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Reexamining the gluon spectrum in the boost-invariant glasma from a semianalytic approach
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In high energy heavy-ion collisions, the degrees of freedom at the very early stage can be effectively represented
by strong classical gluonic fields within the color glass condensate framework. As the system expands, the strong
gluonic fields eventually become weak such that an equivalent description using the gluonic particle degrees of
freedom starts to become valid. In this paper, the spectrum of these gluonic particles is reexamined by solving the
classical Yang-Mills equations semianalytically, with the solutions having the form of power series expansions
in the proper time. A different formula for the gluon spectrum, which is consistent with energy density during
the whole time evolution, is proposed. One finds that the chromoelectric fields have larger contributions to the
gluon spectrum than the chromomagnetic fields do. Furthermore, the large momentum modes take less time to
reach the weak-field regime while smaller momentum modes take more time. The resulting functional form of
the gluon spectrum is exponential in nature and the spectrum is close to a thermal distribution, with effective
temperatures around 0.6Qs to 0.9Qs late in the glasma evolution. The sensitiveness of the gluon spectrum to the
infrared and the ultraviolet cutoffs is discussed.
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I. INTRODUCTION

In high energy heavy-ion collisions, the time evolution
of the produced quark-gluon plasma has been successfully
described by relativistic hydrodynamic models [1]. One of
the prerequisites for hydrodynamics to be applicable is the
local thermal equilibrium assumption. Comparisons with
experimental data indicate that hydrodynamics starts very
early in the collisions. This early thermalization has been a
challenging theoretical problem which is still under active
research and debate. Recently, an effective kinetic theory in the
weak coupling regime was applied to bridge the early glasma
stage and the hydrodynamics stage [2]. One of the inputs in this
approach is the initial phase space distribution of the gluons,
which is usually parametrized as either a step function [3,4]
or a Gaussian form [2,3,5]. On the other hand, the gluon
distribution at late time in the glasma evolution has been
extensively investigated by numerically solving the boost-
invariant classical Yang-Mills equations [6–10]. Incorporating
the rapidity dependence [11] has also been explored. In these
numerical simulations, the gluon distribution in the weak
field regime is fitted to be a Bose-Einstein distribution for
lower momentum modes and a power law form for higher
momentum modes. It would be interesting to reexamine the
gluon spectrum in the boost-invariant glasma from a different
approach, which will be the topic of this paper. The focus will
be the simplest boost-invariant classical Yang-Mills equations
and the evolution of the glasma during the very early time
τ � 1.0 fm/c. For important physics originating from vi-
olating the assumption of boost-invariance, such as glasma
instabilities and possible pressure isotropization induced, one
can consult papers [12–21]. There is also the recently found
universal self-similar gluon distribution at extremely large
proper time in simulating the 3+1-dimensional (3+1D ) clas-
sical Yang-Mills equations assuming an initially (τ ∼ 1/Qs)
overpopulated and anisotropic gluon distribution [22–26].

The paper is organized as follows. In Sec. II, a different
formula for the gluon spectrum in the boost-invariant glasma

is proposed and its relation with the conventional formula
used in the literature is discussed. Section III is devoted to the
actual computations of the gluon spectrum using a power series
expansion method. The calculations will be done in the leading
Q2 approximation and contributions from the chromoelectric
fields and the chromomagnetic fields are presented explicitly.
Results are given and discussed in Sec. IV, where comparisons
with previous results from numerically solving the classical
Yang-Mills equations are also discussed. The Appendixes
include main computational steps and expressions.

II. FORMULA FOR THE GLUON SPECTRUM

In the color glass condensate (CGC) framework, particu-
larly the McLerran-Venugapolan model [27,28] applied to the
high energy heavy-ion collisions, describing the very early
stages of the collisions is equivalent to solving the classi-
cal Yang-Mills equations with appropriate initial conditions
[29,30]. In general, solving the full 3+1D classical Yang-Mills
equations is needed to obtain both transverse dynamics and
longitudinal dynamics. For the study of the gluon spectrum, I
concentrate on the boost-invariant situation to be aligned with
the previous numerical simulations. The classical Yang-Mills
equations in the Fock-Schwinger gauge (Aτ = 0) under the
assumption of boost-invariance are

1

τ

∂

∂τ

1

τ

∂

∂τ
τ 2Aη − [Di,[Di,Aη]] = 0,

(1)
1

τ

∂

∂τ
τ

∂

∂τ
Ai

⊥ − igτ 2[Aη,[Di,Aη]] − [Dj,F ji] = 0,

supplemented by the constraint equation

igτ

[
Aη,

∂

∂τ
Aη

]
− 1

τ

[
Di,

∂

∂τ
Ai

⊥

]
= 0. (2)

The constraint equation comes from the equation of motion
related to the Aτ component after one chooses the Fock-
Schwinger gauge. The Yang-Mills equations are written
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in the Milne coordinates (τ,x,y,η) with the proper time
τ = √

t2 − z2 and the pseudorapidity η = 1
2 ln t+z

t−z
. The non-

Abelian vector potentials Aη(τ,x⊥) and Ai
⊥(τ,x⊥) (i = x,y)

are independent of the pseudorapidity η due to the assumption
of boost invariance; they are matrices in the SU(3) color
group space. The covariant derivative is Di = ∂i − igAi

⊥ and
the field strength tensor is F ij = ∂iA

j
⊥ − ∂jAi

⊥ − ig[Ai
⊥,A

j
⊥].

The initial conditions [29,31] for the equations of motion (1)
are

Ai
⊥(τ = 0,x⊥) = Ai

1(x⊥) + Ai
2(x⊥),

Aη(τ = 0,x⊥) = − ig

2

[
Ai

1(x⊥),Ai
2(x⊥

]
,

∂

∂τ
Ai

⊥(τ = 0,x⊥) = 0,
∂

∂τ
Aη(τ = 0,x⊥) = 0. (3)

Here Ai
1(x⊥) and Ai

2(x⊥) are the pure gauge fields produced
by the two colliding nuclei individually until the collision.
Once the non-Abelian gauge potentials Aη and Ai

⊥ are solved,
physical quantities like the energy-momentum tensor can
be computed accordingly. The energy-momentum tensor is
defined as T μν = FμλF ν

λ + 1
4gμνF κλFκλ with the general field

strength tensor Fμν = ∂μAν − ∂νAμ − ig[Aμ,Aν]. Tracing
over color indexes is understood in the definition of the energy-
momentum tensor. The energy-momentum tensor thus defined
is local in space-time and gauge invariant. Among the various
components of the energy-momentum tensor, the energy den-
sity play a crucial role in the definition of the gluon spectrum:

ε(x) ≡ T 00(x) = 1
2 [ �E2(x) + �B2(x)]. (4)

The contributions from the chromoelectric field �E and the
chromomagnetic field �B are related to the field strength tensor
by

EzEz = 1

τ 2
FτηFτη,

Ei
⊥Ei

⊥ = cosh2 ηFiτFiτ − 1

τ
sinh 2ηFiτFiη

+ 1

τ 2
sinh2 ηFiηFiη,

BzBz = 1

2
FklFkl,

Bi
⊥Bi

⊥ = sinh2 ηFiτFiτ − 1

τ
sinh 2ηFiτFiη

+ 1

τ 2
cosh2 ηFiηFiη. (5)

where the field strength tensor has subscripts in terms of the
Milne coordinates, Fmn with m,n = (τ,x,y,η). The gluon
spectrum dN/d2k⊥dy, which is the number of gluons per
unit two-dimensional transverse momentum and per unit
rapidity, is constructed by requiring it be consistent with the
local energy density in reproducing the total energy:

Etot(τ ) =
∫

d2k⊥dy ω(k⊥,y,τ )
dN

d2k⊥dy
(τ ),

=
∫

d2x⊥dη τ cosh η ε(x⊥,η,τ ). (6)

Here ω(k⊥,y,τ ) is the dispersion relation function that charac-
terizes the gluonic particles in the glasma which, in principle,
should be time dependent. In the strong-field regime, the
dispersion relation function can be highly nontrivial due to the
strong coherence among the gluonic particles. Also, it is am-
biguous whether it is legitimate to define a quasiparticle disper-
sion relation in the strong-field regime. However, once entering
the weak-field regime when particles approximately decohere,
the dispersion relation is approximately time independent and
it makes sense to talk about the dispersion relation for the
quasiparticles. Unfortunately, there are no a prior derivations
for the dispersion relation. For the discussions in this paper,
I choose the dispersion relation of free massless particles
ω(k⊥,y,τ ) = ω(k⊥) = k⊥ for the boost-invariant situation as
in [6–10] while keeping in mind that the problem of choosing
dispersion relations is still not rigorously resolved. With the
boost-invariance assumption dy = dη and the focus on the
central rapidity region η = 0, the requirement (6) becomes

1

τ

∫
d2k⊥k⊥

dN

d2k⊥dy
(τ ) =

∫
d2x⊥ ε(x⊥,τ ). (7)

The 1/τ factor is purely geometric in nature as it originates
from the usage of the Milne coordinates (τ,x,y,η). With the
help of the Fourier transformations, one can easily verify that
the following expression for the gluon spectrum satisfies the
requirement (7):

dN

d2k⊥dy
= 1

2(2π )2

1

k⊥

{[
τFiτ (τ,k⊥)Fiτ (τ, − k⊥)

+ 1

τ
Fτη(τ,k⊥)Fτη(τ, − k⊥)

]

+
[
τ

2
Fij (τ,k⊥)Fij (τ, − k⊥)

+ 1

τ
Fiη(τ,k⊥)Fiη(τ, − k⊥)

]}
. (8)

The terms in the first square bracket of Eq. (8) represent
contributions from the chromoelectric fields while the terms in
the second square bracket represent the contributions from the
chromomagnetic fields; see Eq. (5). The formula is consistent
with the energy density during the whole time evolution. Sim-
ilar expressions have been used in [32], where the dispersion
relation is chosen to be ω(k⊥) =

√
k2
⊥ + m2 with an arbitrary ef-

fective mass m included. On the other hand, the formula (8) dif-
fers from those used in the literature [6–10] in the chromomag-
netic part, where formula (8) contains the full non-Abelian fea-
tures while the conventional expressions are Abelian in nature.
One of the advantages of the formula (8) over the conventional
expression is that one can follow the whole time evolution of
the glasma and tell when the strong fields becomes weak mode
by mode. In addition, formula (8) has gauge-invariant meaning
as it is related to the gauge-invariant local energy density, while
in [6–10] the expression for the gluon spectrum is explicitly
gauge dependent and the additional Coulomb gauge ∂iA

i = 0
has to be imposed. Finally, the expression (8) puts the contri-
butions of the chromomagnetic part and chromoelectric part
on an equal footing and makes their comparison meaningful.
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III. COMPUTING THE GLUON SPECTRUM

To compute the gluon spectrum (8), one first needs to
solve the classical Yang-Mills equations (1). I follow the
semianalytic approach proposed in [33,34], where the gauge
potentials Aη and Ai

⊥ are expressed as power series expansions
in the proper time τ . Recursive relations of the gauge potentials
Aη and Ai

⊥ are deduced so that the solutions can be obtained
order by order in the power series expansions. Mathematically,
this is a rigorous approach to solving the differential equations
involved. However, in practice, it is difficult to compute
the higher order terms as the number of terms involved
grow enormously as one goes to higher orders. To capture
contributions from the higher order terms in the power series
expansion, a momentum scale separation Q2 � Q2

s � m2

was assumed in [35]. As a result, only the leading terms
that have the highest powers in Q2 were retained while the
subleading terms involving logarithmics of Q2 were discarded.
Furthermore an infrared cutoff m and an ultraviolet cutoff Q
were introduced there. The ultraviolet cutoff Q was introduced
so that particles with transverse momentum larger than Q
are not included in the effective classical fields. The infrared
cutoff m can be viewed as the �QCD scale. Moreover, the Qs

is the gluon saturation scale which characterizes the typical
transverse momentum of the gluonic particles. This leading

Q2 approximation proposed in [35], which includes minimal
amounts of non-Abelian effects in the time evolution, is
an improvement on the Abelian approximation discussed in
[32,34]. The Abelian approximation takes into account the
full non-Abelian initial conditions while ignoring nonlinear
self-interactions of the gluon fields in their time evolutions
[29,30,36,37].

The ensuing two steps are computing the following
two-point correlation functions and performing the Fourier
transformations with respect to the transverse coordinates:

〈τFiτ (τ,x⊥)Fiτ (τ,y⊥)〉,
〈

1

τ
Fτη(τ,x⊥)Fτη(τ,y⊥)

〉
,

〈
τ

2
Fij (τ,x⊥)Fij (τ,y⊥)

〉
,

〈
1

τ
Fiη(τ,x⊥)Fiη(τ,y⊥)

〉
. (9)

The bracket 〈· · · 〉 indicates averaging over different config-
urations of the initial color distributions at the end of the
computations. Only the event-averaged gluon spectrum is
considered in this paper. For works related to event-by-event
observables within the semianalytic approach, readers are
referred to [38]. These four terms in (9), before averaging
over the initial color distributions, are also expressed as power
series expansions in the proper time,

τFiτ (τ,x⊥)Fiτ (τ,y⊥) =
∞∑

n=2

n−1∑
k=1

k(n − k)

4n−1[k!(n − k)!]2

[
Dj

x,
[
D{2k−2}

x ,B0(x⊥)
]][

Dj
y ,
[
D{2n−2k−2}

y ,B0(y⊥)
]]

τ 2n−1, (10)

1

τ
Fτη(τ,x⊥)Fτη(τ,y⊥) =

∞∑
n=0

n∑
k=0

1

4n[k!(n − k)!]2

[
D{2k}

x ,E0(x⊥)
][

D{2n−2k}
y ,E0(y⊥)

]
τ 2n+1, (11)

τ

2
Fij (τ,x⊥)Fij (τ,y⊥) =

∞∑
n=0

n∑
k=0

1

4n[k!(n − k)!]2

[
D{2k}

x ,B0(x⊥)
][

D{2n−2k}
y ,B0(y⊥)

]
τ 2n+1, (12)

1

τ
Fiη(τ,x⊥)Fiη(τ,y⊥) =

∞∑
n=2

n−1∑
k=1

k(n − k)

4n−1[k!(n − k)!]2

[
Di

x,
[
D{2k−2}

x ,E0(x⊥)
]][

Di
y,
[
D{2n−2k−2}

y ,E0(y⊥)
]]

τ 2n−1. (13)

In obtaining the above expressions, I used the results for
the different components of the field strength tensor, Fiτ ,
Fτη, Fij , and Fiη, under the leading Q2 approximation in
[35]. Note that Eqs. (10) and (13) are very similar. Their
only difference lies in whether the initial (τ = 0) field is the
longitudinal chromoelectric field E0(x⊥) or the longitudinal
chromomagnetic field B0(x⊥). The same observation applies
to Eqs. (11) and (12). Let us recall the difference between the
initial chromoelectric field and chromomagnetic field [34,39]:

B0(x⊥) = igεmn
[
Am

1 (x⊥),An
2(x⊥)

]
,

E0(x⊥) = igδmn
[
Am

1 (x⊥),An
2(x⊥)

]
. (14)

The initial longitudinal chromoelectric field and the longi-
tudinal chromomagnetic field are different event by event,
E0(x⊥) �= B0(x⊥). But they contribute the same to the
initial energy density after averaging over all the events
〈E0(x⊥)E0(x⊥)〉 = 〈B0(x⊥)B0(x⊥)〉. The spatial indexes in
δmn and εmn will be contracted when averaging over the
initial color distributions. In the calculation of the local

energy-momentum tensor in [34,35], similar computational
procedures had been encountered. However, in that situation,
the limit r⊥ = x⊥ − y⊥ → 0 was taken while here finite values
of the r⊥ = x⊥ − y⊥ have to be retained as Fourier transforma-
tions from the coordinate space to the momentum space will
be implemented. All the techniques needed have already been
discussed in [34,35]; more details on the correlation functions
with finite values of r⊥ are given in the Appendixes. The final
results are summarized here:

EiEi ≡ 1

k⊥
〈τFiτ (τ,k⊥)Fiτ (τ, − k⊥)〉

= (
πR2

A

)
(2ε0)

[ ∞∑
n=3

(−1)nC2(n,k⊥)(Qτ )2n−1

[
ln

Q2

m2

]−2

+
∞∑

n=2

(−1)nC1(n,k⊥)(Qτ )2n−1

[
ln

Q2

m2

]−1]
, (15)

BiBi ≡ 1

k⊥

〈1
τ

Fiη(τ,k⊥)Fiη(τ, − k⊥)
〉
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= (
πR2

A

)
(2ε0)

[ ∞∑
n=3

(−1)nC̃2(n,k⊥)(Qτ )2n−1

[
ln

Q2

m2

]−2

+
∞∑

n=2

(−1)nC1(n,k⊥)(Qτ )2n−1

[
ln

Q2

m2

]−1]
, (16)

EzEz ≡ 1

k⊥

〈
1

τ
Fτη(τ,k⊥)Fτη(τ, − k⊥)

〉

= (
πR2

A

)
(2ε0)

[ ∞∑
n=2

(−1)nD2(n,k⊥)(Qτ )2n+1

[
ln

Q2

m2

]−2

+ 1

2
G0(k⊥)(Qτ ) +

∞∑
n=1

(−1)nD1(n,k⊥)

× (Qτ )2n+1

[
ln

Q2

m2

]−1]
, (17)

BzBz ≡ 1

k⊥

〈
τ

2
Fij (τ,k⊥)Fij (τ, − k⊥)

〉

= (
πR2

A

)
(2ε0)

[ ∞∑
n=2

(−1)nD̃2(n,k⊥)(Qτ )2n+1

[
ln

Q2

m2

]−2

+ 1

2
G0(k⊥)(Qτ ) +

∞∑
n=1

(−1)nD1(n,k⊥)

× (Qτ )2n+1

[
ln

Q2

m2

]−1]
. (18)

The EiEi , BiBi , EzEz, and BzBz are used to label the four
terms. They are ultimately related to their counterparts in the
expression for the energy density Eq. (5). The RA is the radius
of the colliding nucleus. The initial (τ = 0) energy density ε0

[33,34] serves as a normalization factor,

ε0 = 2π
Nc

N2
c − 1

(
g2

4π

)3

μ2

[
ln

Q2

m2

]2

. (19)

Here Nc = 3 is the number of colors and g is the strong
coupling constant, which depends on the energy scales.
The μ is an input parameter in the McLerran-Venugopalan
model that characterizes the Gaussian width of the color
fluctuations from the large-x partons within each nucleus. It
depends on the transverse coordinate x⊥ in general, while
one assumes homogeneity of μ on the transverse plane in the
discussions of the glasma evolution. The initial flows due to
the inhomogeneity on the transverse plane are discussed in
detail in [34,40,41]. In addition, μ is quantitatively related
to the gluon saturation scale Qs [42]. Note that the two
colliding nuclei are assumed to be the same so that the gluon
saturation scales are also the same, as well as the ultraviolet
and the infrared cutoffs. The coefficient functions C1(n,k⊥),
C2(n,k⊥), C̃2(n,k⊥),G0(k⊥),D1(n,k⊥),D2(n,k⊥), D̃2(n,k⊥) are
given in Appendix B. These coefficient functions depend on
the input parameters: the ultraviolet cutoff Q, the infrared
cutoff m and the gluon saturation scale Qs . As power series
expansions in Qτ , EiEi and BiBi have the lowest order
(Qτ )1 while EzEz and BzBz have the lowest order (Qτ )3.

FIG. 1. The coefficient functions 2n+1√C1(n,k⊥), 2n+1√C2(n,k⊥),
2n+1

√
C̃2(n,k⊥), 2n−1√D1(n,k⊥), 2n−1√D2(n,k⊥), and 2n−1

√
D̃2(n,k⊥) at different

orders n for k⊥ = Qs . The input parameters are Q = 4.0 GeV,
m = 0.2 GeV, and Qs = 1.2 GeV.

It is not surprising to notice that the expressions of EiEi and
BiBi are almost the same except for the minor difference
in the coefficient functions C2(n,k⊥) and C̃2(n,k⊥). The same
observation applies to the expressions of EzEz and BzBz.
Mathematically speaking, these differences originate from the
difference in the initial longitudinal chromoelectric field E0

and the longitudinal chromo-magnetic field B0; see Eq. (14). It
involves spatial index contraction with either δmn or εmn when
averaging over initial color fluctuations. Physically speaking,
these minor differences represent non-Abelian effects in the
time evolutions that deviate from the Abelian approximation
where there exists duality between the E fields and the
B-fields.

As power series expansions in Qτ , one would naively
expect the radius of convergence of these four terms to be
τc ∼ 1/Q, which is around 0.05 fm/c for Q = 4.0 GeV. How-
ever, the coefficient functions C1(n,k⊥), C2(n,k⊥), C̃2(n,k⊥),
D1(n,k⊥), D2(n,k⊥), and D̃2(n,k⊥) decrease very fast as one
increases the order n of the power series expansions; see Fig. 1.
The fast decrease of these coefficients compensates for the
increase of (Qτ )n when extending to regions of larger proper
time. As a result, the convergence radius is approximately
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FIG. 2. Time evolution of the four terms EiEi , BiBi , EzEz, and
BzBz for the momentum mode k⊥ = Qs .

enhanced by a factor of 10 to τc ∼ 0.5 fm/c. This point
becomes apparent in the results shown in the next section.

IV. RESULTS AND DISCUSSIONS

The input parameters are chosen to be Q = 4.0 GeV,
m = 0.2 GeV, and Qs = 1.2 GeV as in [35] to be consistent
with the assumption of the momentum scale separation Q2 �
Q2

s � m2. The strong coupling constant g is calculated at
the momentum scale Q. These values will be the benchmark
input values for comparisons when varying one of them while
keeping the other two fixed. In the numerical computations,
the power series expansions are cut to the order of n = 60.
Depending on the proper time window one is interested in,
higher order terms in the power series expansion can also be
incorporated, although the computational time will increase
dramatically. Additionally, there is the limit due to the radius
of convergence of the power series expansions that prohibits
extension to larger values of the proper time τ . This reveals
the limitation of the small proper time power series expansion
method.

Figure 2 shows the time evolution of the four terms (15),
(16), (17), and (18) in the gluon spectrum for the momentum
mode k⊥ = Qs . The contributions from the chromoelectric
part EiEi + EzEz is larger than that from the chromomagnetic
part BiBi + BzBz, as shown in Fig. 3. Late in the evolution,
the fields become weak so that the non-Abelian self-interacting
terms are less important than the kinetic terms. Ideally, if
the self-interacting effects could be completely ignored, one
has the Abelianized theory where there exists duality between
the chromoelectric field E and chromomagnetic field B. One
would have the same contributions to the gluon spectrum
from the chromoelectric fields and the chromomagnetic fields.
However, non-Abelian self-interacting effects persist even in
the weak field regime. As a result, the initial difference between
the chromoelectric field E0 and the chromomagnetic field B0 is
passed on nonlinearly to the late time so that their differences
show up even in the event-averaged results, as demonstrated by
Fig. 3. Note that although E0 and B0 are different for a single
event, after averaging over all the initial color distributions,

FIG. 3. Time evolution of chromoelectric part EiEi + EzEz and
the chromomagnetic part BiBi + BzBz for the momentum mode
k⊥ = Qs .

〈E0E0〉 is the same as 〈B0B0〉, which is also demonstrated by
Fig. 3.

Figure 4 shows the time evolution of four different momen-
tum modes k⊥/Qs = 0.8, k⊥/Qs = 1.0, k⊥/Qs = 1.2, and
k⊥/Qs = 1.5 from the gluon spectrum. After a short proper
time of continuous increasing, they all saturate at constant
values. These plateau features are reminiscent of the fact that
the energy density ε(τ ) approximately behaves as 1/τ at late
time, which means free streaming. Once reaching the plateau
regions, the gluon spectrum is independent of time. This
feature is further identified as the criterion that the classical
gluon fields switch to the weak field regime from the initial
strong field regime. A time-independent gluon spectrum thus
has physical meaning and can be intepreted as distribution
of the particle numbers. Apparently, larger momentum modes
reach the weak field regime faster than the smaller momentum
modes do, as can be seen from Fig. 4.

The gluon spectrum and the energy density spectrum at
τ = 0.6 fm/c are shown in Fig. 5. The expression of the
gluon spectrum is reorganized as the number of gluons per
unit transverse area, per unit radian, per unit rapidity, and per

FIG. 4. Four different momentum modes of the gluon spectrum
evolve with time.
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FIG. 5. The gluon spectrum and the energy density spectrum at
τ = 0.6 fm/c. The blue dots are the numerical results while the red
curves are from the thermal fitting functions (22). (a) The gluon
spectrum fitted with a thermal function and (b) The energy density
spectrum fitted with a thermal function.

transverse momentum magnitude k⊥:

n(k⊥) ≡ dn

dk⊥
= k⊥

dN

dyd2k⊥

1(
πR2

A

) . (20)

The area under the curve n(k⊥) represents the total number of
gluons per unit area and per unit radian. The energy density
spectrum is then defined as

ε(k⊥) = k⊥n(k⊥) = k2
⊥

dN

dyd2k⊥

1(
πR2

A

) . (21)

The functional form of the gluon spectrum n(k⊥) is first
fitted using a thermal distribution function (Bose-Einstein
distribution) with finite effective mass Meff and finite effective
temperature Teff :

n(k⊥) = a1
(
e
√

k2
⊥+M2

eff/Teff − 1
)−1

. (22)

The fitting parameters are a1 = 2.616 GeV, Meff =
0.706 GeV, and Teff = 0.848 GeV. The effective temperature
is roughly Teff ∼ 0.7Qs . Apparently, the gluon spectrum is

FIG. 6. The gluon spectrum and the energy density spectrum at
τ = 0.6 fm/c. The blue dots are the numerical results while the red
curves are from the nonthermal function (23). (a) The gluon spectrum
fitted with a nonthermal function and (b) The energy density spectrum
fitted with a nonthermal function.

close to but slightly different from the equilibrium Bose-
Einstein distribution. The deviation from the Bose-Einstein
distribution is amplified in the energy density spectrum,
Fig. 5(b). A modification function h(k⊥) is then introduced
in the fitting function:

n(k⊥) = a2
(
e
√

k2
⊥+M̃2

eff/T̃eff − 1
)−1

h(k⊥). (23)

The modification function is

h(k⊥) =
1 + a3

√
k2
⊥ + M̃2

eff/T̃eff + a4
(√

k2
⊥ + M̃2

eff/T̃eff
)2

1 + a5

√
k2
⊥ + M̃2

eff/T̃eff + a6
(√

k2
⊥ + M̃2

eff/T̃eff
)2

.

(24)

The fitting result is shown in Fig. 6. For the nonthermal
function (23), the fitting parameters are a2 = 2.439 GeV,
M̃eff = 0.802 GeV, T̃eff = 0.944 GeV, a3 = −1.535, a4 =
0.690, a5 = −1.606, and a6 = 0.751. Here the effective
temperature is roughly T̃eff ∼ 0.8Qs . Both the gluon spectrum
and the energy density are fitted well with the nonthermal
function (23).
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FIG. 7. The gluon spectrum and the energy density spectrum at
τ = 0.6 fm/c. The blue dots are the numerical results while the red
curves are from the nonthermal function (25). (a) The gluon spectrum
fitted with a nonthermal function and (b) The energy density spectrum
fitted with a nonthermal function.

It is interesting that one can use a different nonthermal
function that fits the gluon spectrum result as well as (23):

n(k⊥) = a2(ek⊥/T̃eff − 1)−1 k⊥ h̃(k⊥), (25)

with

h̃(k⊥) = 1 + a3 k⊥ + a4 k2
⊥

1 + a5 k⊥ + a6 k2
⊥

. (26)

The fitting results are shown in Fig. 7. The fitting
parameters are a2 = 2.623, a3 = −0.666 GeV−1, a4 =
0.848 GeV−2, a5 = −1.176 GeV−1, a6 = 1.634 GeV−2, and
T̃eff = 0.762 GeV. Here the effective temperature is roughly
T̃eff ∼ 0.65Qs .

In comparison with the first nonthermal fitting function
(23), the second nonthermal fitting function (25) assumes a
zero effective mass and the functional form of the modification
function is multiplied by an additional k⊥. Both nonthermal
fittings give much better results than the thermal fitting
function (22). The different forms of the fitting functions
indicate that the main feature of the functional form for
the gluon spectrum is exponential. The effective mass term
M̃eff is not necessary while the effective temperature T̃eff

FIG. 8. The normalized gluon spectrums for three different values
of Qs . The area under each curve is normalized to be 1.

which is approximately 0.6Qs–0.9Qs characterizes the typical
momentum for the gluonic modes in the weak field regime
of the glasma evolution. It is worth noting that in [7,9] the
gluon spectrum had already been fitted with the Bose-Einstein
distribution function for lower momentum modes. However,
the fitted curves were for dN/dyd2k⊥ in [7,9] rather than for
k⊥dN/dyd2k⊥ as fitted in the current paper. Also, those higher
momentum modes were fitted with a power-law function
so as to compare with the results from perturbative QCD
calculations. In this paper, the momentum modes reside in
the range from m = 0.2 GeV to Q = 4.0 GeV, within which
descriptions in terms of the classical fields are assumed to be
justified. Therefore, momentum modes lower than the scale m
or larger than the scale Q should be understood as coming from
extrapolations. Higher moments of the gluon distributions
beyond the energy density spectrum (first moment of the gluon
spectrum) should be able to reveal further deviations from
a pure Bose-Einstein distribution. In this paper, the energy
density spectrum is used as a second constraint for the fittings,
and higher moments of the gluon distribution are not further
considered.

To compare different results when varying the input param-
eters, the gluon spectrum is normalized by the total number
of gluons per unit area, per unit radian N = ∫

dk⊥n(k⊥).
The function f (k⊥) = n(k⊥)/N therefore has the meaning of
probability density. In Fig. 8, the gluon spectrums for three

TABLE I. The fitting parameters for the nonthermal fitting
function (23) when choosing different values of Qs while Q =
4.0 GeV and m = 0.2 GeV.

Qs (GeV) 1.0 1.2 1.5
M̃eff (GeV) 0.775 0.802 0.997
T̃eff (GeV) 0.875 0.944 1.087
a2 1.658 2.439 4.410
a3 −1.273 −1.535 −1.843
a4 0.529 0.690 0.837
a5 −1.431 −1.606 −1.906
a6 0.651 0.751 0.900
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FIG. 9. The normalized gluon spectrums for three different values
of Q. The area under each curve is normalized to be one.

different values of Qs are presented. Other input parameters
are chosen to be the same as the benchmark values. Increasing
the values of the gluon saturation scale Qs can be realized
by increasing the collision energies of the colliding nuclei.
The gluon saturation scale Qs , which is linearly related to the
effective temperature T̃eff , characterizes the typical momentum
of the gluonic system in the weak field regime of the glasma
evolution. Larger values of Qs mean smaller weights at the
lower momentum while smaller values of Qs indicate larger
weights at lower momentum. Figure 8 is consistent with this
qualitative properties. Note that the area under each curve is
normalized to be 1. The corresponding effective mass M̃eff and
the effective temperature T̃eff when fitted with the nonthermal
function (23) by changing Qs are given in Table I. Both M̃eff

and T̃eff increase as Qs is increased. The effective temperature
T̃eff is roughly 0.6Qs–0.9Qs . Figure 9 shows the results when
varying the ultraviolet cutoff Q. Other input parameters are
the same as the benchmark values. As can be seen, the results
are barely sensitive to the changes of ultraviolet cutoffs. The
fitting parameters when changing the ultraviolet cutoffs are
given in Table II. Figure 10 shows the results for different
values of the infrared cutoff m. The differences are noticeable.
Smaller values of the m incorporate more lower momentum
modes, thus increases the weights in the lower momentum
regions. The corresponding fitting parameters when changing
the infrared cutoffs are listed in Table III.

TABLE II. The fitting parameters for the nonthermal fitting
function (23) when choosing different values of Q while Qs =
1.2 GeV and m = 0.2 GeV.

Q (GeV) 3.0 4.0 5.0
M̃eff (GeV) 0.859 0.802 0.693
T̃eff (GeV) 0.898 0.944 1.016
a2 2.748 2.439 1.716
a3 −1.381 −1.535 −1.786
a4 0.533 0.690 1.112
a5 −1.409 −1.606 −1.945
a6 0.559 0.751 1.217

FIG. 10. The normalized gluon spectrums for three different
values of m. The area under each curve is normalized to be 1.

V. CONCLUSION AND OUTLOOK

In high energy heavy-ion collisions, understanding the
complete time evolution of the glasma state is important to
gain insights into the very initial stages of the collisions. For
the simplest boost-invariant situation, the gluon spectrum is
reexamined from a semianalytic approach. A different formula
for the gluon spectrum is proposed by relating it to the
local energy density studied before. One finds that the gluon
spectrum has different contributions from the chromoelectric
part and the chromomagnetic part, which reflects the effects
of non-Abelian self-interactions in the weak field regime of
the Glasma evolution. All the momentum modes reach their
plateau regions after certain times, which is consistent with
the free-streaming (ε ∼ 1/τ ) at the late time of the glasma
evolution. However, larger momentum modes take less time to
enter the weak field regime while smaller momentum modes
take more time. To have a meaningful result for the gluon
spectrum, one needs to make a proper time cutoff large enough
so that most of the momentum modes of the gluon spectrum
are not changing with time. The proper time τ = 0.6 fm/c is
chosen, and one finds that the functional form of the gluon
spectrum is nonequilibrium in nature but is close to a thermal
distribution with effective temperatures around 0.6Qs–0.9Qs .

The gluon spectrum is essentially exponential, with a
modification function that accounts for the deviations from the
equilibrium. This functional form is different from either the

TABLE III. The fitting parameters for the nonthermal fitting
function (23) when choosing different values of m while Q =
4.0 GeV and Qs = 1.2 GeV.

m (GeV) 0.1 0.2 0.3
M̃eff (GeV) 0.457 0.802 1.254
T̃eff (GeV) 0.920 0.944 0.954
a2 2.015 2.439 2.875
a3 −1.657 −1.535 −0.908
a4 1.516 0.690 0.236
a5 −1.476 −1.606 −0.962
a6 1.117 0.751 0.270
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Gaussian distribution or the step function used in the literature.
It would be interesting to see how the system evolves starting
from these different forms of the initial gluon spectrum.
In addition, the close-to-equilibrium feature of the gluon
spectrum may give us some hints about the early thermalization
problem.

Apparently, the boost-invariant gluon spectrum lacks in-
formation about the longitudinal dynamics. It is necessary
to go beyond the boost-invariance assumption, especially
for the initial conditions, to explore the dependence on the
longitudinal momentum for the gluon spectrum.
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APPENDIX A: CORRELATION FUNCTIONS
WITH FINITE RANGE

The relevant correlation functions involve an auxiliary
function γ (x⊥,y⊥). A few examples [34] are

〈
Ai

a(x⊥)Aj
b(y⊥)

〉
= ∇ i

x∇j
y γ (x⊥,y⊥)T (x⊥,y⊥)δab, (A1)〈

DkAi
a(x⊥)DlA

j
b(y⊥)

〉
= ∇k

x∇ i
x∇ l

y∇j
y γ (x⊥,y⊥)T (x⊥,y⊥)δab, (A2)〈

DkDlAi
a(x⊥)Aj

b(y⊥)
〉

= ∇ l
x∇k

x∇ i
x∇j

y γ (x⊥,y⊥)T (x⊥,y⊥)δab, (A3)〈
DmDnDkDlAi

a(x⊥)Aj
b(y⊥)

〉
= ∇m

x ∇n
x ∇ l

x∇k
x∇ i

x∇j
y γ (x⊥,y⊥)T (x⊥,y⊥)δab, (A4)

with

T (x⊥,y⊥)

= 2g2

g4Nc�(x⊥,y⊥)

{
exp

[
g4Nc

2
(
N2

c − 1
)�(x⊥,y⊥)

]
− 1

}
(A5)

and

�(x⊥,y⊥) = �(r) = μ

8π
r2 ln m2r2. (A6)

Here r = |x⊥ − y⊥|. The main efforts are to calculate the
auxiliary function γ (x⊥,y⊥) and its higher order derivatives.

The γ (x⊥,y⊥) is expressed as

γ (x⊥,y⊥) = μ

∫
d2�k⊥
(2π )2

eik⊥(x⊥−y⊥)G(k⊥)G(−k⊥). (A7)

Here G(k⊥) = 1/k2
⊥ is the momentum space Green function.

To get meaningful results, the integral in (A7) has to be
regularized. In [32,34] an infrared scale m is introduced to
modify the expression of G(k⊥) from 1/k2

⊥ to 1/(k2
⊥ + m2)

while the ultraviolet cutoff � is imposed on the upper
integration limit. In this paper, the infrared cutoff m and the
ultraviolet cutoff Q are explicitly imposed as the limits of the
momentum integration,

γ (x⊥,y⊥) = μ

∫ Q

m

d2k⊥
(2π )2

eik⊥(x⊥−y⊥) 1

k4
⊥

. (A8)

Taking derivatives on γ (x⊥,y⊥) is carried out inside of the
integral before the momentum integration

∇ i
x∇j

y γ (�x⊥,�y⊥) = μ

∫
d2�k⊥
(2π )2

ei�k⊥(�x⊥−�y⊥) k
i
⊥k

j
⊥

k4
⊥

� μ
δij

2

∫
d2�k⊥
(2π )2

ei�k⊥(�x⊥−�y⊥) k
2
⊥

k4
⊥

. (A9)

Rotational invariance on the transverse plane in the momentum
space is assumed so that only the symmetric part of ki

⊥k
j
⊥,

which is δij k2
⊥/2, is kept. An equivalent approach is to evaluate

the integral in (A8) first and then take derivatives on the spatial
function obtained,

∇j
y ∇ i

xγ (r) = − ∂2γ (r)

∂rj ∂ri

= − δij 1

r

∂γ (r)

∂r
− rirj

r2

(
∂2γ (r)

∂r2
− 1

r

∂γ (r)

∂r

)
.

(A10)

The second approach coincides with the first approach after
making the approximation rirj /r2 � δij /2 in (A10), which is
valid as long as 0 � mr � 1. The first approach, exemplified
by (A9), will be followed. Two more examples are

∇k
x∇ l

y∇ i
x∇j

y γ (x⊥,y⊥)

= μ

∫
d2k⊥
(2π )2

eik⊥(x⊥−y⊥) k
i
⊥k

j
⊥kk

⊥kl
⊥

k4
⊥

= μ
�ijkl

8

∫
d2k⊥
(2π )2

eik⊥(x⊥−y⊥), (A11)

∇m
x ∇n

y ∇k
x∇ l

y∇ i
x∇j

y γ (x⊥,y⊥)

= μ

∫
d2k⊥
(2π )2

eik⊥(x⊥−y⊥) k
i
⊥k

j
⊥kk

⊥kl
⊥km

⊥kn
⊥

k4
⊥

= μ
�ijklmn

48

∫
d2k⊥
(2π )2

eik⊥(x⊥−y⊥)k2
⊥. (A12)
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The spatial index functions �ijkl and �ijklmn are the sum of all possible products of the Kronecker delta functions,

�ijkl = δij δkl + δikδjl + δilδjk, �ijklmn = δij�klmn + δik�jlmn + δil�jkmn + δim�jkln + δin�jklm. (A13)

The general expression for n � 2 is evaluated as

∇ i1
x ∇ i2

y · · · ∇ i2n−1
x ∇ i2n

y γ (x⊥,y⊥) = μ

2π

�i1i2···i2n−1i2n

(2n)!!

1

r2n−2

1

2

z2n−2

n − 1
1F2[n − 1; 1,n; −z2/4]

∣∣∣∣
Qr

mr

� μ

4π

�i1i2···i2n−1i2n

(2n)!!

Q2n−2

n − 1
1F2[n − 1; 1,n; −(Qr)2/4]. (A14)

In the second equality, the requirement 0 � mr � 1 is taken into account so that the contribution from the lower integration limit
mr can be ignored. The n = 1 case is computed separately:

∇ i
x∇j

y γ (x⊥,y⊥) � μ

4π

δij

2

[
− (Qr)2

4
2F3[1,1; 2,2,2; −(Qr)2/4] + ln

Q2

m2

]
. (A15)

Both expressions involve the Hypergeometric functions 1F2[a; b,c; z] and 2F3[a,b; c,d; z], respectively. Let us summarize the
general expressions for the correlation functions that are used in the computation of the gluon spectrum:

〈
Di1Di2 · · · Di2nAi

a(x⊥)Aj
b(y⊥)

〉 = (−1)n
μ

4π

�i1i2i3···i2nij

2(n + 1)!!

Q2n

n
1F2

[
n; 1,n + 1; − (Qr)2

4

]
T (x⊥,y⊥)δab, (A16)

〈
Ai

a(x⊥)Aj
b(y⊥)

〉 = μ

4π

δij

2

[
− (Qr)2

4
2F3[1,1; 2,2,2; −(Qr)2/4] + ln

Q2

m2

]
T (x⊥,y⊥)δab. (A17)

In the limit r → 0, the term containing the hypergeometric function in (A17) vanishes. With further replacement of Q ↔ 1/r ,
one recovers the well-known result of the two-point correlation function in the McLerran-Vegnugopalan model [43].

APPENDIX B: THE COEFFICIENT FUNCTIONS

The coefficient functions C1(n,k⊥) and C2(n,k⊥) are

C1(n,k⊥) =
n−1∑
k=1

1

4n

2(2n − 2k)(2k)

[k!(n − k)!]2

1

2

(
1

n − 1

)
F2(n,k⊥), (B1)

C2(n,k⊥) =
n−1∑
k=1

1

4n

2(2n − 2k)(2k)

[k!(n − k)!]2

k−1∑
β=0

n−k−1∑
α=0

β∑
σ=0

α∑
ρ=0

(
n − k − 1

α + ρ

)(
α + ρ

2ρ

)(
k − 1

β + σ

)(
β + σ

2σ

)

× 1

2ρ + 2σ + 1

(
2ρ + 2σ + 2

ρ + σ + 1

)
1

22

1

α + β + 1

1

n − α − β − 2
F1(n,α,β,k⊥)

+
n−1∑
k=2

1

4n

(2n − 2k)(2k)

[k!(n − k)!]2

k−2∑
β=0

n−k−1∑
α=0

β∑
σ=0

α∑
ρ=0

(
n − k − 1

α + ρ

)(
α + ρ

2ρ

)(
k − 1

β + σ + 1

)(
β + σ + 1

2σ + 1

)

× 1

2ρ + 2σ + 3

(
2ρ + 2σ + 4

ρ + σ + 2

)
1

23

1

α + β + 1

1

n − α − β − 2
F1(n,α,β,k⊥) × 2

+
n−2∑
k=2

1

4n

(2n − 2k)(2k)

[k!(n − k)!]2

k−2∑
β=0

n−k−2∑
α=0

β∑
σ=0

α∑
ρ=0

(
n − k − 1

α + ρ + 1

)(
α + ρ + 1

2ρ + 1

)(
k − 1

β + σ + 1

)(
β + σ + 1

2σ + 1

)

× 1

2ρ + 2σ + 3

(
2ρ + 2σ + 4

ρ + σ + 2

)
1

22

1

α + β + 1

1

n − α − β − 2
F1(n,α,β,k⊥). (B2)
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The auxiliary functions F1(n,k⊥) and F2(n,α,β,k⊥) represent the implementation of Fourier transformations,

F1(n,α,β,k⊥) = 1

k⊥Q

∫ 1/m

0
dr (2πr)J0(k⊥r) 1F2

[
α + β + 1; 1,α + β + 2; − (Qr)2

4

]

× 1F2

[
n − α − β − 2; 1,n − α − β − 1; − (Qr)2

4

]
[T̃ (r)]2, (B3)

F2(n,k⊥) = 1

k⊥Q

∫ 1/m

0
dr (2πr)J0(k⊥r)1F2

[
n − 1; 1,n; − (Qr)2

4

]

×
(

− (Qr)2

4
2F3

[
1,1; 2,2,2; − (Qr)2

4

][
ln

Q2

m2

]−1

+ 1

)
[T̃ (r)]2. (B4)

The function T̃ (r) is a rescaled expression of T (r) so that T̃ (r) → 1 as r → 0,

T̃ (r) = 2
(
N2

c − 1
)

g4Nc�(r)

{
exp

[
g4Nc

2
(
N2

c − 1
)�(r)

]
− 1

}
. (B5)

The limits of integration for r in the Fourier transformations are chosen to be 0 and 1/m to be consistent with the approximation
0 � mr � 1. The prefactor 1/k in the expressions of F1(n,α,β,k⊥) and F2(n,k⊥) originates from the dispersion relation in
Eq. (8) while the prefactor 1/Q is due to the additional 1/τ geometrical factor in Eq. (7) when matching the expansions in Qτ .
As explained in [35], the binomial coefficients in the expression of C2(n,k⊥) come from distributing multiple covariant derivatives
Dx to either the A1(x⊥) field or A2(x⊥) field in evaluating the following expressions (of course, the distributions are also made
for the covariant derivative Dy to either the A1(y⊥) field or the A2(y⊥) field):〈[

Dj
x,
[
D{2k−2}

x ,
[
Am

1 (x⊥),An
2(x⊥)

]]][
Dj

y ,
[
D{2n−2k−2}

y ,
[
A

p
1 (y⊥),Aq

2(y⊥)
]]]〉

,

〈[
D{2k}

x ,
[
Am

1 (x⊥),An
2(x⊥)

]][
D{2n−2k}

y ,
[
A

p
1 (y⊥),Aq

2(y⊥)
]]〉

. (B6)

To obtain the coefficient function C̃2(n,k⊥), one replaces the factors 1/(2ρ + 2σ + 1) and 1/(2ρ + 2σ + 3) inside the nested
summations in the expression of C2(n,k⊥) with the pure number 1. These two factors inside the nested summations come from
spatial index contractions with εmnεpq for the B0 field while they give a pure number 1 if contractions are made with δmnδpq for
E0 field.

The coefficient functions D1(n,k⊥) and D2(n,k⊥) are

D1(n,k⊥) =
n∑

k=0

1

4n

(n − k + 1)(k + 1)

(n − k)!(n − k + 1)!k!(k + 1)!

1

n
G3(n,k⊥), (B7)

D2(n,k⊥) =
n∑

k=0

1

4n

(n − k + 1)(k + 1)

(n − k)!(n − k + 1)!k!(k + 1)!

⎡
⎣n−k∑

α=0

k∑
β=0

α∑
ρ=0

β∑
σ=0

(
n − k

α + ρ

)(
α + ρ

2ρ

)

×
(

k

β + σ

)(
β + σ

2σ

)(
2ρ + 2σ + 2

ρ + σ + 1

)
1

22

(
1

n − α − β

)(
1

α + β

)
G1(n,α,β,k⊥)

+
n−k−1∑
α=0

k−1∑
β=0

α∑
ρ=0

β∑
σ=0

(
n − k

α + ρ + 1

)(
α + ρ + 1

2ρ + 1

)(
k

β + σ + 1

)(
β + σ + 1

2σ + 1

)

×
(

2ρ + 2σ + 4

ρ + σ + 2

)
1

22

(
1

n − α − β − 1

)(
1

α + β + 1

)
G2(n,α,β,k⊥)

⎤
⎦. (B8)

The functions G0(k⊥), G1(n,α,β,k⊥), G2(n,α,β,k⊥), and G3(n,k⊥) also represent the implementation of the Fourier transforma-
tions,

G0(k⊥) = 1

k⊥Q

∫ 1/m

0
dr (2πr)J0(k⊥r)

(
− (Qr)2

4
2F3

[
1,1; 2,2,2; − (Qr)2

4

][
ln

Q2

m2

]−1

+ 1

)2

[T̃ (r)]2, (B9)
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G1(n,α,β,k⊥) = 1

k⊥Q

∫ 1/m

0
dr (2πr)J0(k⊥r) 1F2

[
α + β; 1,α + β + 1; − (Qr)2

4

]

× 1F2

[
n − α − β; 1,n − α − β + 1; − (Qr)2

4

]
[T̃ (r)]2, (B10)

G2(n,α,β,k⊥) = 1

k⊥Q

∫ 1/m

0
dr (2πr)J0(k⊥r) 1F2

[
α + β + 1; 1,α + β + 2; − (Qr)2

4

]

× 1F2

[
n − α − β − 1; 1,n − α − β; − (Qr)2

4

]
[T̃ (r)]2, (B11)

G3(n,k⊥) = 1

k⊥Q

∫ 1/m

0
dr (2πr)J0(k⊥r) 1F2

[
n; 1,n + 1; − (Qr)2

4

]

×
(

− (Qr)2

4
2F3

[
1,1; 2,2,2; − (Qr)2

4

][
ln

Q2

m2

]−1

+ 1

)
[T̃ (r)]2. (B12)

To obtain D̃2(n,k⊥) from D2(n,k⊥), one just needs to insert the factor 1/(2ρ + 2σ + 1) into the first nested summation of
D2(n,k⊥) and the factor 1/(2ρ + 2σ + 3) into the second nested summation of D2(n,k⊥).
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