. Important formal details
are collected in two appendixes.

II. THE SIDIS CROSS SECTION

The differential cross section for the generic SIDIS process
off a polarized target A, i.e., l + �A = l′ + h + X when the
final pseudoscalar hadron h is detected, can be written in the
laboratory frame and in one-photon exchange approximation
as follows (cf., e.g., Refs. [4,34,38]),

dσ

dϕ�dxBjdydPh

= α2
em mN

Q4
y

1

2Eh

LμνWs.i.
μν (SA,Q2,Ph),

(1)

where, for incoming and outgoing charged leptons
with 4-momentum kμ = (E,�k) and k′μ = (E ′,�k′), one has
Q2 = −q2 = −(k − k′)2 = �q 2 − ν2 = 4EE ′ sin2(θ�/2), i.e.,
the square 4-momentum transfer in ultrarelativistic approxima-
tion (with �q = �k − �k′, ν = E − E ′, and θ� ≡ θ�̂k�k′). Moreover,
xBj = Q2/(2mNν) is the Bjorken scaling variable, y = ν/E ,
mN is the nucleon mass, αem is the electromagnetic fine
structure constant, ϕ� is the azimuthal angle of the detected
charged lepton, Ph = (Eh,Ph) is the 4-momentum of the
detected hadron h with mass mh, and SA is the polarization
vector of the target nucleus.

The unpolarized leptonic tensor Lμν is an exactly calculable
quantity in QED. In the ultrarelativistic limit it gets the form

Lμν = 2[kμk′
ν + k′

μkν − (k · k′)gμν]. (2)

The semi-inclusive (s.i.) hadronic tensor of the target with
polarization four-vector SA and mass M2

A = P 2
A is defined as

Ws.i.
μν (SA,Q2,Ph) = 1

2MA

∑
X

〈 SA,PA|Ĵμ|Ph,X 〉

× 〈Ph,X|Ĵν |SA,PA 〉
× δ4(PA + q − PX − Ph)dτX, (3)

where the covariant normalization 〈p|p′ 〉 =
2E(2π )3δ(p − p′) has been assumed and dτX is the
suitable phase-space factor for the undetected state X, given
in turn by a state X′ with baryon number 1 and an A − 1
recoiling nuclear system. One should notice that, in Eq. (3),
the integration over the phase-space volume of the detected
hadron, h, does not have to be performed.
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In the following, the cross section for SIDIS off transversely
polarized 3He will be worked out, taking into account final state
interaction effects. For this, it is necessary first to recall the
results obtained in PWIA.

Within PWIA, the nuclear tensor Eq. (3) is approximated
using the following assumptions: (i) the nuclear current
operator is written as the sum of single nucleon operators
ĵN
μ ; (ii) the FSI between the debris originating by the struck

nucleon and the fully interacting (A − 1) nuclear system is
disregarded, as suggested by the kinematics of the process
under investigation; (iii) the coupling of the virtual photon
with the (A − 1) system is disregarded, due to the large 4-
momentum transferred in the process; (iv) the effect of boosts
is not considered (they will be properly taken into account in
a light-front framework elsewhere, following the procedure
addressed in Refs. [41–43]). In this way, the complicated final
baryon states |Ph,X〉 are approximated by a tensor product of
hadronic states, viz.,

|Ph,X〉PWIA = |PA−1 〉 ⊗ |Ph 〉 ⊗ |X′ 〉, (4)

where |PA−1 〉 indicates the state (properly antisymmetrized)
of the fully interacting (A − 1)-nucleon system, which acts
merely as a spectator, |X′ 〉 describes the baryonic state that
originates together with |Ph 〉 from the hadronization of both
the quark which has absorbed the virtual photon and the other
colored remnants. The nuclear tensor Ws.i.

μν (SA,Q2,Ph) can be
related therefore to the one of a single nucleon. This is obtained
inserting in Eq. (3) complete sets of nucleon plane waves and
(A − 1)-nucleon interacting states, given by∑

λ

∫
dpN

2EN (2π )3
|λ,pN 〉〈 λ,pN | = 1, (5)

∑
fA−1

∑∫
ε∗
A−1

ρ(ε∗
A−1)

∫
dPA−1

2EA−1(2π )3

× ∣∣�fA−1

ε∗
A−1

,PA−1
〉〈

�
fA−1

ε∗
A−1

,PA−1

∣∣ = 1, (6)

where pN ≡ {EN =
√

m2
N + |pN |2,pN } is the on-shell four-

momentum of a nucleon and �
fA−1

ε∗
A−1

is the intrinsic part of the
(A − 1)-nucleon state with quantum numbers fA−1 and energy
eigenvalue ε∗

A−1. Moreover, EA−1 =
√

(M∗
A−1)2 + |PA−1|2

with M∗
A−1 = ZA−1mp + (A − 1 − ZA−1)mn + ε∗

A−1. The
symbol with the sum overlapping the integral indicates that
the (A − 1) system has both discrete and continuum energy
spectra: This corresponds to negative and positive values of
the eigenvalue ε∗

A−1. In Eq. (6), ρ(ε∗
A−1) is the proper state

density, that for A = 3 reads

ρ2bbu = 1

(2π )3
, ρ3bbu = 1

(2π )6

mN

√
mNε∗

2

2
, (7)

with the labels 2bbu and 3bbu indicating the two-body
and three-body breakup channels, respectively. Furthermore,
recalling that Eq. (4) implies∑

X

dτX →
∑
X′

dτX′
∑
fA−1

∑∫
ε∗
A−1

ρ(ε∗
A−1)

∫
dPA−1

2EA−1(2π )3
, (8)

one obtains the following expression for the nuclear tensor in
PWIA:

Ws.i.;IA
μν (SA,Q2,Ph)

=
∑

X′,λλ′

∑
N

∫
dEP

N SA

λλ′ (E,pN )
1

2EN

〈 λ′,pN |ĵN
μ |Ph,X

′〉

× 〈Ph,X
′|ĵN

ν |λ,pN 〉δ4(PA + q − PA−1 − Ph − PX′ )

× dτX′
dPA−1

(2π )3
, (9)

where, with regard to Eq. (3), PX′ + PA−1 is in place of PX,
and the nucleon three-momentum, pN = PA − PA−1, is fixed
by the translation invariance of the initial nuclear vertex, viz.,〈

�∗ fA−1
εA−1

,PA−1; λ,pN

∣∣SA,PA

〉
=

√
2EN 2EA−12MA(2π )3δ(PA − PA−1 − pN )

× 〈
�∗ fA−1

εA−1
; λ,pN

∣∣SA,�A

〉
. (10)

In Eq. (10), �A is the intrinsic wave function of the target
nucleus, with mass MA and (PA − PA−1)2 �= m2

N .
The matrix elements P

N SA

λλ′ (E,pN ) in Eq. (9) contain the
description of the nuclear structure and are given in PWIA by

P
N SA

λλ′ (E,pN ) =
∑
fA−1

∑∫
ε∗
A−1

ρ(ε∗
A−1)ON SA

λλ′ (ε∗
A−1,pN )

× δ(E + MA − mN − M∗
A−1), (11)

where E is the usual missing or removal energy, E = M∗
A−1 +

mN − MA = ε∗
A−1 + BA, with BA being the binding energy

of the target nucleus. The quantity mN − E is the off-shell
mass of a nucleon inside the target nucleus, when the (A − 1)
system acts as a spectator. In Eq. (11), ON SA

λλ′ (ε∗
A−1,pN ) is the

following product of PWIA overlaps

ON SA

λλ′ (ε∗
A−1,pN ) = 〈

�
fA−1

ε∗
A−1

,λ,pN

∣∣SA,�A

〉
× 〈

SA,�A

∣∣�fA−1

ε∗
A−1

,λ′,pN

〉
. (12)

The quantities P
N SA

λλ′ (E,pN ), Eq. (11), are the matrix elements
of the 2 ⊗ 2 spin-dependent spectral function of a nucleon
inside the nucleus A, with polarization SA [19]. The trace
of the spectral function yields the probability distribution to
find a nucleon in the nucleus A with three-momentum pN ,
removal energy E, and spin projection equal to λ. The suitable
normalization is

1

2

∑
λN

∫
dE

∫
dpNP

N SA

λλ (E,pN ) = 1. (13)

Assuming the polarized target in a pure state, the nuclear
wave function has definite spin projections on the spin
quantization axis, chosen as usual along the polarization vector
SA. In agreement with the definition of the spin-dependent
spectral function given in Refs. [18,19], in the complete set
of the nucleon plane waves, the spin projection λ and λ′ are
defined with respect to the z axis.
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In Ref. [15], the so-called longitudinal spectral function
was introduced:

P N ||(E,pN ) = P
N S||
1
2

1
2

(E,pN ) − P
N S||
− 1

2 − 1
2
(E,pN ), (14)

giving the probability distribution to have a nucleon N polar-
ized along the z direction minus the probability distribution to
have a nucleon N polarized in the opposite direction to the z
axis, if SA = S|| is directed along the positive z axis.

In Ref. [31], the spin projections λ and λ′ have been defined
with respect to the x axis and the perpendicular spectral
function has been defined,

P N ⊥(E,pN ) = P
N S⊥
1
2

1
2

(E,pN ) − P
N S⊥
− 1

2 − 1
2
(E,pN ), (15)

giving the probability distribution to have a nucleon N polar-
ized along the x direction minus the probability distribution
to have a nucleon N polarized in the opposite direction to
the x axis, if SA = S⊥ is directed along the positive x axis.
It is worthwhile to note that, due to rotational invariance, the
two quantities Eqs. (14) and (15) are equal. In relativistic
light-front dynamics, where transverse rotations are interaction
dependent, this is not true any more, as has been shown in
Ref. [43].

As for the Cartesian coordinates, we adopt the DIS con-
vention, i.e., the z axis is directed along the three-momentum
transfer q and the plane (x,z) is the scattering plane. Notice
that, in the DIS limit, the direction of the three-momentum
transfer coincides with that of the lepton beam, i.e., q || ke.

The nuclear tensor Eq. (9) can be written

Ws.i.;IA
μν (SA,Q2,Ph) =

∑
λλ′

∑
N

∫
dpN

∫
dE

mN

EN

wN s.i.
μν

× (p̃N ,Ph,λ
′λ)P N SA

λλ′ (E,pN ), (16)

where the integration over PA−1 has been changed to the one
over pN = PA − PA−1, and the semi-inclusive nucleon tensor
[cf. Eq. (3)] is given by

wN s.i.
μν (p̃N ,Ph,λ

′λ)

= 1

2mN

∑
X′

〈pN,λ′|ĵN
μ |Ph,X

′ 〉〈Ph,X
′|ĵN

ν |pN,λ 〉

× δ4(p̃N + q − Ph − PX′ )dτX′ , (17)

where p̃N = PA − PA−1 is such that p̃2
N �= m2

N = p2
N .

Eventually, for the nuclear cross section given in Eq. (1),

σA(SA) ≡ dσ (SA)

dϕ�dxBjdydPh

, one gets the following expression

in PWIA:

σA;IA(SA) =
∑
λλ′

∑
N

∫
dpN

∫
dE

α̃mN

EN

σN
λλ′P

N SA

λλ′ (E,pN ),

(18)

where

σN
λλ′ ≡ dσN

λλ′

dϕ�dxBjdydPh

= α2
em mN

Q4

mNν

(pN · k)

1

2Eh

LμνwN s.i.
μν (p̃N ,Ph,λ

′λ) (19)

represents the corresponding cross section for the scattering of
a charged lepton from a polarized moving nucleon. In Eq. (18),
α̃ is given by

α̃ ≡ (pN · k)

EmN

(20)

and is usually called the “flux factor.” When energies are
close to the Bjorken limit, α̃ coincides with the light-cone
momentum fraction of the nucleon inside the nucleus, i.e.,

lim
→Bj

α̃ = A(pN · q)

(PA · q)
. (21)

III. THE DISTORTED SPIN-DEPENDENT
SPECTRAL FUNCTION

In order to go beyond PWIA [cf. Eq. (4)], it is necessary
to deal with the FSI between the debris, originating from
the struck nucleon, and the fully interacting (A − 1) nuclear
system. In view of this, the dependence upon the space
coordinates in the current operator is kept, since we will focus
on the action of the current onto the final state in coordinate
space.

The starting point is the hadronic tensor written as follows:

Ws.i.
μν (SA,Q2,Ph) = 1

2MA

∑
X

〈 SA,PA|Ĵμ(r̂i)|Ph,X 〉

× 〈Ph,X|Ĵν(r̂i)|SA,PA 〉
× δ(MA + ν − EX − Eh)dτX. (22)

For a 3He target, the matrix element of the current operator
Ĵμ(r̂1,r̂2,r̂3) between the nuclear ground state, |�SA

3 (1,2,3) 〉,
and a generic final state, |�f (1,2,3) 〉, is evaluated by intro-
ducing the following approximation:

Ĵμ(r̂1,r̂2,r̂3) ≈
∑

i

ĵμ(ri), (23)

where ĵμ(ri) is the one-body transition current operator that
describes the electromagnetic response of the single nucleon
inside the target. In this way, the matrix element becomes

〈Ph,X|Ĵμ(r̂1,r̂2,r̂3)|S3,P3 〉
= 〈�f (1,2,3)|Ĵμ(r̂1,r̂2,r̂3)|�S3

3 (1,2,3) 〉
≈

∑
i

〈�f (1,2,3)|ĵμ(r̂i)|�S3
3 (1,2,3) 〉

= 3〈�f (1,2,3)|ĵμ(r̂1)|�S3
3 (1,2,3) 〉. (24)

In what follows, for the sake of concreteness, the active nucleon
is labeled i = 1 and the spectator indexes are 23.

For constructing a realistic approximation of FSI, it is useful
to consider that, in the SIDIS processes we aim to investigate,
the momentum transfer q is rather large, and therefore h, the
leading pseudoscalar meson to be detected, and X′, which has
baryon number equal to 1 [cf. Eq. (4)], move throughout the
A − 1 remnants with high velocity. This observation motivates
the introduction of the generalized eikonal approximation
(see, e.g., Refs. [33,38] and references quoted therein) for
estimating the rest of FSI not taken into account through PWIA
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FIG. 1. The SIDIS process A(e,e′h)X, with final state interac-
tions taken into account.

[cf. Eq. (4)]. Then, the final state can be approximated in
coordinate space as

〈 r1r2r3|�f (1,2,3) 〉 ≈ A√
V

√
3
�

f
23(r2,r3)χλY

φ(ξY )

×
√

2EY eipY ·r1G(r1,r2,r3), (25)

where A is the antisymmetrization operator that acts on the
final state, given by a recoiling two-nucleon system and
a debris Y originated by the struck nucleon (see below),
�

f
23(r2,r3) is the properly antisymmetrized wave function

of the recoiling two-nucleon system, V is the normalization
volume of the global motion of the final state, and the
amplitude G(r1,r2,r3), identically equal to 1 in PWIA, is
the nonsingular part of the matrix elements of the Glauber
operator, i.e.,

〈r′
1,r

′
2,r

′
3|Ĝ|r1,r2,r3〉 = δ(r′

1 − r1)δ(r′
2 − r2)

× δ(r′
3 − r3)G(r1,r2,r3). (26)

The Glauber amplitude depends only upon intrinsic coordi-
nates, r,ρ, related to ri through

r1 = 2
3ρ + R, r2 = − 1

3ρ + 1
2 r + R,

r3 = − 1
3ρ − 1

2 r + R, (27)

and therefore

G(r1,r2,r3) → G(r,ρ). (28)

In Eq. (25), Y is the final debris produced by the nucleon
after the absorption of the virtual photon. In the process under
consideration, it coincides with a leading pseudoscalar meson
to be detected and a baryonic remnant X′ (cf. Fig. 1). The
function φ(ξY ) characterizes the internal structure of the debris
that will hadronize in h + X′, χλY

is its spin state, while eipY r1

is the plane wave describing the propagation of the c.m. of the
debris.

By using intrinsic coordinates, the final state in Eq. (25)
becomes

〈 r1r2r3|�f (1,2,3) 〉
≈ A√

V
√

3

√
2EY eipY ·(2ρ/3+R)χλY

φ(ξY )

×
√

2E23e
iP23·(R−ρ/3)φ

f23

ε∗
23

(r)G(r,ρ), (29)

where P23 is the total momentum of the (2,3) system and the
intrinsic part of the two-nucleon state, φ

f23

ε∗
23

(r), has quantum
numbers f23 and energy eigenvalue ε∗

23.
Disregarding the photon coupling to the spectator pair, one

can apply the familiar approximation

〈�f (1,2,3)|ĵμ(r̂1)|�S3
3 (1,2,3) 〉

≈ 1√
3
√

V

√
2EY

∫
dr1dr2dr3�

∗f
23 (r2,r3)e−ipY ·r1χ+

λY

×φ∗(ξY )G(r1,r2,r3)ĵμ(r1)�S3
3 (r1,r2,r3),

(30)

with

�
S3
3 (r1,r2,r3) =

√
2E3e

iP3·Rψ
S3
3 (r,ρ) =

√
2M3ψ

S3
3 (r,ρ),

(31)

where ψ
S3
3 (r,ρ) is the intrinsic nuclear wave function and the

total momentum of the nucleus is P3 = 0.
Moreover, if G(r1,r2,r3) is such that (i) it does not depend

upon spins and (ii) it commutes with ĵμ(r1) (as it does in
PWIA, since G(r1,r2,r3) ≡ 1), one can write

〈�f (1,2,3)|ĵμ(r̂1)|�S3
3 (1,2,3) 〉

≈ 1√
3
√

V

√
2EY

∫
dr1dr2dr3�

∗f
23 (r2,r3)e−ipY ·r1χ+

λY

×φ∗(ξY )ĵμ(r1)G(r1,r2,r3)�S3
3 (r1,r2,r3). (32)

This is the main assumption of our approach, that is exact when
the one-body operator ĵμ does not contain the momentum p̂.
Otherwise, one can have a nonzero commutator [ĵμ,G]. In the
present SIDIS case, the explicit expression of the transition
current operator ĵμ is unknown and we cannot compute
the commutator, but we assume a vanishing result, namely
[p̂,G(1,2,3)] ∼ ∂/∂ρG(r,ρ) ∼ 0. It is worth noting that if only
the longitudinal part of the current operator is relevant and
the dependence on the coordinates in the Glauber operator is
mainly given by the transverse components, one can largely
justify our assumption. As a matter of fact, we adopt in the
following the same approach used in Ref. [38], where the
distorted spectral function was evaluated only in the 2bbu
channel. This amounts to consider GEA (see, e.g., Ref. [33]
and references therein). In this scheme, the Glauber amplitude
reads

G(r1,r2,r3) =
∏
i=2,3

[1 − θ (ri|| − r1||)�

× (ri⊥ − r1⊥,ri|| − r1||)], (33)

where the parallel and perpendicular components of the vectors
ri are determined with respect to pY , i.e., to the direction of
propagation of the debris. In DIS, when |q|2 � |pN |2, this
direction coincides with the direction of q. The profile function
�(ri⊥ − r1⊥,ri|| − r1||) in Eq. (33), unlike in the standard
Glauber approach, depends not only upon the transverse rela-
tive separation but also upon the longitudinal one. The Heavy-
side function θ (ri|| − r1||) assures causality in the rescattering
process. In the following, we adopt for �(ri⊥ − r1⊥,ri|| − r1||)
the expression already used in Refs. [33,38], based on the
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hadronization model of Ref. [35] to evaluate the total cross
section of the debris-nucleon interaction, depending on the
kinematics of the process, viz.,

�(ri⊥ − r1⊥,ri|| − r1||)

= (1 − iη)σeff(ri|| − r1||)
4πb0

exp

[
− (ri⊥ − r1⊥)2

2b2
0

]
. (34)

In this approach, the resulting Glauber operator turns out to
be mildly dependent on the longitudinal distance, so that the
assumption of a vanishing commutator between the operator
and the current is qualitatively justified in the present scheme.
Details on the model and on the corresponding parameters can
be found in Refs. [33,38].

An important issue has now to be addressed. The effective
cross section, σeff , in Eq. (32), models the hadronization of the
debris interacting with the recoiling nuclear system. The debris
consists of one nucleon and radiated mesons and gluons. The
number of radiated gluons depends on the momentum scale
of the process, given by Q2. Besides the emission of mesons
and gluons will stop when a maximum longitudinal distance is
reached, which increases with the invariant mass, WY , of the
debris. As a consequence, σeff depends also on WY . Therefore,
in Eq. (34), one should write σeff(ri|| − r1||,Q2,WY ) and not
simply σeff(ri|| − r1||). Nevertheless, in the kinematics we are
going to discuss in this paper it occurs that (i) for a given
value of E , the range of variation of Q2 is not wide enough to
produce important changes in the gluon radiation rate and (ii)
σeff depends weakly on the maximum longitudinal distance.

In other words, in the kinematics we are going to analyze,
for a given E , the dependence of σeff on Q2 and WY is weak.
As a matter of fact, in Refs. [33,38], σeff(ri|| − r1||,Q2,WY ) �
σeff(ri|| − r1||) was assumed in actual calculations. In Ref. [33],
the model of σeff with this assumption was proven to be able to
reasonably describe data of Ref. [44] for unpolarized spectator
SIDIS processes, in a kinematics which is close to the one
we are discussing. Therefore, to avoid a too heavy notation,
throughout the paper we drop the dependence of σeff on Q2

and WY in the relevant expressions.
For completeness we mention that, in the actual form

for G(r,ρ), Eq. (33), there is a θ function that generates
a contribution to the commutator proportional to δ3(ρ).
Obviously, such a contribution is vanishing if not too severe
singularities are present in both target and spectator wave
functions. It is worth noticing that in the quasielastic case,
where an explicit form of the current operator is commonly
accepted, the above assumption, called the factorized form
of FSI, has been discussed against the unfactorized one in
Ref. [45].

Coming back to Eq. (32) and following the spirit of the
standard procedure adopted in PWIA, one can insert the one-
nucleon completeness [cf. Eq. (5)]∑

λ

∫
dk

2Ek(2π )3
|k,λ 〉〈 k,λ| = I, (35)

where I is the identity, and the free nucleon states |k,λ 〉 are nor-
malized according to 〈 k,λ|k′,λ′ 〉 = 2Ekδλλ′(2π )3δ(k − k′).
Then, one can obtain from Eq. (32) the following
expression:

〈�f (1,2,3)|ĵμ(r̂1)|�S3
3 (1,2,3) 〉

≈ 1√
3
√

V

∫
dk

(2π )32Ek

∑
λ

〈pY ,λY ; φ(ξY )|ĵμ(r̂′
1)|k,λ 〉

[√
2Ek

∫
dr1dr2dr3χ

†
λe

−ik·r1�
∗f
23 (r2,r3)G(r1,r2,r3)�S3

3 (r1,r2,r3)

]
.

(36)

By changing coordinates [see Eq. (29)] and exploiting the translation invariance of the initial vertex in Eq. (10), one gets for
Eq. (36)

〈�f (1,2,3)|ĵμ(r̂1)|�S3
3 (1,2,3) 〉

≈ 1√
3
√

V

∑
λ

∫
dk

(2π )32Ek

〈pY ,λY φ(ξY )|ĵμ(0)|k,λ 〉(2π )3δ(q + k − pY )(2π )3
√

2Ek2E232M3δ(k + P23)

×
∫

drdρ
[
χ
†
λe

−i2k·ρ/3eiP23·ρ/3φ
f23∗
ε∗

23
(r)G(r,ρ)�S3

3 (r,ρ)
]

= (2π )3

√
3
√

2EmisV

√
2E232M3δ(q − pmis − pY )

∑
λ

〈pY ,λY φ(ξY )|ĵμ(0)|pmis,λ 〉
∫

drdρ
[
χ
†
λe

ipmis·ρφ
f23∗
ε∗

23
(r)G(r,ρ)�S3

3 (r,ρ)
]
,

(37)

where 〈pY ,λY φ(ξY )|ĵμ(0)|k,λ 〉 is the matrix element of the unknown transition current operator involved in the quark-photon

vertex (notice that the factor
√

2EY 2Ek is put inside the matrix element), and pmis ≡ {Emis =
√

M2
N + |pmis|2, − pmis}, with

pmis = q − pY = P23 being the three-momentum of the system “23” in the final state, �
f
23(r2,r3). Indeed, pmis is also the

three-momentum of the initial spectator system and eventually of the nucleon (with opposite sign) before absorbing the virtual
photon. This is a consequence of the assumed commutativity between the one-body current and the Glauber amplitude. It should
be pointed out that the matrix element 〈pY ,λY φ(ξY )|ĵμ(0)|pmisλ 〉 describes SIDIS off a free nucleon, within our approach.
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Summarizing the above results and recalling that X → (A − 1) ⊗ Y → (A − 1) ⊗ h ⊗ X′, one can write the hadron tensor
for a polarized 3He target as follows:

Ws.i.
μν (S3,Q

2,Ph) = 1

2M3

∑
X

〈 S3,P3|Ĵμ|Ph,X 〉〈Ph,X|Ĵν |S3,P3 〉δ(M3 + ν − EX′ − Eh − E23)dτX

≈ 3

V
(2π )3

∑
X′

dτ ′
X

∑
f23

∑∫
ε∗

23

ρ(ε∗
23)

∫
dpmis

2Emis
δ(M3 + ν − EX′ − Eh − E23)

× δ(q − pmis − ph − pX′)
∑

λ

〈pY ,λY φ(ξY )|ĵμ(0)|pmis,λ 〉
∫

drdρ
[
χ
†
λe

ipmis·ρφ
f23∗
ε∗

23
(r)G(r,ρ)�S3

3 (r,ρ)
]

× δ(q − pmis − ph − pX′)
∑
λ′

〈pmis,λ
′|ĵμ(0)|φ(ξY )pY ,λY 〉

∫
drdρ

[
χ
†
λ′e

ipmis·ρφ
f23∗
ε∗

23
(r)G(r,ρ)�S3

3 (r,ρ)
]∗

= 3(2π )3
∑
X′

dτ ′
X

∑
f23

∑∫
ε∗

23

ρ(ε∗
23)

∫
dpmis

2Emis
δ(M3 + ν − EX′ − Eh − E23)δ(q − pmis − ph − pX′ )

×
∑

λ

〈pY ,λY φ(ξY )|ĵμ(0)|pmis,λ 〉
∫

drdρ
[
χ
†
λe

ipmis·ρφ
f23∗
ε∗

23
(r)G(r,ρ)�S3

3 (r,ρ)
]

×
∑
λ′

〈 λ′,pmis|ĵμ(0)|φ(ξY )pY ,λY 〉
∫

drdρ
[
χ
†
λ′e

ipmis·ρφ
f23∗
ε∗

23
(r)G(r,ρ)�S3

3 (r,ρ)
]∗

, (38)

where pY = ph + X′ has been inserted and the following phase space of the spectator system has been adopted:∑
f23

∑∫
ε∗

23

ρ(ε∗
23)

∫
dP23

(2π )32E23
=

∑
f23

∑∫
ε∗

23

ρ(ε∗
23)

∫
dpmis

(2π )32E23
. (39)

In conclusion, the nuclear hadronic tensor reads

Ws.i.
μν (S3,Q

2,Ph) =
∑
λλ′

∑
N

∫
dpmis

∫
dE

mN

Emis
wN s.i.

μν (p̃mis,Ph,λ
′λ)PN S3

λλ′ (E,pmis), (40)

where the semi-inclusive nucleon tensor [cf. Eq. (17)] is given by

wN s.i.
μν (−p̃mis,Ph,λ

′λ) = 1

2mN

∑
X′

〈pmis,λ
′|ĵN

μ |Ph,X
′ 〉〈Ph,X

′|ĵN
ν |pmis,λ 〉δ4(q − p̃mis − Ph − PX′ )dτX′ , (41)

with p̃mis ≡ {E − mN,pmis} and the isospin formalism has been released (i.e., 3 → ∑
N ). Equation (40) introduced the distorted

spin-dependent spectral function given by the following expression for a polarized 3He target,

PN S3
λλ′ (E,pmis) =

∑
f23

∑∫
ε∗

23

ρ(ε∗
23) ÕN S3 f23

λλ′ (ε∗
23,pmis) δ(E + M3 − mN − M∗

23), (42)

with the product of distorted overlaps defined by

ÕN S3 f23
λλ′ (ε∗

23,pmis) = 〈
λ,e−ipmis·ρφ

f23

ε∗
23

(r)G(r,ρ)
∣∣�S3

3 (r,ρ)
〉〈

�
S3
3 (r′,ρ ′)

∣∣G(r′,ρ ′)φf23

ε∗
23

(r′)e−ipmis·ρ ′
,λ′〉, (43)

with an obvious meaning of the adopted notation (see
Appendix A for the detailed expression of the overlaps).

One should notice that the distorted spectral function
depends, through the profile function Eq. (34), on the effective
cross section σeff(ri|| − r1||). As discussed above, below
Eq. (34), this quantity depends, in principle, also on Q2

and WY . As a consequence, the distorted spectral function
is a process-dependent quantity, at variance with the spectral
function evaluated in PWIA. In principle, at any kinematical

point (given by E,θe,xBj , and θpmisq), one should evaluate
a different distorted spectral function. Nevertheless, for the
reasons discussed below Eq. (32), in the kinematics we are
going to study, for a fixed initial electron energy E and
scattering angle θe, the dependence of σeff on Q2 and WY

is rather mild and can be disregarded. As a consequence, also
the spectral function, for fixed E and θe, can be considered
independent on xBj and θpmisq . To avoid heavy notation, this
dependence is not shown throughout the paper.
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The generalization of the above formalism to a polarized
nuclear target with A nucleon is straightforward. In particular,
for the nuclear cross section σA(SA) ≡ dσ (SA)

dϕedxBj dydPh
, one has

σA(SA) =
∑
λλ′

∑
N

∫
dpmis

∫
dE

α̃mN

EN

σN
λλ′PN SA

λλ′ (E,pmis).

(44)

One should notice that, formally, Eq. (40) coincides with
Eq. (16), relative to the PWIA case, if the distorted spectral
function is substituted by the PWIA one. This is a conse-
quence of the assumption made between Eqs. (30) and (32),
concerning the commutation property of the Glauber operator
with the nucleon current. The FSI described in this manner,
called factorized FSI in the literature (see, e.g., Ref. [45]
and references therein), lead to convolution-like formulas,
as the ones obtained in the PWIA case, where the distorted
spectral function appears instead of the PWIA one. The latter
can be recovered just putting the Glauber operator identically
equal to 1. This observation has crucial consequences in the
following sections of the present paper.

It is clear that our model for the FSI could benefit
from a comparison of our theoretical results against absolute
cross section of SIDIS processes off a polarized 3He target.
Unfortunately, no paper dealing with SIDIS cross sections off
a polarized 3He is available. Eventually, very recently, a paper
has been published by the Hall A Collaboration at JLab, which
concerns the unpolarized sector only [46].

Since it is important to check our reaction model, within
PWIA or including FSI, we plan to accurately and widely ana-
lyze these new data possibly in strict contact with experimental
collaborations to plan future investigations of the SIDIS cross
sections.

IV. THE DEPENDENCE OF THE NUCLEAR HADRONIC
TENSOR UPON THE TARGET NUCLEUS POLARIZATION

As a matter of fact, the whole formalism developed in the
PWIA case in Ref. [31] can be exploited now in the present
scenario, once the distorted overlaps are properly evaluated
and inserted in the relevant equations.

Notice that, in PWIA, the spectral function P
S3
λλ (E,pmis)

in (42) defines the probability distribution to remove from a
polarized 3He with polarization S3 a polarized nucleon with
momentum −pmis and polarization sN (characterized by spin
projection λ on the quantization axis) leaving the remnant
(A − 1) system with removal energy E. Once the full FSI
is taken into account, even through GEA, the probabilistic
interpretation of the distorted spectral function is somehow
lost.

A further issue is represented by the fact that the direction
of the target polarization axis, S3, may not always be parallel
to the direction which determines the eikonal G matrix,
i.e., the direction of pY (or, in DIS, the direction of q). In
particular, in the SIDIS process of interest here, the target
nucleus is transversely polarized, i.e., S3 ⊥ q. To reconcile the
polarization axis and the eikonal approximation, one needs to
rotate the quantization axis of the target wave function from

the direction of q to the direction of the polarization S3, namely

〈 θ,φ|�3He 〉Ŝ3

= 〈 θ ′,φ′|D1/2(0,β,0)|�3He 〉q̂ = cos(β/2)

× 〈
θ ′,φ′∣∣�M=1/2

3He

〉
q̂ + sin(β/2)

〈
θ ′,φ′∣∣�M=−1/2

3He

〉
q̂, (45)

where the subscript indicates the direction of the quantization
axis, cos β = Ŝ3 · q̂, and the polarization vector S3 is supposed
to be in the (x,z) plane. In Eq. (45), D

1/2
σ ′σ are the suitable

Wigner D functions [47]. Therefore in the general case, the
nuclear tensor in Eq. (40) is modified and reads

Ws.i.
μν (S3,Q

2,Ph) = cos2(β/2) W
1
2

1
2

μν + sin2(β/2)W
− 1

2 − 1
2

μν

+ sin β
[

1
2

(
W

1
2 − 1

2
μν + W

− 1
2

1
2

μν

)]
, (46)

Ws.i.
μν (−S3,Q

2,Ph) = sin2(β/2) W
1
2

1
2

μν + cos2(β/2)W
− 1

2 − 1
2

μν

− sin β
[

1
2

(
W

1
2 − 1

2
μν + W

− 1
2

1
2

μν

)]
. (47)

In the above equations, we have defined

WMM ′
μν =

∑
λλ′

∑
N

∫
dpmis

∫
dE

mN

EN

wN s.i.
μν (−p̃mis,Ph,λ

′λ)

×PN MM ′
λλ′ (E,pmis), (48)

where the third components M and M ′ are defined with respect
to the direction q̂. In Eq. (48) one has [cf. Eq. (42)]

PN MM ′
λλ′ (E,pmis) =

∑
f23

∑∫
ε∗

23

ρ(ε∗
23) ÕN MM ′ f23

λλ′ (ε∗
23,pmis)

× δ(E + M3 − mN − M∗
23), (49)

with ÕN M M ′ f23
λλ′ , a natural nondiagonal generalization of

Eq. (43), viz.,

ÕN M M ′ f23
λλ′ (ε∗

23,pmis)

= 〈
λ,e−ipmis·ρφ

f23

ε∗
23

(r)G(r,ρ)|�M
3 (r,ρ)

〉
× 〈

�M ′
3 (r′,ρ ′)

∣∣G(r′,ρ ′)φf23

ε∗
23

(r′)e−ipmis·ρ ′
λ′〉. (50)

It is worth noticing that, in Eq. (46), the upper scripts
1
2

1
2 (− 1

2 − 1
2 ) denote a nucleus polarized along (opposite) the

quantization axis, while ± 1
2 ∓ 1

2 indicate a nucleus polarized
in the perpendicular (with regard to the quantization axis)
plane, i.e., in our case, along the x axis.

Let us consider first a longitudinally polarized nucleus;
in this case, we have to consider in Eq. (46) only the terms
with M = M ′ = ±1/2. One gets the following longitudinal
contribution to the hadronic tensor:

W ||
μν(S3,Q

2,Ph) =
∑
λλ′

∑
N

∫
dpmis

∫
dE

mN

EN

×
[

cos2 β

2
PN 1

2
1
2

λλ′ wN λλ′
μν

+ sin2 β

2
PN − 1

2 − 1
2

λλ′ wN λλ′
μν

]
. (51)
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In Eq. (51), wN λλ′
μν is a short-hand notation for

wN s.i.
μν (pmis,Ph,λ

′λ), previously used. In the SIDIS process
under investigation, since leptons are unpolarized, the leptonic
tensor is symmetric and, as a consequence, only the symmetric
part of the hadronic spin-dependent tensor, wsNλλ′

μν , is involved.
For the diagonal terms of the symmetric part of the nucleon
tensor (see, e.g., Ref. [3] for its general structure), one gets〈

1
2

∣∣ŵsN
μν

∣∣ 1
2

〉 = −〈− 1
2

∣∣ŵsN
μν

∣∣ − 1
2

〉
, (52)

while for the off-diagonal terms one has

〈− 1
2

∣∣ŵsN
μν

∣∣ 1
2

〉 = 〈
1
2

∣∣ŵsN
μν

∣∣ − 1
2

〉∗
. (53)

Then, making use of the properties under complex conjugation
of the quantities (50), defined with respect to the quantization
axis, namely

ÕN MM ′ f23
λλ′ (E,pmis) = (−1)M+M ′+λ+λ′[ÕN −M−M ′ f23

−λ−λ′ (E,pmis)
]∗

, (54)

ÕN MM ′ f23
λλ′ (E,pmis) = [ÕN M ′M f23

λ′λ (E,pmis)
]∗

, (55)

one obtains

W ||
μν(S3,Q

2,Ph) = cos β
∑
N

∫
dpmis

∫
dE

mN

EN

{[PN 1
2

1
2

1
2

1
2

− PN 1
2

1
2

− 1
2 − 1

2

]
w

sN 1
2

1
2

μν + [PN 1
2

1
2

1
2 − 1

2
w

sN 1
2 − 1

2
μν + PN 1

2
1
2

− 1
2

1
2

w
sN − 1

2
1
2

μν

]}
. (56)

In Eq. (56), the first term in square brackets represents the parallel spin-dependent spectral function.
We are interested in single spin asymmetries measured with transversely polarized targets. The relevant hadronic tensor is

therefore

�Ws.i.
μν (S⊥,Q2,Ph) = Ws.i.

μν (S3 = S⊥,Q2,Ph) − Ws.i.
μν (S3 = −S⊥,Q2,Ph), (57)

where we choose S⊥ along the x axis, i.e., β = 90◦. Then, using Eqs. (46) and (47), the quantity relevant to describe the JLab
experiments turns out to be

�Ws.i
μν (S⊥,Q2,Ph) = W

1
2 − 1

2
μν + W

− 1
2

1
2

μν . (58)

Therefore, we have to evaluate

�Ws.i
μν (S3,Q

2,Ph) =
∑
λλ′

∑
N

∫
dpmis

∫
dE

mN

EN

[PN 1
2 − 1

2
λλ′ (E,pmis) wNsλλ′

μν + PN − 1
2

1
2

λλ′ (E,pmis) wNsλλ′
μν

]
=

∑
N

∫
dpmis

∫
dE

mN

EN

{∑
λ

[PN 1
2 − 1

2
λλ (E,pmis) + PN − 1

2
1
2

λλ (E,pmis)
]
wsNλλ

μν

+
∑

λ

[PN 1
2 − 1

2
λ−λ (E,pmis) + PN − 1

2
1
2

λ−λ (E,pmis)
]
wsNλ−λ

μν

}
. (59)

One obtains, for the term in the last line of Eq. (59),∑
λ

[PN 1
2 − 1

2
λ−λ (E,pmis) + PN − 1

2
1
2

λ−λ (E,pmis)
]
wsNλ−λ

μν = 2Re
{[PN 1

2 − 1
2

1
2 − 1

2
(E,pmis) + PN − 1

2
1
2

1
2 − 1

2
(E,pmis)

]
w

sN 1
2 − 1

2
μν

}
= 2Re

[PN 1
2 − 1

2
1
2 − 1

2
(E,pmis) + PN − 1

2
1
2

1
2 − 1

2
(E,pmis)

]
Re

[
w

sN 1
2 − 1

2
μν

]
− 2Im

[PN 1
2 − 1

2
1
2 − 1

2
(E,pmis) + PN − 1

2
1
2

1
2 − 1

2
(E,pmis)

]
Im

[
w

sN 1
2 − 1

2
μν

]
, (60)

where the relations (53) and (55) have been used.
In Appendix B, it is shown that the contribution of the last line in Eq. (60) can be safely neglected, being of higher order in

p⊥/mN , where p⊥ is the nucleon transverse-momentum inside the target, with p = −pmis. Besides, in the remaining expression,
only the zero-order term in p⊥/mN yields a sizable contribution. Hence, p⊥ does not give relevant contributions to the hadronic
tensor, and the expression of the nucleon hadronic tensor obtained in a collinear frame, where p⊥ = 0, for example, the one
given in Ref. [3] for the Collins process (cf. Sec. 6.5), can be safely used. As a consequence, the final expression for the nuclear
hadronic tensor, suitable for calculations of SSAs, reads

�Ws.i
μν (S3,Q

2,Ph) =
∑
N

∫
dpmis

∫
dE

mN

EN

{PN ⊥(E,pmis)w
N⊥
μν + 2,[PN (⊥−||)(E,pmis)]w

sN 1
2

1
2

μν

}
, (61)

where Eqs. (52) and (54) have been used to obtain the last term.
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In Eq. (61), the transverse spectral function has been introduced

PN ⊥(E,pmis) = Re
[PN 1

2 − 1
2

1
2 − 1

2
(E,pmis) + PN − 1

2 + 1
2

1
2 − 1

2
(E,pmis)

]
, (62)

and the quantity

wN⊥
μν ≡ [

w
sN 1

2 − 1
2

μν + w
sN − 1

2
1
2

μν

]
(63)

has been defined. Furthermore, in Eq. (61), the transverse-longitudinal spectral function,

PN (⊥−||)(E,pmis) = PN 1
2 − 1

2
1
2

1
2

(E,pmis) + PN − 1
2

1
2

1
2

1
2

(E,pmis), (64)

is a real quantity which represents, in PWIA, the probability distribution to find a longitudinally polarized nucleon minus the
probability distribution to have a nucleon polarized in the direction opposite to the z axis in a transversely polarized nucleus. It
should be pointed out that, in PWIA, the transverse spectral function PN ⊥(E,pmis) yields the probability distribution to find a
nucleon polarized along the x axis minus the probability distribution to find a nucleon polarized against the x axis in a transversely
polarized nucleus with a polarization vector S3 along the x axis.

For the nuclear cross section, Eq. (44), one gets

σ 3(S3) =
∑
N

∫
dpmis

∫
dE

α̃mN

EN

[σN ⊥PN ⊥(E,pmis) + σN ||PN (⊥−||)(E,pmis)], (65)

where σN ⊥ and σN || are the cross sections, Eq. (19), for transversely and longitudinally polarized nucleons, respectively.
Note also that, when FSI are included, the quantities corresponding to the PWIA parallel spectral function, P N ||, Eq. (14), and

the PWIA perpendicular spectral function, P N ⊥, Eq. (15), are different, due to the eikonal direction which breaks the rotational
invariance of the problem.

V. THE COLLINS AND SIVERS ASYMMETRIES FOR 3He

As discussed in the introduction, a series of SIDIS experiments are planned at JLab, using a transversely polarized 3He target
and an unpolarized electron beam, detecting a fast pion (kaon) in the final state. The Sivers and Collins SSAs of 3He will be
therefore measured, with the aim of extracting the corresponding neutron quantities. The formal results of the present approach
for the 3He SSAs, and for the extraction of the neutron information, are presented in this section.

The Sivers and Collins asymmetries are defined through proper moments of the experimental SIDIS cross sections, viz.,

A
Col(Siv)
3 ≡

∫
dφS3dφh sin(φh ± φS3 )[σ 3(S3,φh,φS3 ,z) − σ 3(S3,φh,φS3 + π,z)]∫

dφhσ
3
unpol(xBj ,Q2,Ph)

, (66)

where φh is the azimuthal angle between the hadron and the lepton planes, φS3 is the azimuthal angle between the target
polarization and the lepton plane according to the conventions fixed in Ref. [48], and z = Eh/ν is the fraction of energy transfer
carried by the detected meson. Inserting the cross section Eq. (65) in the above equation, one gets

A
Col(Siv)
3 =

∫ 3
xBj

dα
[
�σn

Col(Siv)(xBj/α,Q2,z)f ⊥,i
n (α,Q2,E) + 2�σ

p
Col(Siv)(xBj/α,Q2,z)f ⊥,i

p (α,Q2,E)
]∫

dα
[
σn(xBj/α,Q2,z)f i

n(α,Q2,E) + 2σp(xBj/α,Q2,z)f i
p(α,Q2,E)

] , (67)

where E is the energy of the incoming lepton [see below Eq. (1)] and f
⊥,i
p(n)(α,Q2,E) are the light-cone momentum distributions

of transversely polarized nucleons in a transversely polarized nucleus for i = PWIA or FSI. One defines

f
⊥,i
N (α,Q2,E) =

∫ Emax

Emin

dEf
⊥,i
N (α,Q2,E,E), (68)

where

f
⊥,i
N (α,Q2,E,E) =

∫
dpmis

mN

EN

PN ⊥, i (E,pmis)δ

(
α + p̃mis · q

mNν

)
θ
[
W 2

Y − (mN + mπ )2
]
, (69)

with WY being the invariant mass of the debris Y that hadronizes in a nucleon and at least one pseudoscalar meson. For the sake
of definiteness, in Eq. (69) and in what follows we consider a π− in the final state. Let us recall that in the unpolarized case, the
light-cone momentum distributions read

f i
N (α,Q2,E) =

∫ Emax

Emin

dEf i
N (α,Q2,E,E), (70)
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with

f i
N (α,Q2,E,E) =

∫
dpmis

mN

EN

PNi(E,pmis)δ

(
α + p̃mis · q

mNν

)
θ
[
W 2

Y − (mN + mπ )2
]
, (71)

where PNi(E,pmis) = ∑
λ PNi

λλ . In Eqs. (69) and (71), the δ function can be eliminated by integrating over the angle between
pmis and q; the limits of integration on |pmis|, i.e., |pmin| and |pmax|, and on E, Emin, and Emax, are determined from the condition
| cos θpq | � 1 and from the requirement W 2

Y � (mN + mπ )2, since we consider SIDIS with at least one pion in the final state. As
a consequence, |pmin| and |pmax| are functions of α,E,Q2,E . One should notice that, in the Bjorken limit, they would be functions
of α and E only. In Eqs. (68) and (70), one has Emin = B3 − B2 ∼ 5.5 MeV.

Moreover, as explained in the previous section, one can obtain the distributions for the two cases, i = PWIA, FSI, just
substituting, in the same equations, the corresponding spectral functions PN i(E,pmis) and PN⊥ i(E,pmis). The evaluation of
PN i(E,pmis), when both the nuclear structure and the effects of FSI are included, is the main technical achievement of this paper.
Actual numerical results, based on (i) two- and three-nucleon wave functions [49] evaluated with the nucleon-nucleon AV18
interaction [32] and (ii) the GEA mechanism, are discussed in detail in the following section. In what follows, when the distorted
spectral functions will be considered in Eqs. (69) and (71), we will call the distribution functions in Eqs. (68) and (70) distorted
light-cone momentum distributions (see Appendix B).

In Eq. (66), one should notice that, after multiplying the nuclear hadronic tensor by sin(φS3 ± φh) and integrating over φS3 ,
the transverse-longitudinal term in Eq. (65) does not contribute to the numerators in the asymmetries above defined, due to the
properties of the spin-dependent SIDIS nucleon tensor [4].

In Eq. (67), the quantities �σN
Col(Siv) and σN , related to the structure of the bound nucleon, are defined as follows (see, e.g.,

Ref. [4]):

�σN
Col(xBj ,Q

2,z) = 1 − y

1 − y + y2/2

∑
q

e2
q

∫
d2κT d2kT δ2(kT + qT − κT )

P̂h ⊥ · κT

mh

h
q,N
1

(
xBj ,k2

T

)
H

⊥q,h
1 [z,(zκT )2], (72)

�σN
Siv(xBj ,Q

2,z) =
∑

q

e2
q

∫
d2κT d2kT δ2(kT + qT − κT )

P̂h ⊥ · kT

mN

f
⊥q,N
1T

(
xBj ,k2

T

)
D

q,h
1 [z,(zκT )2], (73)

σN (xBj ,Q
2,z) =

∑
q

e2
q

∫
d2κT d2kT δ2(kT + qT − κT )f q,N

1

(
xBj ,k2

T

)
D

q,h
1 [z,(zκT )2]. (74)

In the last three equations, the quantities kT and κT are the intrinsic transverse momenta of the parton in the bound
nucleon and in the produced hadron, respectively; following the notation of SIDIS, a subscript T means transverse with
respect to Ph (the three-momentum of the final pion or kaon), while the subscript ⊥ means transverse with respect to q.
The transverse momentum-dependent parton distributions, h

q,N
1 (xBj ,k2

T ), f
⊥q,N
1T (xBj ,k2

T ), f
q,N
1 (xBj ,k2

T ), and the transverse
momentum-dependent fragmentation functions, D

q,h
1 [z,(zκT )2], H

⊥q,h
1 [z,(zκT )2], appearing in Eqs. (72), (73), and (74), have

been evaluated using experimental data whenever possible, or using proper model estimates. One should realize that the main
goal of the present study is the estimate of nuclear effects in the extraction of the neutron information, rather than obtaining
absolute predictions on the SSAs of 3He, which would be affected anyhow by the poor present knowledge of some of the
distributions necessary to perform the actual calculation. Any reasonable choice of the distribution functions of the nucleon is
therefore suitable for our study. In particular, in the actual calculations, we have made use of the same functions adopted in
Ref. [31]:

(1) For the unpolarized parton distribution, f
q,N
1 (xBj ), the parametrization of Ref. [50], with a Gaussian ansatz for the kT

dependence, has been used.
(2) For the transversity distribution, hq,N

1 , the ansatz h1 = g1 has been used; i.e., the transversity distribution has been taken to
be equal to the helicity distribution. This gives certainly the correct order of magnitude. In particular, the parametrization
of Ref. [51] has been used.

(3) For the Sivers function, f
⊥q
1T (xBj ,k2

T ) in Eq. (73), the fit proposed in Ref. [52] has ben adopted.
(4) For the unpolarized fragmentation function D

q,h
1 (z), different models are used for evaluating the Sivers and Collins

asymmetries. In particular, for the Sivers asymmetry, the parametrization in Ref. [53] has been used, while for the Collins
one, the model calculation of Ref. [54] has been adopted (see Ref. [31] for details);

(5) For the basically unknown Collins fragmentation function, H
⊥q
1 [z,(zκT )2], appearing in Eq. (72), the model calculation

of Ref. [54] has been used.

Because of the nuclear binding, nucleons are off shell. However, in our approach, the parton structure of the nucleons are
parameterized using parton distributions of free nucleons. In principle, medium modifications of the structure functions, in
addition to the ones due to conventional nuclear effects, could be implemented. For example, one could think to apply a method
similar to the one used in Ref. [55] to study off-shell effects in the evaluation of inclusive polarized structure functions g1,2 of
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3He. In that paper, a dependence of the polarized structure functions g1,2 for the nucleons on the off-shell mass p2 was introduced,
with a further integration on p2 in the convolutions. The quantitative effect of this procedure would be in any case difficult to
establish, due to the necessary use of ingredients, such as the off-shell structure functions, experimentally unknown and difficult
to constrain theoretically. An analysis of this kind is beyond the goal of the present paper.

If one would like to consider the SIDIS hadronic tensor at an higher twist level, then other (higher twist) TMDs, at the
moment completely unknown experimentally, would be involved. At the nuclear level, this would imply the appearance of other
combinations of matrix elements of the spectral function. While these ingredients should be under control, since any overlap
with any nuclear or nucleon relative polarization is at hand, the evaluation of the asymmetries would be strongly affected by the
ignorance on the nucleon part. Therefore, for the moment we prefer to give results at a basic level in this first study of the effects
of FSI in polarized SIDIS processes.

Equation (67) has been presented in Ref. [31] within PWIA. As already noticed, within GEA the theoretical expression of the
nuclear asymmetries does not formally change in presence of FSI. Therefore, Eq. (67) can be exploited also in this case, but using
the suitable ingredient, i.e., the distorted spin-dependent spectral function, and eventually evaluating the distorted light-cone
momentum distributions.

Let us discuss now the crucial issue of the extraction of the neutron information from 3He data. A strategy for extracting the
neutron Sivers and Collins asymmetries from 3He data, developed in Ref. [31], is summarized and applied in the following.

If the results of the calculation were able to simulate 3He data, the problem would amount to unfolding the convolution
formula. This can be done taking into account that the light-cone momentum distributions fN (α,Q2,E) and f ⊥

N (α,Q2,E)
exhibit sharp maxima at α ∼ 1, i.e., fN (α,Q2,E) ∼ δ(α − 1) even in presence of FSI, as we will show in the next section. Let
us recall that this peak is expected since α = −(p̃mis · q)/mNν plays the role of the Bjorken variable for a bound nucleon.
Assuming that the δ-like behavior for the light-cone distributions is a reliable approximation (as shown in what follows),
then �σn

Col(Siv)(xBj/α,Q2,Sn
⊥,z) ∼ �σn

Col(Siv)(xBj ,Q
2,Sn

⊥,z), and the calculated asymmetries A3 can be written as (notably, the
dependence on E becomes milder approaching the Bjorken limit)

A
Col(Siv)
3 � �σ

Col(Siv)
3

σ
� �σn

Col(Siv)(xBj ,Q
2,Sn

⊥,z)
∫

dαf ⊥
n (α,Q2) + 2�σ

p
Col(Siv)(xBj ,Q

2,Sn
⊥,z)

∫
dαf ⊥

p (α,Q2)

σn(xBj ,Q2,z)
∫

dαfn(α,Q2) + 2σp(xBj ,Q2,z)
∫

dαfp(α,Q2)
. (75)

Let us introduce the so-called dilution factors as

dp(n)(xBj ,z) = σp(n)(xBj ,Q
2,z)

〈Nn〉σn(xBj ,Q2,z) + 2〈Np〉σp(xBj ,Q2,z)
, (76)

where

〈Np(n)〉 =
∫ Emax

Emin

dE

∫
dpmis Pp(n) (E,pmis)θ

[
W 2

Y − (mp(n) + mπ )2
]
, (77)

Notice that within PWIA and in the Bjorken limit, when WY → ∞, then 〈Np(n)〉 must strictly be 1, providing an obvious physical
meaning. In the presence of FSI, there is a depletion that spoils the above interpretation in terms of number of nucleons involved
in the elementary process.

By using the dilution factors, Eq. (75) can be approximated as follows:

A
Col(Siv)
3He

� p⊥
n dnA

Col(Siv)
n + 2 p⊥

p dpACol(Siv)
p , (78)

where A
Col(Siv)
n(p) are the free nucleon asymmetries and p⊥

n(p) are the average, or effective, transverse polarizations of the neutron

(proton) in a transversely polarized 3He nucleus, given by

p⊥
p(n) =

∫ Emax

Emin

dE

∫
dpmis Pp(n) ⊥ (E,pmis)θ

[
W 2

Y − (mp(n) + mπ )2
]
. (79)

In the Bjorken limit, they are Q2 independent and can be obtained directly from the nuclear wave function, without evaluating
the complicated final states entering the spectral function. In such a limit, by adopting the nucleon-nucleon AV18 interaction and
disregarding relativistic corrections (see Ref. [41]) one gets that the effective longitudinal and transverse polarizations coincide
and are equal to

p⊥
n = p||

n = pn � 0.878, p⊥
p = p||

p = pp � −0.024.

It is important to stress that, using another realistic potential, these values change by a few percent at most [20]. We also note that,
to obtain Eq. (78), the term mN/EN in the definition of the light cone momentum distibutions f ⊥

N , Eq. (68), and fN , Eq. (70),
has been neglected in Eq. (75). We checked that this procedure introduces a change in the nuclear asymmetries of the order of a
few parts in one thousand, which is not relevant phenomenologically.
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The free nucleon asymmetries A
Col(Siv)
N can be calculated in terms of the quark distributions and fragmentation functions

previously described, using their leading twist definitions [4]:

ACol
N = 1 − y

1 − y + y2/2

∑
q e2

q

∫
d2κT d2kT δ2(kT + qT − κT )(P̂h ⊥ · κT /mh)hq,N

1

(
xBj ,k2

T

)
H

⊥q,h
1 (z,(zκT )2)∑

q e2
q

∫
d2κT d2kT δ2(kT + qT − κT )f q,N

1

(
xBj ,k2

T

)
D

q,h
1 [z,(zκT )2]

, (80)

and

ASiv
N =

∑
q e2

q

∫
d2κT d2kT δ2(kT + qT − κT )(P̂h⊥ · kT /mN )f ⊥q,N

1T

(
xBj ,k2

T

)
D

q,h
1 (z,(zκT )2)∑

q e2
q

∫
d2κT d2kT δ2(kT + qT − κT )f q,N

1

(
xBj ,k2

T

)
D

q,h
1 [z,(zκT )2]

. (81)

If Eq. (78) were a good approximation of reality, it would be possible to use it to extract the neutron asymmetry according to
the following recipe, suggested in Ref. [15] for the polarized DIS case, and in Ref. [31] for polarized SIDIS in PWIA and in the
Bjorken limit (for j = Collins, Sivers):

Aj
n � 1

pndn

(
A

exp ,j
3 − 2ppdpAexp ,j

p

)
. (82)

A theoretical check of Eq. (82) can be performed if a realistic calculation of the 3He single spin asymmetries, A
theo,j
3 , is

introduced in Eq. (82) in place of the forthcoming experimental data A
exp ,j
3 , and models for A

exp ,j
p and A

j
n are used in the

theoretical calculation of A
theo,j
3 and in the right-hand side of the above equation. If nuclear effects were safely taken care of by

Eq. (78), one should be able to extract, according to Eq. (82), the neutron asymmetry used as an input for calculating A
theo,j
3 .

Namely, a self-consistency check can be carried out, in preparation of the future extraction from the experimental A
exp ,j
3 . It has to

be noticed that a more stringent test of Eq. (82) could be attained if SSAs of 3H will become available at some time in the future
(let us recall that some steps forward in the actual use of unpolarized 3H target in DIS experiments have been accomplished [39]).

VI. RESULTS AND DISCUSSION

Now we are ready to present the results of our calculation.
Let us start by providing a pictorial view of the main

quantity of interest, i.e., the distorted spectral function,
evaluated using 3He and �23 wave functions computed within
the AV18 potential [32]. As an example, the neutron spectral
function, in the unpolarized case, is shown in Fig. 2, in PWIA
and with FSI between debris and spectator taken into account,
within the GEA framework. It is clearly seen that, as found in
previous studies dedicated to quasielastic scattering [45], the
effect of FSI increases with pmis, as it is easily understood by
thinking that, when pmis = pY − q is low, the final debris Y has
to be very fast. The low impact of FSI for small values of |pmis|
is illustrated in more detail in Fig. 3, where it is shown the ratio
of the unpolarized distorted spectral function of the neutron,
evaluated for α = 1, to the PWIA one. Also, the increase of
the relevance of FSI when, at fixed |pmis|, the removal energy
E = M∗

23 + mN − M3 increases, is physically expected. As a
matter of fact, from the energy conservation

M3 + ν =
√

M∗2
23 + |pmis|2 +

√
M2

Y + |pY |2 (83)

with MY � mπ + mN , one can realize that the momentum |pY |
has to decrease (i) for any |pmis|, when the removal energy
increases, and (ii) for any ε∗

23, when |pmis| increases. Then, the
debris gets slower and FSI sizably affects the distorted spectral
function. This is indeed what can be seen in Fig. 3.

The results for the spin-independent and spin-dependent
light-cone momentum distributions have already been eval-
uated and shown in Ref. [31], in PWIA, using the AV18
interaction [32], but assuming the Bjorken limit (|�q| � ν). Let

us perform a first step forward, by illustrating in Figs. 4 and
5 the effect of JLab kinematics, at finite values of ν and Q2,
on the light-cone momentum distributions (68) and (70), using
the PWIA spectral function already exploited in Ref. [31]. As
already mentioned, in the kinematics under scrutiny, the dis-

FIG. 2. The 3He spectral function, for the neutron, in the
unpolarized case, as a function of pmis = |pmis| and of the removal
energy E, in PWIA (full lines) and with FSI taken into account
within GEA framework (dotted lines), The kinematical ranges of
pmis and E correspond to the ones relevant for the calculation of
the unpolarized light-cone distribution for α = 1, E = 11 GeV [cf.
Eq. (71)], xBj = 0.48, and Q2 = 7.6 GeV2.
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FIG. 3. The ratio between the unpolarized neutron spectral
function with FSI interactions and the corresponding quantity in
PWIA that are shown in Fig. 2.

tribution functions fn(p)(α,Q2,E) and f ⊥
n(p)(α,Q2,E) depend

on both the energy ν and the momentum q through the limits
of integration |pmin(max)| and the invariant mass of the debris.
Figure 4 shows |pmin| and |pmax| as a function of the light-cone
variable α, for two values of the removal energy E, i.e., E = 0
and 200 MeV, given the electron beam energy, E = 8.8 GeV,
and Q2 = 5.73(GeV/c)2. For this kinematical choice, it is
seen that one can explore only the region where α � 0.55
(i.e., when |pmax| > |pmin|). By changing the kinematics, one
can investigate a wider interval of α. Figure 5, where the
PWIA distribution function fN (α,Q2,E) and f ⊥

N (α,Q2,E) are

FIG. 4. Dependence on α of the integration limits pmin , max =
|pmin , max| in Eqs. (69) and (71) for the 3bbu channel and two values
of the removal energy E, in the kinematics of the forthcoming
JLab experiments (corresponding to an initial electron energy E =
8.8 GeV).

FIG. 5. The PWIA distribution functions f ⊥
N (α,Q2,E), Eq. (68),

and fN (α,Q2,E), Eq. (70), for the neutron (left panel) and the
proton (right panel) atE = 8.8 GeV, and Q2 = 5.73(GeV/c)2. For the
polarized proton, in the 2bbu and 3bbu channels, these distributions
are almost equal and opposite in sign, resulting in a very small total
distribution.

presented for the above kinematical conditions, shows that,
as happens in the Bjorken limit, the polarization of the 3He
nucleus is almost entirely determined by the neutron one,
while the contribution of the proton polarization is very small.
It is worth mentioning that the existence of a kinematically
forbidden region α < 0.55 can lead to slight modifications in
the normalization conditions for both the unpolarized and the
polarized light-cone momentum distributions.

In Fig. 6, the investigation on the PWIA light-cone distribu-
tions becomes more detailed. The functions f ⊥

n(p)(α,Q2,E,E)
and fn(p)(α,Q2,E,E) of Eqs. (69) and (71), respectively, are
shown for two different choices of kinematics, corresponding
to the planned experiments at JLab, and α = 0.65. Such a
value of α belongs to the region where the neutron light-
cone momentum distributions (unpolarized and transversely
polarized) have shown the biggest differences in PWIA. In
correspondence with the different kinematical choices, the
calculated curves are hardly distinguishable and one can
conclude that the dependence upon kinematics is rather mild
in PWIA.

The extraction procedure shown in Eq. (82) and proposed
in Ref. [31] for SIDIS adopting PWIA and Bjorken limit
works very well and it has been already applied in the
experimental analysis of the JLab data collected at 6 GeV [29].
In the actual JLab kinematics, a nontrivial Q2 dependence
is introduced in the integration limits of the convolution
formula (cf. Fig. 4). This amounts to a deviation of the
quantities 〈Nn〉, 〈Np〉, pn, pp from their values obtained in the
Bjorken limit, namely 1, 1, 0.878, − 0.024, respectively. In
the kinematics of JLab at 12 GeV [23], this deviation is found
to be a few parts in one thousand. In Fig. 7, it is shown that the
excellent performance of the extraction procedure of Eq. (82)
does not change appreciably when we move from the Bjorken
limit to the experimental kinematics of JLab at 12 GeV [23],
corresponding to finite values of Q2 and ν �= |�q|. Hence, the
Sivers (left panel) and the Collins (right panel) asymmetries
are well determined when our theoretical check of Eq. (82) is
carried out.

Now comes the basic issue of understanding to what extent
FSI effects between debris and remnants can modify the
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FIG. 6. The functions fN (α = 0.65,Q2,E,E) and f ⊥
N (α =

0.65,Q2,E,E), Eqs. (71) and (69) respectively, evaluated in
PWIA, for the following kinematics: (1) E = 11 GeV and
Q2 = 7.58 (GeV/c)2 (dashed lines); (2) E = 8.8 GeV, and Q2 =
5.73 (GeV/c)2 (solid lines). (a) The proton and neutron functions
fN (α = 0.65,Q2,E,E) in an unpolarized 3He. (b) The functions
f ⊥

N (α = 0.65,Q2,E,E) for a transversely polarized neutron in a
transversely polarized 3He. For a transversely polarized proton, the
corresponding function, very small, is not shown.

outcomes obtained through Eq. (82) and shown in Fig. 7.
This is a crucial step for a reliable extraction of the neutron
information. As pointed out in Secs. III, IV, and V, the formal
expressions for the Collins and Sivers asymmetries obtained
within PWIA, Eq. (67), still work when FSI are considered
within GEA.

Also Eqs. (68)–(70) remain formally unchanged if FSI
are included: The only difference amounts to use there
the distorted spectral function for obtaining the distorted
light-cone momentum distributions, instead of adopting the
corresponding PWIA expressions. In Figs. 8 and 9, neutron and
proton light-cone momentum distributions, obtained within
GEA for the unpolarized and the transversely polarized cases,
are shown for E = 8.8 GeV, a value of the beam energy typical
for the planned JLab@12 experiments, and for Q2 = 5.73
(GeV/c)2 (i.e., one of the values which will be tested at
E = 8.8 GeV). Moreover, they are compared with the corre-
sponding quantities calculated within PWIA. The differences
between the results with and without FSI are quite sizable and
therefore the quantities defined in Eqs. (72), (73), and (74),
necessary to calculate Collins and Sivers asymmetries, are

FIG. 7. The neutron Sivers (left panel) and Collins (right panel)
asymmetries for the JLab kinematics at an initial electron energy of
E = 8.8 GeV. Full line, the model for the neutron asymmetry used in
the calculation; dashed line, the neutron asymmetry extracted from the
PWIA calculation using Eq. (82). Calculations have been performed
at Q2 = 5.73 (GeV/c)2, i.e., the central Q2 value for an energy beam
E = 8.8 GeV (see text).

largely affected by FSI effects, have to be carefully taken into
account. In particular, 〈Nn〉, 〈Np〉, pn, pp, defined according
to Eqs. (77) and (79), respectively, and calculated at the actual
JLab kinematics corresponding to Q2 ∼ 3 ÷ 7 (GeV/c)2, are
affected by FSI and exhibit deviations from their values in the
Bjorken limit (given above) as large as 20%.

The Q2 dependence of the above results is quite important,
in view of the possible construction of the EIC (see, e.g.,
Ref. [56] for the presentation of the physics case) that could
open unprecedented possibilities in the studies of the nucleon
TMDs. In order to give an idea of the impact on the future
measurements, Fig. 10 shows the ratio of the light-cone spin-
independent momentum distribution, evaluated taking into
account FSI, to the corresponding quantity obtained in PWIA,
for different values of Q2 at the peak, i.e., α = 1. Four different
kinematical conditions have been chosen, and two of them,
namely (i) E = 8.8 GeV, Q2 � 5.7 (GeV/c)2, xBj � 0.48 and
(ii) E = 11 GeV, Q2 � 7.7 (GeV/c)2, xBj � 0.48, are typical
for JLab@12. The third and the fourth ones are kinematics
occurring at the planned EIC, namely at Ecollider = 11 GeV,
E 3He

collider = 40 GeV, Q2 = 10 and 12 (GeV/c)2, xBj � 0.48
(note that this value of xBj could be achieved by a beam energy
E = 293 GeV for a fixed target experiment). It is important to

FIG. 8. The neutron unpolarized (a) and transversely polarized
(b) distributions, Eqs. (70) and (68). Solid lines are PWIA results,
while dashed lines include effects of FSI. JLab kinematics has been
assumed, i.e., the initial electron energy is E = 8.8 GeV and Q2 =
5.73 (GeV/c)2, which is the central Q2 value for an energy beam
E = 8.8 GeV (see text).
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FIG. 9. The same as in Fig. 8, but for the proton distributions.

recall that a single point in Fig. 10 represents the outcome of
a one-week run on the ZEFIRO INFN facility in Pisa, Italy.
What is found is that the effects of FSI, evaluated within GEA
framework, is almost Q2 independent but rather sizable at
JLab and EIC energies. Could one think that the extraction
procedure shown in Eq. (82) had to be abandoned in favor
of more involved and model-dependent techniques? Actually,
a crucial observation is now in order. It is clearly seen in
Figs. 5, 8, and 9 that the spin-independent and spin-dependent
light-cone momentum distributions are strongly peaked around
α = 1, both in PWIA and with FSI effects taken into account.
This means that the approximation given in Eq. (75) for
the nuclear Sivers and Collins asymmetries [cf. Eq. (67)]
should basically hold. Moreover, looking at the same figures,
it is also rather apparent that FSI produces a decrease of
all the distributions in a similar way, both qualitatively and
quantitatively. From Eq. (75), it is easy to see that the results
for the nuclear asymmetries obtained in PWIA, A

PWIA,j
3 , or

taking into account FSI, A
FSI,j
3 (recall that j = Sivers or

Collins), should not sizably differ from each other, due to
a cancellation of effects present in both the numerator and
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FIG. 10. The ratio of the light-cone spin-independent momentum
distribution evaluated taking into account FSI to the corresponding
quantity obtained in PWIA. The ratio is shown in the neutron case, for
α = 1, namely the value where the distributions reach their maximum
value, as a function of the momentum transfer, Q2, corresponding to
four different kinematical conditions: the ones with Q2 < 9 (GeV/c)2

have been evaluated by using JLab kinematical conditions, while the
rightmost diamonds are appropriate for EIC kinematics (see text).
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FIG. 11. Left panel: The 3He Sivers asymmetry [see Eqs. (67)
and (73)], evaluated taking into account FSI effects (full line) and
in PWIA (dashed line). Right panel: the same, but for the 3He
Collins asymmetry [see Eqs. (67) and (72)]. Calculations have been
performed at Q2 = 5.73 (GeV/c)2, i.e., the central Q2 value for an
energy beam E = 8.8 GeV (see text).

the denominator. The realization of this fact in the actual
calculation of Eq. (67) is shown in Fig. 11. In principle, in
this figure and in the two following ones, any xBj should
correspond to a slightly different value of Q2. Nevertheless,
in the xBj range explored at fixed E , the dependence on Q2

of the light-cone momentum distributions fp(n)(α,Q2,E) and
f ⊥

p(n)(α,Q2,E) is rather mild and therefore we will show the
results for the nuclear asymmetries, Eq. (67), at a fixed value
of Q2, namely 5.73 (GeV/c)2.

Our full evaluations of the 3He Collins and Sivers asymme-
tries, presented in Fig. 11, strongly encourage the investigation
of the extraction formula, Eq. (82), that relies on the validity
of the approximation Eq. (78), where effective polarization
and dilution factors are multiplied by each other. In particular,
we want to assess if Eq. (82) can be safely (or better with a
low degree of uncertainty) applied to the experimental data,
where FSI is certainly acting. The relevant product of effective
polarizations and dilution factors is found to have a very little
dependence on FSI, as one can straightforwardly realize by

TABLE I. The PWIA values of the dilution factors dn(p)(xBj ,z)
and their product with the corresponding effective polarizations, in
PWIA, for the kinematical conditions of the planned experiments
at JLab, with scattering angle θe = 30◦ and detected pion angle
θπ = 14◦. The effective polarizations are evaluated with extrema of
integrations depending upon the kinematics. At Q2 = 5.73 (GeV/c)2,
i.e., the central Q2 value for an energy beam E = 8.8 GeV, one
obtains pn = 0.876, pp = −0.024 [cf. Eq. (79)], very close to the
corresponding asymptotic values 0.878 and −0.024 (i.e., in the
Bjorken limit).

E xBj ν Pπ dn(xBj ,z) pndn dp(xBj ,z) ppdp

(GeV) (GeV) (GeV/c)

8.8 0.21 7.55 3.40 0.304 0.266 0.348 −8.4 × 10−3

8.8 0.29 7.15 3.19 0.286 0.251 0.357 −8.5 × 10−3

8.8 0.48 6.36 2.77 0.257 0.225 0.372 −8.9 × 10−3

11 0.21 9.68 4.29 0.302 0.265 0.349 −8.3 × 10−3

11 0.29 9.28 4.11 0.285 0.250 0.357 −8.5 × 10−3
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TABLE II. The same as in Table I, but taking into account FSI
within GEA framework. For all the presented kinematical conditions,
one gets distorted polarizations, evaluated by using Eq. (79), with
distorted distributions. They amount to pn � 0.756, pp � −0.0265
for Q2 = 5.73 (GeV/c)2, i.e., the central Q2 value for an energy
beam E = 8.8 GeV. In these conditions one gets, for the quantities
〈Nn〉 and 〈Np〉, Eq. (77), the values 0.85 and 0.87, respectively.

E xBj ν Pπ dn(xBj ,z) pndn dp(xBj ,z) ppdp

(GeV) (GeV) (GeV/c)

8.8 0.21 7.55 3.40 0.353 0.267 0.405 −1.1 × 10−2

8.8 0.29 7.15 3.19 0.332 0.251 0.415 −1.1 × 10−2

8.8 0.48 6.36 2.77 0.298 0.225 0.432 −1.2 × 10−2

11 0.21 9.68 4.29 0.351 0.266 0.405 −1.0 × 10−2

11 0.29 9.28 4.11 0.331 0.250 0.415 −1.1 × 10−2

inspecting Tables I and II, where the dilution factors, effective
polarizations, and their products are presented with or without
FSI effects taken into account, by adopting the kinematics of
the forthcoming JLab experiments.

Considering that (i) A
PWIA,j
3 � A

FSI,j
3 (see Fig. 11) and (ii)

the products of effective polarizations and dilution factors are
almost the same in PWIA and including FSI, one has

Aj
n � 1

pPWIA
n dPWIA

n

(
A

PWIA,j
3 − 2pPWIA

p dPWIA
p Aexp ,j

p

)
� 1

pFSI
n dFSI

n

(
A

FSI,j
3 − 2pFSI

p dFSI
p Aexp ,j

p

)
. (84)

In Fig. 12, the reliability of the above relations in the extrac-
tion of A

j
n is illustrated through our theoretical test, where the

experimental Aexp ,j
3 is replaced by our full calculation. Indeed,

in Fig. 12, the model Collins and Sivers asymmetries for the
neutron used in the full calculations of 3He asymmetries are
hardly distinguishable from the neutron asymmetries extracted
through Eq. (84) by using PWIA effective polarizations and

FIG. 12. The neutron Sivers (left panel) and Collins (right panel)
asymmetries for the JLab kinematics at an initial electron energy of
E = 8.8 GeV. Full line, the model for the neutron asymmetry used
in the calculation; dot-dashed line, the neutron asymmetry extracted
from the full calculation of A

j
3 with FSI taken into account, using the

extraction formula Eq. (84); dashed line, the result obtained using
Eq. (84) to extract the neutron asymmetries from PWIA results.
Calculations have been performed at Q2 = 5.73 (GeV/c)2, i.e., the
central Q2 value for an energy beam E = 8.8 GeV (see text).
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FIG. 13. The neutron Sivers (left panel) and Collins (right panel)
asymmetries, for the JLab kinematics at an initial electron energy of
E = 8.8 GeV. Full line, the model for the neutron asymmetry used
in the calculation; dot-dashed line, the neutron asymmetry extracted
from the full calculation of A

j
3 with FSI taken into account, using

the extraction formula Eq. (84); dashed line, the result obtained using
Eq. (85) to extract the neutron asymmetries from the same calculation.
Calculations have been performed at Q2 = 5.73 (GeV/c)2, i.e., the
central Q2 value for an energy beam E = 8.8 GeV (see text).

dilution factors, or by considering the corresponding quantities
calculated within GEA (a preliminary version of this figure
was presented in Ref. [57]). It should be pointed out that these
quantities can be evaluated in any kinematical configuration
using our model of FSI, which is rather well constrained
phenomenologically and could be improved checking our
predictions against the spin-dependent cross sections which
will be soon available.

In addition to the above extraction procedure, one could
adopt the following one where the experimental inputs are
A

exp ,j
3 and A

exp ,j
p , while the theoretical quantities reduce to the

PWIA effective polarization in the Bjorken limit. In this case,
one has a nice possibility to extract the neutron information
through another extraction scheme, independent of the FSI
model. The procedure is based on the following expression:

Aj
n � 1

pPWIA
n d

exp
n

(
A

exp ,j
3 − 2pPWIA

p dexp
p Aexp ,j

p

)
. (85)

Indeed, pPWIA
n(p) can be obtained from a realistic wave function

with very small model dependence (see Ref. [20] for an
analysis of the dependence of effective polarizations on
different realistic potentials). In Eq. (85), the experimental
dilution factors are

d
exp
p(n)(xBj ,Q

2,z) = σp(n)(xBj ,Q
2,z)

σn(xBj ,Q2,z) + 2σp(xBj ,Q2,z)
, (86)

where no dependence on the FSI model is present, unlike
Eq. (76). In Fig. 13, one sees that the uncertainty in the
extraction procedure based on Eq. (85) is not much bigger
than the one occurred by using Eq. (84). In Fig. 13, Eq. (85)
has been actually evaluated using A

FSI,j
3 instead of A

exp ,j
3 ,

and using, instead of d
exp
p(n), the dilution factors evaluated

with the parametrizations of unpolarized parton distributions
[50] and fragmentation functions [53] already described in
the previous section. Therefore, Fig. 13 shows that, for a
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safe extraction procedure through Eq. (85), the evaluation of
distorted effective polarizations and dilution factors, which
appear in Eq. (84) and depend on the adopted FSI model, is
actually not required.

In summary, the comparisons shown in Figs. 12 and 13
illustrate two methods for the successful extraction of the
neutron single spin asymmetries using transversely polarized
3He targets at JLab, and they represent the most relevant
outcomes of the present investigation.

One could argue that the very nice results obtained within
our FSI model are actually expected to hold in any description
of final state interactions which is (i) factorized and (ii)
basically spin independent, i.e., producing a similar effect in
spin-dependent and spin-independent cross sections. This last
feature is very likely to be realized for any FSI occurring in
processes where the relative energy of the interacting systems
is high, as is the case in the present study.

Indeed, the differential cross section (dσ/dt)el decreases
exponentially with the momentum transfer |t | and is essentially
located at low momentum transfer |t |, i.e., in the forward
direction. A thorough analysis of the spin dependence of
the nucleon-nucleon cross section, in terms of the analyzing
power AN , can be found, e.g., in Refs. [58] and [59], where
the shape dependence of AN in |t | is studied, with particular
attention to the region where the interference terms of the
electromagnetic and nuclear interactions are important. As a
result, AN is of a few percent at most and goes to zero as
|t | goes to zero. Consequently, only the central part of the
amplitude contributes to the integrated cross section.

VII. CONCLUSIONS

Measurements of the Sivers and Collins asymmetries
for both proton and deuteron have shown a strong flavor
dependence, motivating independent further investigations
using different targets to safely access the same quantities
for the neutron. As for any polarized neutron observable, 3He
is the natural target, due to its specific spin structure. Two
experiments, aimed at measuring azimuthal asymmetries in
the production of π± from transversely polarized 3He, were
performed at JLab. From the gathered 3He data [29], the
Collins and Sivers neutron asymmetries were extracted using a
procedure proposed in Ref. [31]. However, such an extraction
procedure did not consider some relevant nuclear effects,
properly evaluated in the present paper, which strengthens
a posteriori the method used in Ref. [29] to obtain the neutron
information. In particular, the extraction procedure proposed
in Ref. [31] and used in Ref. [29] was able to take care
of (i) the spin structure of 3He and (ii) the momentum and
energy distributions of bound nucleons, through a realistic
spin-dependent spectral function evaluated by using nuclear
wave functions obtained from the AV18 interaction, in plane
wave impulse approximation. The results of Ref. [31] were
obtained in the Bjorken limit, namely without considering
possible effects of the kinematics of JLab, dominated by
finite values of the energy and momentum transfers, and,
more important, without FSI effects. The problem of whether
the extraction procedure based on PWIA calculations can
be extended to a scenario where final state interactions

between the debris, originated from the struck nucleon, and
the interacting spectator system are allowed to play a role,
as it likely happens in the actual JLab kinematics, has been
thoroughly analyzed in the present paper. We were able to
quantitatively show that the extraction procedure is basically
independent of FSI, evaluated within the generalized eikonal
approximation. In particular, in order to perform the needed
full evaluation of the FSI effects, we have extended the
calculation of a realistic distorted spin-dependent spectral
function, introduced in a previous paper of ours [38], where
we took into account the two-body break up channel only.
Actually, we have performed a highly nontrivial (from the
numerical point of view) computation of the contribution to the
distorted spin-dependent spectral function from the three-body
breakup channel, essential to obtain reliable cross sections
and in turn to robustly extract valuable neutron information.
Once such a refined spectral function became available, we
have exploited our results for calculating both Sivers and
Collins single spin asymmetries. FSI effects have been found to
produce sizable effects in both the unpolarized and polarized
cross sections. On the contrary, the SSAs are only slightly
affected by FSI, since they are ratios of cross sections, and
therefore the FSI effects cancel to a large extent. As a result,
the very same extraction procedure proven to be successful
in PWIA can be used also in a scenario where FSI effects
are relevant. This means that all the complexities related to
Fermi motion, binding, and FSI effects can be summarized
in the nucleon effective polarizations, quantities known from
accurate few-body calculations in a rather model-independent
way. This scheme is valid in a wide range of FSI models, every
time that FSI are basically spin independent (see the end of
previous section), as expected to happen at high energies (i.e.,
in the case of JLab or the planned Electron Ion Collider) and
lead to convolution formulas for the nuclear cross sections,
namely a folding of cross sections off bound nucleons and
distorted spin-dependent spectral functions.

To test our model for the FSI, we plan to compare our results
with the very recent unpolarized SIDIS cross sections from a
3He target of Ref. [46]. A more stringent test of our model
would require a comparison with measurements of SIDIS
cross sections off a polarized 3He target, since polarization
experiments can be more sensitive to FSI effects. It would be
particularly interesting to investigate the kinematical regions
where FSI effects are expected to be more relevant [38].

The importance of these results for both the planning and
the analysis of experiments with transversely polarized 3He
target is clear. Further studies of the same issue will involve
the implementation of GEA in the relativistic nuclear overlaps,
defined in Ref. [41], so that a light-front, distorted, spin-
dependent spectral function can be evaluated and relativistic
effects can be taken into account in a consistent framework.
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APPENDIX A: OVERLAPS FOR THE DISTORTED SPECTRAL FUNCTION

The overlaps

ÕN M M ′
λλ′ (ε∗

23,pmis) = 〈
λ,τN,φε∗

23
(r)e−ipmisρG(r,ρ)

∣∣�M
3 (r,ρ)

〉 〈
�M ′

3 (r′,ρ ′)
∣∣λ′,τN ,G(r′,ρ ′)φε∗

23
(r′)e−ipmisρ ′ 〉

, (A1)

corresponding to Eq. (50) with the index f23 removed for simplicity, are built in terms of two- and three-body wave functions.
In particular, when the energy of the pair is ε∗

23 = t2/m, the two-body wave function reads

φt
s23σ23T23τ23

(r) = 4π
∑

lmlf Jf Mf

〈lms23σ23|Jf Mf 〉Y ∗
lm(t̂)ilψJf

llf s23
(|t|,|r|)Y lf s23

Jf Mf
(r̂)|T23τ23〉, (A2)

with the tensor spherical harmonics defined as

Y
lf s23

Jf Mf
(r̂) =

∑
mf σ ′

23

〈lf mf s23σ
′
23|Jf Mf 〉Ylf mf

(r̂)χs23σ
′
23
. (A3)

When the pair is in the deuteron state, with binding energy ED , the two-body wave function reads

φMD
(ED,r) = u0(r)Y 01

1MD
(r̂) + u2(r)Y 21

1MD
(r̂). (A4)

The three-body wave function in Ref. [49] is defined according to the following scheme:〈
σ1,σ2,σ3; T23,τ23,τ ; ρ,r

∣∣∣∣3

He;
1

2
M

1

2
Tz

〉
=

〈
T23τ23

1

2
τ

∣∣∣∣1

2
Tz

〉 ∑
LρMρ

∑
XMX

∑
j23m23

〈
XMXLρMρ

∣∣∣∣1

2
M

〉〈
j23m23

1

2
σ1

∣∣∣∣XMX

〉

×
∑
s23σ23

∑
l23μ23

〈
1

2
σ2

1

2
σ3|s23σ23

〉
〈 l23μ23s23σ23|j23m23 〉Yl23μ23 (r̂)

×YLρMρ
(ρ̂)φj23l23s23

LρX (|r|,|ρ|). (A5)

The antisymmetrization of the wave function requires l23 + s23 + T23, where T23 is the isospin of the pair 23, to be odd. In
addition, l23 + Lρ has to be even, due to the parity of 3He.

Using these wave functions, one has, in the 3bbu channel,∑
σ23T23τ23

∫
d t̂ ÕN M M ′

λλ′ (ε∗
23,pmis) =

∑
σ23σ̃23

∑
{α,α̃}

∑
lJf Mf

∑
MXM̃Xm23m̃23

〈
XMXLρMρ |1

2
M

〉〈
X̃M̃XL̃ρM̃ρ |1

2
M ′

〉

×
〈
j23m23

1

2
λ|XMX

〉〈
j̃23m̃23

1

2
λ′|X̃M̃X

〉
〈l23μ23s23σ23|j23m23〉〈l̃23μ̃23s23σ̃23|j̃23m̃23〉

× 〈lf mf s23σ23|Jf Mf 〉〈l̃f m̃f s23σ̃23|Jf Mf 〉O(FSI )
{α}lJf s23

(ε∗
23,pmis) O

(FSI )
{α̃}lJf s23

(ε∗
23,pmis), (A6)

where {α} = {Lρ,Mρ,X,j23,lf ,mf ,l23,μ23} and

O
(FSI )
{α}lJf s23

(ε∗
23,pmis) = 4π

∫
dρ

∫
dr eipmis ·ρG(r,ρ)ψ

Jf ∗
llf s23

(|t|,|r|) Y∗
lf mf

(r̂) YLρMρ
(ρ̂)Yl23μ23 (r̂),φj23l23s23

LρX (|r|,|ρ|). (A7)

When the active nucleon N is a proton p, besides the 3bbu channel, one can have also the 2bbu channel, for which the overlap
becomes∑

MD

ON=p M M ′
λλ′ (ED,pmis) =

∑
MDMXM̃Xm23m̃23σ23σ̃23

×
∑
{β,β̃}

〈
XMXLρMρ |1

2
M

〉〈
X̃M̃XL̃ρM̃ρ |1

2
M ′

〉〈
j23m23

1

2
λ|XMX

〉〈
j̃23m̃23

1

2
λ′|X̃M̃X

〉
×〈 l23μ231σ23|j23m23 〉〈 l̃23μ̃231σ̃23|j̃23m̃23 〉〈LDmL1σ23|1MD 〉
× 〈 L̃Dm̃L1σ̃23|1MD 〉O(FSI )

β (ED,pmis)O
(FSI )
β̃

(ED,pmis), (A8)

where

O
(FSI )
β (ED,pmis) =

∫
dρ

∫
dr eipmisρG(r,ρ)uLD

(|r|)Y∗
LDmL

(r̂)YLρMρ
(ρ̂)Yl23μ23 (r̂)φj23LD1

LρX (|r|,|ρ|), (A9)

and {β} = {Lρ,Mρ,X,j23,l23,μ23,LD = 0,2,mL}.
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APPENDIX B: PROPERTIES OF THE GLAUBER DISTORTED SPECTRAL FUNCTION

Let us consider a reference frame with the z axis along the momentum transfer q. If in such a reference frame a nucleus with
JA = 1/2 has a polarization SA, one can expand the nucleus state by using pure states polarized with respect to the quantization
axis q̂ ≡ êz, i.e., | 1

2 , ± 1
2 〉

q̂
. In this case, a generic state with JA = 1/2 and polarization directed along some direction is written

as follows: ∣∣∣∣1

2
,
1

2

〉
ŜA

= cos
β

2

∣∣∣∣1

2
,
1

2

〉
q̂

+ sin
β

2

∣∣∣∣1

2
, − 1

2

〉
q̂

, (B1)

where cos β = ŜA · q̂ and | 1
2 , 1

2 〉
ŜA

is a pure state polarized with respect to the quantization axis ŜA [see Eq. (43)]. In Eq. (19) of
Ref. [19], one can find a general expression of the PWIA spectral function,

PM(p,E) = 1
2 {B0[|p|,E,(SA · p̂)2] + σ · FM(p,E)}, (B2)

where p = −pmis is the nucleon three-momentum inside the target, the index M refers to the third component with respect to
the quantization axis ŜA, and FM(p,E) is a pseudovector depending upon the vector p̂ and the peudovector SA

FM(p,E) = SAB1,M[|p|,E,(SA · p̂)2] + p̂(SA · p̂)B2,M[|p|,E,(SA · p̂)2]. (B3)

In the case where the FSI is considered through a Glauber operator at high momentum transfer, there is a further dependence of
the spectral function upon the vector q and Eqs. (B2) and (B3) are replaced by

PM(p,E,q) = 1
2 {B0[|p|,E,(SA · p̂)2,|q|,(SA · q̂)2,p̂ · q̂] + σ · FM(p,E,q)}, (B4)

FM(p,E,q) = SAB1,M[|p|,E,(SA · p̂)2,|q|,(SA · q̂)2,p̂ · q̂] + p̂(SA · p̂)B2,M[|p|,E,(SA · p̂)2,|q|,(SA · q̂)2,p̂ · q̂]

+ p̂(SA · q̂)B3,M[|p|,E,(SA · p̂)2,|q|,(SA · q̂)2,p̂ · q̂] + q̂(SA · p̂)B4,M[|p|,E,(SA · p̂)2,|q|,(SA · q̂)2,p̂ · q̂]

+ q̂(SA · q̂)B5,M[|p|,E,(SA · p̂)2,|q|,(SA · q̂)2,p̂ · q̂] + p̂xq̂B6,M[|p|,E,(SA · p̂)2,|q|,(SA · q̂)2,p̂ · q̂]. (B5)

The above expressions for the spectral function, put in evidence the dependence upon SA, as well as the dependence of the
scalar functions Bi (i = 1, . . . ,6) by the possible scalars |p|,E,(SA · p̂)2,|q|,(SA · q̂)2,p̂ · q̂. If SA is orthogonal to the z axis,
FM(p,E,q) reduces to

FM(p,E,q) = SAB1,M[|p|,E,(SA · p̂)2,|q|,p̂ · q̂] + p̂(SA · p̂)B2,M[|p|,E,(SA · p̂)2,|q|,p̂ · q̂]

+ q̂(SA · p̂)B4,M[|p|,E,(SA · p̂)2,|q|,p̂ · q̂] + p̂xq̂B6,M[|p|,E,(SA · p̂)2,|q|,p̂ · q̂]. (B6)

From Eq. (B4) one has

B0[|p|,E,(SA · p̂)2,|q|,p̂ · q̂] = T r[PM(p,E,q)], (B7)

FM(p,E,q) = T r[PM(p,E,q)σ ]. (B8)

Let us now express the distorted spectral function with a polarization axis along SA [cf. Eqs. (42) and (43)] in terms of the
components given in Eq. (49), that correspond to a polarization axis along q̂ by using Eq. (B1). Since we are interested in a
transversely polarized target, i.e., SA ≡ {1,0,0}, one has to consider β = 90◦, and the components of the spectral functions are

PM= 1
2 ,σσ ′(p,E,q) = 1

2

{P 1
2

1
2

σσ ′(p,E,q) + P− 1
2 − 1

2
σσ ′ (p,E,q) + [P 1

2 − 1
2

σσ ′ (p,E,q) + P− 1
2

1
2

σσ ′ (p,E,q)
]}

. (B9)

If the nucleus is polarized along −SA, the state of the nucleus can be written as follows:∣∣∣∣1

2
, − 1

2

〉
ŜA

= − sin
β

2

∣∣∣∣1

2
,
1

2

〉
q̂

+ cos
β

2

∣∣∣∣1

2
, − 1

2

〉
q̂

(B10)

and the spectral function becomes

PM=− 1
2 ,σσ ′(p,E,q) = 1

2

{P 1
2

1
2

σσ ′(p,E,q) + P− 1
2 − 1

2
σσ ′ (p,E,q) − [P 1

2 − 1
2

σσ ′ (p,E,q) + P− 1
2

1
2

σσ ′ (p,E,q)
]}

. (B11)

To obtain the real and the imaginary parts of the quantity [PN 1
2 − 1

2
1
2 − 1

2
(E,pmis) + PN − 1

2
1
2

1
2 − 1

2
(E,pmis) ], needed to evaluate the single

spin asymmetries [see Eq. (61)], let us first consider the x and the y components of F 1
2
(p,E,q) with SA = S3 along the x axis.

From Eq. (B6), one has

F x̂
1
2 x

(p,E,q) = B1, 1
2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂] + sin2 θ cos2 φB2, 1

2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂]

+ sin θ sin φB6, 1
2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂], (B12)
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F x̂
1
2 y

(p,E,q) = sin2 θ cos φ sin φB2, 1
2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂] − sin θ cos φB6, 1

2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂], (B13)

where the angles θ and φ define the direction of the nucleon momentum p. From Eq. (B8) and Eq. (B9), one obtains

F x̂
1
2 x

(p,E,q) = Tr[PM= 1
2
(p,E,q)σx] = Re

[P 1
2

1
2

1
2 − 1

2
(p,E,q) + P− 1

2 − 1
2

1
2 − 1

2
(p,E,q) + P

1
2 − 1

2
1
2 − 1

2
(p,E,q) + P− 1

2
1
2

1
2 − 1

2
(p,E,q)

]
, (B14)

F x̂
1
2 y

(p,E,q) = Tr[PM= 1
2
(p,E,q)σy] = −Im

[P 1
2

1
2

1
2 − 1

2
(p,E,q) + P− 1

2 − 1
2

1
2 − 1

2
(p,E,q) + P

1
2 − 1

2
1
2 − 1

2
(p,E,q) + P− 1

2
1
2

1
2 − 1

2
(p,E,q)

]
. (B15)

Then let us consider the x and the y components of F 1
2
(p,E,q) with S3 opposite to the x axis. From Eq. (B6), one has

F−x̂
1
2 x

(p,E,q) = −B1, 1
2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂] − sin2 θ cos2 φB2, 1

2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂]

+ sin θ sin φB6, 1
2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂], (B16)

F−x̂
1
2 y

(p,E,,q) = − sin2 θ cos φ sin φB2, 1
2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂] − sin θ cos φB6, 1

2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂], (B17)

while from Eqs. (B8) and (B11) one obtains

F−x̂
1
2 x

(p,E,q) = Tr[PM=− 1
2
(p,E,q)σx] = Re

[P 1
2

1
2

1
2 − 1

2
(p,E,q) + P− 1

2 − 1
2

1
2 − 1

2
(p,E,q) − P

1
2 − 1

2
1
2 − 1

2
(p,E,q) − P− 1

2
1
2

1
2 − 1

2
(p,E,q)

]
, (B18)

F−x̂
1
2 y

(p,E,q) = Tr[PM=− 1
2
(p,E,q)σy] = −Im

[P 1
2

1
2

1
2 − 1

2
(p,E,q) + P− 1

2 − 1
2

1
2 − 1

2
(p,E,q) − P

1
2 − 1

2
1
2 − 1

2
(p,E,q) − P− 1

2
1
2

1
2 − 1

2
(p,E),q

]
.(B19)

The difference of Eqs. (B12) and (B16) is equal to the difference of Eqs. (B14) and (B18),

2B1, 1
2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂] + 2 sin2 θ cos2 φB2, 1

2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂] = 2Re

[P 1
2 − 1

2
1
2 − 1

2
(p,E,q) + P− 1

2
1
2

1
2 − 1

2
(p,E,q)

]
,

(B20)

and the difference of Eqs. (B13) and (B17) is equal to the difference of Eqs. (B15) and (B19),

2 sin2 θ cos φ sin φB2, 1
2
[|p|,E,(SA · p̂)2,|q|,p̂ · q̂] = −2Im

[P 1
2 − 1

2
1
2 − 1

2
(p,E,q) + P− 1

2
1
2

1
2 − 1

2
(p,E,q)

]
. (B21)

Let us stress that the scalar functions B1 and B2 do depend on the variable φ only through (SA · p̂)2 = (sin θ cos φ)2, since
p̂ · q̂ = cos θ .

In the nucleon tensor operators ŵsN
μν that give rise to the Collins and the Sivers effect, the nucleon momentum can appear

directly or through the nucleon spin operator. Therefore, terms of zero order in p⊥/mN can appear, as well as terms of the first,
second, and third orders (⊥ means orthogonal to the q̂ = ẑ axis) [3]. Once multiplied by the spectral function and integrated over
the nucleon momentum, the terms of the second and third orders can be discarded, since the spectral function decreases rapidly
as a function of the nucleon momentum (see, e.g., Fig. 2).

In the imaginary part, Im[w
sN 1

2 − 1
2

μν ], the terms of zero order and of the first order in p⊥/mN , once multiplied by the left-hand
side of Eq. (B21) and integrated over φ, do not give contribution to the hadronic tensor, since one has to integrate quantities like
(cos φ sin φ), (cos2 φ sin φ), or (cos φ sin2 φ) times a function of cos2 φ. Then the product of the imaginary quantities in Eq. (60)
does not give contribution to the cross section.

An analogous analysis can be performed on the real part Re[w
sN 1

2 − 1
2

μν ] of the nucleon tensor. In this case, the terms of zero
order in p⊥ give a nonzero contribution, while the first-order terms yield zero, once the integration over φ is performed.

Let us finally notice that since the transverse components of p can be disregarded, as discussed above, the expressions for
�σN

Col and for �σN
Siv of Eqs. (66) and (67) of our paper, that were obtained in a reference frame where p⊥ = 0 (see, e.g.,

Eqs. (6.5.18) and (6.5.17) of Ref. [3]), can be safely used.
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