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Analysis of the total kinetic energy of fission fragments with the Langevin equation
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We analyzed the total kinetic energy (TKE) of fission fragments with three-dimensional Langevin calculations
for a series of actinides and Fm isotopes at various excitation energies. This allowed us to establish systematic
trends of TKE with Z2/A1/3 of the fissioning system and as a function of excitation energy. In the mass-energy
distributions of fission fragments we see the contributions from the standard, super-long, and super-short (in the
case of 258Fm) fission modes. For the fission fragments mass distribution of 258Fm we obtained a single peak
mass distribution. The decomposition of TKE into the prescission kinetic energy and Coulomb repulsion showed
that decrease of TKE with growing excitation energy is accompanied by a decrease of prescission kinetic energy.
It was also found that transport coefficients (friction and inertia tensors) calculated by a microscopic model and
by macroscopic models give drastically different behaviors of TKE as a function of excitation energy. The results
obtained with microscopic transport coefficients are much closer to experimental data than those calculated with
macroscopic ones.
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I. INTRODUCTION

The nuclear fission phenomena is very fascinating because
it involves a large-scale restructuring of nucleon arrangements.
The motion of each individual nucleon can be taken into
account in approaches such as time-dependent Hartree-Fock
theory or molecular dynamics that consider the degrees of
freedom of all nucleons in the system quantum mechanically.
However, it is not possible yet to treat the nuclear fission
starting from the compound nuclei all the way to scission
by these microscopic theories. On the other hand, in the
Langevin description of fission, we keep only a small number
of collective coordinates which are convenient to describe
nuclear fission, assuming that the time evolution of the
collective shape of the nucleon distribution can be described
by the classical treatment. The Langevin approach extends
the classical Newtonian equation by adding a random force.
In nuclear fission, the random force is due to the sum of
fluctuations resulting from the complex changes of each
individual nucleon’s movements acting on the collective
coordinates.

We can describe all the possible evolution of the nuclear
shape by these collective coordinates. Given a particular set of
initial collective coordinates qμ for μ = {1, . . . ,D}, where D
denotes the number of collective coordinates, we then allow
the shape of the nuclei to evolve on the potential energy
surface under the influence of friction and the random force
with trajectories determined by the Langevin equation. We
let the shape evolve all the way to scission configurations
if features necessary for fission are present on the potential
energy surface.

*usang.m.aa@m.titech.ac.jp; mark_dennis@nm.gov.my

At present there are several groups using the Langevin
approach for the description of fission processes [1–7]. In
all these works only potential energy is calculated accurately
enough, mainly within the macroscopic-microscopic method
which combines liquid-drop properties of fissioning nuclei
with quantum shell and pairing effects. The tensors of friction
and inertia are calculated within macroscopic models: the
Werner-Wheeler method [8] for the inertia and the wall-
and-window formula [9–13] for friction. These quantities do
not contain any quantum effects. Meanwhile, it was shown
[14,15] that the mass and friction coefficients derived within
a microscopic approach at low excitation energies differ
drastically from their macroscopic counterparts in dependence
on both the deformation and excitation energy (temperature).
Thus, in nuclear fission at low excitations the application of
macroscopic transport coefficients is not well justified.

In the present work, we describe the mass-energy distribu-
tions of actinide nuclei and 258Fm within the three-dimensional
(3D) Langevin approach with transport coefficients derived
within the microscopic linear response theory [16,17]. The
shape of the nuclear surface and the mean-field Hamiltonian
are defined within the two-center shell model [18] with
three deformation parameters, namely, the elongation z0, the
deformation of fragments δ, and the mass asymmetry α that
specify the nuclear shape as depicted in Fig. 1 during the fission
process.

The total kinetic energy (TKE) of fission fragments is an
important fission observables as it reveals further information
on the excitation energy (Ex) distribution of fission fragments
for the calculation of prompt fission neutron multiplicities
[19]. Presently, TKE at various Ex are predicted mainly from
available data [20,21], but our approach opens possibilities
of making reasonable TKE estimate for gaps in available
experimental data. Calculations using macroscopic transport
coefficients are also carried out for comparison in some cases.
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FIG. 1. The two-center shell model shape profile.

II. THE TWO-CENTER SHELL MODEL

In the present work we use the two-center shell model
(TCSM) suggested by Maruhn and Greiner [18] and the code
developed by Suekane, Iwamoto, Yamaji and Harada [22–24]
and extended by one of the authors (Ivanyuk).

The mean-field Hamiltonian Hmf in TCSM includes the
kinetic energy part, the mean-field potential V (ρ,z), and the
angular momentum dependent part. In cylindrical coordinates
{ρ,z} it is written as

Hmf = �p2

2m
+ V (ρ,z) − κi

[
2(�li�s) + μi

(�l2
i − 〈�l2

i

〉)]
h̄ω0; (1)

see [22–24]. Here i = 1 for z � 0 and i = 2 for z � 0; κi and
μi are the usual parameters of Nilsson model.

The potential V (ρ,z) in TCSM consists of two oscillator
potentials smoothly joined together by a fourth-order polyno-
mial in z; see Eq. (2) and Fig. 2. It is defined as

V (ρ,z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2mω2

z1
(z − z1)2 + 1

2mω2
ρ1

ρ2, z � z1,

1
2mω2

z1
(z − z1)2f1(z,z1)

+ 1
2mω2

ρ1
ρ2f2(z,z1), z1 � z � 0,

1
2mω2

z2
(z − z2)2f1(z,z2)

+ 1
2mω2

ρ2
ρ2f2(z,z2), 0 � z � z2,

1
2mω2

z2
(z − z2)2 + 1

2mω2
ρ2

ρ2, z2 � z,

(2)

FIG. 2. The nuclear potential (2) of the two-center shell model at
ρ = 0.

with the quadratic-in-z functions f1 and f2,

f1(z,zi) = 1 + ci(z − zi) + di(z − zi)
2,

f2(z,zi) = 1 + gi(z − zi)
2 (i = 1,2). (3)

The shape of nuclear the surface in TCSM is fixed by
the requirement that at the surface ρ = ρ(z) the potential
V (ρ(z),z) is constant, which leads to

ρ2(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2
z1

ω2
ρ1

[(zL−z1)2−(z−z1)2], zL � z � z1,

ω2
z1

ω2
ρ1

(zL−z1)2−(z−z1)2f1(z,z1)
f2(z,z1) , z1 � z � 0,

ω2
z2

ω2
ρ2

(zR−z2)2−(z−z2)2f1(z,z2)
f2(z,z2) , 0 � z � z2,

ω2
z2

ω2
ρ2

[(zR − z2)2 − (z − z2)2], z2 � z � zR.

(4)
The potential (2) contains 12 parameters. By imposing
conditions that V (ρ,z) and its z derivative are continuous at
z = {z1,0,z2}, the number of parameters is reduced to 5 (one
also has to require that the left and right oscillator potentials
coincide at z = 0). These are the elongation parameter z0 ≡
z2 − z1, the mass asymmetry α = (V1 − V2)/(V1 + V2) (V1

and V2 are the volume to the left and right from z = 0), the
deformations δi of the left and right oscillator potentials, and
the neck parameter ε.

The neck parameter ε is given by the ratio of the potential
height E at z = 0 to the value E0 of left and right harmonic
oscillator potentials at z = 0; see Fig. 2. In our calculation, we
fix ε = 0.35 as was recommended by [25]. This value leads to
shapes that are very close to the optimal shapes [26]. Please,
note that the fixed ε does not mean fixed neck radius. The neck
radius depends on all five deformation parameters. For fixed ε,
we can already see that the variation of elongation parameter
z0 alone leads to a very reasonable sequence of shapes of the
fissioning nucleus; see Aritomo et al. [27].

The two additional parameters zL and zR that appear
in Eq. (4) are the left and right tips of the nucleus,
ρ(zL) = ρ(zR) = 0. They can be found from the conditions
π

∫ zL

0 ρ2(z)dz = V1 and π
∫ zR

0 ρ2(z)dz = V2.
All parameters that appear in Eqs. (2)–(4) can be expressed

in terms of above five deformation parameters, for example,

ωzi
/ωρi

= (3 − 2δi)/(3 + δi) ≡ βi,

g1 = 1 − Q2

Q2(1 + Qβ1/β2)
, g2 = Q(Q2 − 1) β1/β2

(1 + Qβ1/β2)
,

c1 = c2 = 2 − 4ε, d1 = d2 = 1 − 3ε. (5)

The quantity Q ≡ ωρ1/ωρ2 should be found numerically from
the volume conservation condition

∫ zR

zL
ρ2(z) dz = (4/3)R3

0 ,
where R0 is the radius of the spherical compound nucleus,
R0 = r0 A1/3. For r0 we use the value r0 = 1.2 fm.

As one can see from Eq. (4) the ratio ωzi
/ωρi

and thus the
deformation parameters δi (or βi) represent only the ratio of
semi-axes of the outer (zL � z � z1 or z2 � z � zR) parts of
the shape of nucleus. Therefore, in general, it does not mean
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that the fragments are prolate if δi is positive, or oblate when
δi is negative.

In the present work we perform the Langevin calculations in
the three-dimensional space of deformation parameters {q} =
{z0/R0, δ, α}. That is, we impose a constraint such that δ1 =
δ2 ≡ δ. In this case β1 = β2 ≡ β0.

The known deficiency in the shape parametrization of the
two-center shell model at small z0 and finite α is discussed
and resolved in Ref. [3] by imposing the condition ρ(z =
z1) = ρ(z = z2) and introducing α-dependent deformation
parameters,

β1(α) = f (z0)β0[1 + α] + [1 − f (z0)]β0, (6a)

β2(α) = f (z0)β0[1 − α] + [1 − f (z0)]β0, (6b)

with f (z0) = {1 + exp[(z0 − R0)/(0.2R0)]}−1. The factor
f (z0) ensures that the α dependence of βi is effective only
for small values of z0. For large values of z0, βi(α) turn into
β0. In present work the scission dynamics is governed by a
part of the potential energy surface where δ1 = δ2. Removal
of this constraint is ongoing in our group, as will be described
later.

III. THE LANGEVIN APPROACH

The Langevin equations form a system of first-order differ-
ential equations for the collective coordinates {qμ} and their
conjugate momenta {pμ} [28] describing the time evolution of
the collective coordinates. It is succinctly written as

dqμ

dt
= (m−1)μνpν,

dpμ

dt
= −∂U (q)

∂qμ

− 1

2

∂m−1
νσ

∂qμ

pνpσ − γμνm
−1
νσ pσ + gμνRν(t),

(7)

where summation over repeated indices is assumed. The
potential energy surface U (q) along which the shape evolves
according to Eqs. (7) is calculated by the macroscopic-
microscopic approach [29–31],

U (q) = ELD
def (q) + δE(q). (8)

The potential energy surface U (q) contains the contributions
from the liquid drop deformation energy, ELD

def (q) = ELD(q) −
E

sph
LD , and from the shell and pairing corrections,

δE(q) =
∑
n,p

(
δE

(n,p)
shell (q) + δE(n,p)

pair (q)
)
. (9)

The summation in Eq. (8) is carried out over the neutrons (n)
and protons (p). The correction δE

(n,p)
shell (q) is calculated as the

difference between the sum of single particle energies of the
occupied states and its averaged value is defined by Strutinsky
smoothing. The single-particle energies are calculated with
the two-center shell model [18,22–24]. The pairing interaction
was taken into account by BCS approximation and the shell
correction to the pairing correlation energy, δE

(n,p)
pair (q), was

evaluated by the method suggested in Ref. [31].
We consider in present work the fission process at low

excitation energies. The corresponding temperatures do not

exceed 1 MeV. For such temperatures the damping of shell
effects is not so large and it was neglected. So, the calculations
were done with full shell effects taken into account.

The liquid drop energy is obtained from the finite-range
liquid drop model [32] as the sum of surface energy ES

and Coulomb energy EC . In the code [22–24] the following
parameters of the finite-range liquid drop model [32] were
used: r0 = 1.20 fm, a = 0.65 fm, as = 21.836 MeV, and
κs = 3.48, where r0 and a are the nuclear-radius constant and
the range of the Yukawa folding function, and as and κs are the
surface energy constant and the surface asymmetry constant,
respectively. The liquid drop energy for the spherical shape,
E

sph
LD , is obtained in the same manner but for a spherical nuclei.
The main results in this work were obtained with the

so-called microscopic transport coefficients [3]: the mass
and friction tensors were calculated using linear response
theory and a locally harmonic approximation [16]. The linear
response functions are further explained in Sec. IV. The
exact expressions for the mass and friction tensor at finite
temperatures for a system with pairing can be found in
Ref. [17]. The mass mμν and friction γμν tensors were
calculated at a fixed grid points in temperature. The values for
the actual (local) temperature were found by the interpolation
between grid points.

In some cases, for comparison, we carried out also the
Langevin calculation with macroscopic transport coefficients.
The macroscopic transport coefficients were calculated in a
standard way. We used the Werner-Wheeler method [8] for the
inertia tensor and the wall-and-window formula [9–13] for the
friction tensor.

The random force in Eq. (7) is written as the product of
white noise Rν and the strength factors gμν . The strength
factors gμν are expressed in terms of the diffusion tensor Dμν ,
Dμν = gμσgνσ , which is related to the friction tensor γμν via
the modified Einstein relation

Dμν = T ∗γμν = gμσgνσ . (10)

Here T ∗ is the effective temperature introduced by Hofmann
[33,34],

T ∗ = h̄�

2
coth

h̄�

2T
. (11)

The point is that the classical Einstein relation D = T γ is
valid at relatively high temperatures. At low temperatures the
quantal aspect of the fluctuation-dissipation theorem becomes
important and the magnitude of the diffusion coefficient
becomes larger than its classical value.

This property is guaranteed by the form (11). Here
parameter � is the local frequency of collective motion. In
principle, it should be calculated at each deformation point.
Unfortunately, this would be too time consuming.

The minimum of h̄� is given by the zero-point energy.
Based on the pioneer works [35,36], we estimated the zero
point energy in the 3D case to be h̄� ≈ 0.4 MeV × 3 =
1.2 MeV, because in the 1D case the zero-point energy was
considered to be equal to 0.4 MeV. Since the zero-point
energy represents only the minimal value of h̄� , we used for
h̄� the somewhat larger value h̄� = 2 MeV independently
of deformation. In this case T ∗ = 1 MeV at T = 0. In the
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high-temperature limit T ∗ coincides with T . The variation
of h̄� within reasonable limits does not change much the
calculated distributions of fission fragments.

The temperature T was related to the thermal intrinsic
energy Eint by the Fermi gas relation,

Eint = aT 2, (12)

where a denotes the level density parameter [37],

a = A[1.0 + 3.114 A−1/3 + 5.626 A−2/3]/14.61. (13)

The Eint in Eq. (12) is the intrinsic excitation energy, calculated
at each step of the integration of equations of motion from the
energy balance,

Eint = Ex − 1
2 [m−1(q)]μνpμpν − U (q), (14)

where Ex is the initial excitation energy of the system. For
neutron induced fission Ex = Sn + En, where Sn and En are
the neutron separation energy and incident neutron kinetic
energy, respectively.

IV. TRANSPORT COEFFICIENTS FOR DYNAMICAL
CALCULATIONS

A. Macroscopic transport coefficients

In the present work we also show the so called macroscopic
transport coefficients which are often used to solve the
Langevin equation. The macroscopic transport coefficients
depend only on the shape (deformation) of the system. They
do not contain any quantum effects, nor the dependence
on the excitation energy (temperature of the system). The
macroscopic mass tensor MWW

μν is usually defined in the
Werner-Wheeler approximation [8],

MWW
μν = πρ0

∫ zR

zL

ρ2

[
AμAν + ρ2

8
A′

μA′
ν

]
dz, (15)

where ρ is a function with respect to z and

Aμ(z; q) = 1

ρ2(z,q)

∂

∂qμ

∫ z
R

z

ρ2(z′,q)dz′. (16)

The corresponding macroscopic friction tensor is the so-called
wall-and-window formula [9,12,13]. The loss of collective
energy is given by Ė = (3/4)ρ0vF

∮
v2

n(s)ds, where vF and
vn are the the Fermi velocity and normal velocity of the
nuclear surface respectively. The definition of nuclear density
is ρ0 = A/(4πR3

0/3). The Fermi velocity was estimated from
the relationship h̄kF = mvF , and the Fermi momentum was
estimated from the Fermi gas, kF R0 = 3

√
9πA/4. According

to Blocki et al. [9], the wall friction coefficient γ wall is propor-
tional to v2

n(s), and it was suggested that Ė = ∑
μν γ wall

μν q̇μq̇ν .
In the case of axial symmetric shapes, vn(s) can be expressed
in terms of the profile function ρ(z; q), and the wall friction
can be written as

γ wall
μν = πρ0vF

∫ z
R

z
L

dz
∂ρ2

∂qμ

∂ρ2

∂qν

[
4ρ2 +

(
∂ρ2

∂z

)2
]−1/2

.

(17)

As the nucleus begins to separate, it is necessary to describe
the wall friction as the sum of both the left and right fragments’

friction with respect to the center-of-mass velocities of the
fragments [10,11],

γ wall2
μν = πρ0 v̄

2

(∫ 0

zL

IL(z) dz +
∫ z

R

0
IR(z)dz

)
, (18)

with

IL,R(z) =
(

∂ρ2

∂qμ

+ ∂ρ2

∂z

∂zcm(L,R)

∂qμ

)

×
(

∂ρ2

∂qν

+∂ρ2

∂z

∂zcm(L,R)

∂qν

)[
4ρ2 +

(
∂ρ2

∂z

)2
]−1/2

.

(19)

Swiatecki [12] suggests that, as the shape comes closer to
a scission configuration, a correction called the window terms
could be introduced, where nucleons from the left fragment can
traverse through the window into right fragment and vice versa,
as well collisions between the nucleons that tries to traverse
this window. Given that the volume and the center-of-mass
distance between the two fragments, R12, are moving with
respect to time, the window friction term can be written as

γ window
μν = ρ0 v̄

2

[
�σ

∂R12

∂qμ

∂R12

∂qν

+ 32

9�σ

∂VL

∂qμ

∂VL

∂qν

]
, (20)

giving us the wall-window friction tensor,

γ w+w
μν = γ wall2

μν + γ window
μν . (21)

The transition between the regime governed by γ wall and γ w+w

should be smooth, leading to the phenomenological ansatz
proposed by Nix and Sierk [13],

γ total
μν = sin2(πα/2)γ wall

μν + cos2(πα/2)γ w+w
μν , (22)

determined using the condition α = (rneck/Rmin)2. Rmin is
the minimal semi-axis of two outer ellipsoids in a three-
quadratic-surfaces shape parametrization and rneck is the radius
of the neck. Usually, this friction is too large, so we multiply
this friction with the shape independent reduction factor,
ks = 0.27.

In most cases, these macroscopic transport coefficients are
able to reproduce a decent approximation of the actual friction
experienced during fission. The drawback of macroscopic
transport coefficients is their independence with regards to
temperature, and this drawback can be observed in the results
that we will give later.

B. Microscopic transport coefficients

In the linear response approach to the nuclear collective
motion [16], the nuclear many-body Hamiltonian Ĥ is repre-
sented as the sum of the deformed (time-dependent) mean field
Hamiltonian Ĥmf (q(t)) and the residual interaction V̂ (2)

res , which
is assumed to be deformation independent, Ĥ = Ĥmf + V̂ (2)

res .
In this case the derivative of Hamiltonian Ĥ with respect to
deformation q,

F̂ (q) ≡ ∂Ĥmf (q)

∂q
, (23)
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is a one-body operator. The total energy of the system is
given by the mean value of Ĥ , Etot = 〈Ĥ 〉t . By the index t
we have indicated that the average 〈 〉t has to be calculated
with a time-dependent, nonequilibrium density operator. The
equation of motion for q(t) can be constructed from the energy
conservation condition. Differentiating Etot with respect to t ,
one gets from Ehrenfest’s theorem

dEtot

dt
= d〈Ĥ 〉t

dt
= d〈Ĥmf (q)〉t

dt
= 〈F̂ (q)〉t q̇ = 0,

⇒ 〈F̂ (q)〉t = 0. (24)

What is left is to express 〈F̂ (q)〉t as functional of q(t). For this
purpose let us expand F̂ (q) around some point q0,

F̂ (q) = F̂ (q0) + (q − q0)〈dF̂ /dq0〉q0

= F̂ (q0) + (q − q0)
〈
d2Ĥ /dq2

0

〉
q0

, (25)

and estimate 〈F̂ (q0)〉t by perturbation theory up to the linear
order in q(t) − q0:

�〈F̂ 〉t ≡ 〈F̂ (q0)〉t − 〈F̂ (q0)〉q0

= −
∫

χ̃(t − s)(q(s) − q0)ds. (26)

The index q0 in Eqs. (25) and (26) means that the average
〈 〉q0 has to be calculated with the quasistatic density matrix
at q = q0. The quantity χ̃ in Eq. (26) is the causal response
function [16]

χ̃ (t − s) = �(t − s)
i

h̄
〈[F̂ I (t),F̂ I (s)]〉q0 . (27)

Here �(t − s) is the step function: �(t − s) equals one if
t � s and zero elsewhere. The time dependence of F̂ I (t) (in
interaction representation) is defined by Ĥmf (q0), i.e., by the
properties of the system at q0,

F̂ I (t) = e− i
h̄
Ĥmf (q0)t F̂ (q0)e

i
h̄
Ĥmf (q0)t . (28)

In the representation of eigenfunctions of Ĥmf (q0), χ̃ (t) takes
the form

χ̃ (t) =
∑
jk

(nk − nj )FjkFkj e
i
h̄

(εk−εj +iε)t , (29)

where subscripts k and j are indices of single-particle states,
εk is the single particle energy, and nk = 1/{1 + exp[(εk −
λ)/T ]}. The symbol Fjk denotes a matrix element of F̂
between states j and k. The infinitely small term iε in the
exponent in Eq. (29) appears due to the assumption of infinitely
slow switching on of the perturbation. Inserting (26) and (27)
into (24), one comes to the equation

−
∫ ∞

−∞
χ̃ (t − s)�q(s)ds + �q(t) 〈d2Ĥ /dq2〉q0 = 0, (30)

with �q(s) ≡ q(s) − qm. Here qm is the point where 〈F̂ (q)〉q
turns into zero. It is defined by the equation

〈F̂ (q0)〉q0 + (qm − q0)
〈
∂2Ĥ /∂q2

0

〉
q0

= 0. (31)

Taking the Fourier transform of (30), one gets the secular
equation

χ (ω) + k−1 = 0, (32)

with the coupling constant k given by

−k−1 = 〈d2Ĥ /dq2〉q0 . (33)

The Fourier transform of χ̃ (t) is

χ (ω) =
∫ ∞

−∞
χ̃ (t)eiωt dt =

∑
jk

(nk − nj )FjkFkj

h̄ω − (εk − εj ) + iε
. (34)

From the definition (33) of the coupling constant it follows that
it can be expressed as the sum of the static response χ (ω = 0)
and the stiffness C(0) of the potential energy:

−k−1 = χ (ω = 0) + C(0) with C(0) = d2〈Ĥmf 〉
dq2

0

. (35)

In the case of slow collective motion, one can solve the
secular equation (32) by expanding χ (ω) up to the second
order in powers of ω:

χ (ω = 0) + ω
dχ

dω

∣∣∣∣
ω=0

+ 1

2
ω2 d2χ

dω2

∣∣∣∣
ω=0

+ k−1 = 0 . (36)

By multiplying (36) with �q(ω) and performing the inverse
Fourier transform, one gets the equation of motion for an
oscillator:

M(0)
d2�q(t)

dt2
+ γ (0)

d�q(t)

dt
+ C(0)�q(t) = 0 , (37)

where the mass and friction coefficients are defined as

M(0) = 1

2

d2χ (ω)

dω2

∣∣∣∣
ω=0

, γ (0) = −i
dχ

dω

∣∣∣∣
ω=0

. (38)

By derivation of (37) we used the relation (35) between
stiffness and coupling constant, and we kept in mind that,
within the harmonic approximation, the �q(t) is proportional
to exp (−iωt), so that d�q(t)/dt ∝ −iω�q(t).

In case that the mean field Hamiltonian depends on few
collective coordinates, q = {qμ}, the expansion (25) should be
generalized to

Ĥmf (q) = Ĥmf (q0) +
∑

μ

(
qμ − q(0)

μ

)∂Ĥmf

∂q
(0)
μ

+ 1

2

∑
μν

(
qμ − q(0)

μ

)(
qν − q(0)

ν

)〈 ∂2Ĥmf

∂q
(0)
μ ∂q

(0)
ν

〉
.

(39)

Correspondingly, the response functions are modified to

χ̃μν(t − s) = �(t − s)
i

h̄

〈[
F̂ I

μ(t),F̂ I
ν (s)

]〉
q0

,

(40)

χμν(ω) =
∑
jk

nk − nj

h̄ω − (εk − εj ) + iε
F jk

μ F kj
ν ,
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and the mass and friction coefficients turn into mass and
friction tensors

Mμν(0) = 1

2

d2χμν(ω)

dω2

∣∣∣∣
ω=0

, γμν(0) = −i
dχμν

dω

∣∣∣∣
ω=0

. (41)

In the case of absence of pairing effects, the tensors of friction
and mass can be calculated directly by differentiating χμν(ω)
(41) with respect to ω. In the presence of pairing effects it
was suggested in Ref. [15] to use as Ĥmf the independent
quasiparticles Hamiltonian

ĤBCS =
∑

k

2v2
k (εk − λ) − 2�

∑
k

ukvk + �2

G

+
∑

k

Ek(α†
kαk + α

†
k̄
αk̄), (42)

where λ is the chemical potential, G and � are the pairing
strength constant and the pairing gap, respectively, uk and vk

are the coefficients of the Bogoliubov-Valatin transformation,
and Ek are the quasiparticle energies,

Ek =
√

(εk − λ)2 + �2, (43)

and α
†
k̄

and αk̄ are the creation and annihilation operators for the
quasiparticles. The operator F̂ in quasiparticle representation
has the form

F̂ =
∑

k

Fkk2υ2
k +

∑
jk

Fkj ξkj (α†
kαj + α

†
k̄
αj̄ )

+
∑
kj

Fkjηkj (α†
kα

†
j̄
+ αj̄αk). (44)

Inserting (44) into (40) after somewhat lengthy but straight-
forward calculation, one gets

χ̃μν(t) = −2�(t)

h̄

′∑
kj

(
nT

k − nT
j

)
ξ 2
kjF

jk
μ F kj

ν sin(E−
kj t/h̄)

− 2�(t)

h̄

∑
kj

(
nT

k +nT
j − 1

)
η2

kjF
jk
μ F kj

ν sin(E+
kj t/h̄),

(45)

where E−
kj ≡ Ek − Ej , E+

kj ≡ Ek + Ej , ηkj ≡ ukυj + υkuj ,
ξkj ≡ ukuj − υkυj , and the temperature dependent occupation
numbers are defined as

nT
k = 1/(1 + eEk/T ). (46)

The diagonal components of the ξ term of operator F̂ commute
with Hamiltonian (42) and thus do not contribute to response
function (45). That is why the first sum in Eq. (45) is marked
by a prime. In the second sum of (45) both diagonal and
nondiagonal components contribute. The Fourier transform of
(45) leads to

χμν(ω) =
′∑

jk

(
nT

k − nT
j

)
ξ 2
kj

h̄ω − E−
kj + iε

F jk
μ F kj

ν

+
∑
jk

(
nT

k + nT
j − 1

)
η2

kj

h̄ω − E+
kj + iε

F jk
μ F kj

ν , (47)

and the tensors of friction and mass (41) turn into

γμν(0)

= 2h̄

′∑
jk

(
nT

k − nT
j

)
ξ 2
kj

E−
kj�kj[

(E−
kj )2 + �2

kj

]2 Fkj
μ F jk

ν

+ 2h̄
∑
jk

(
nT

k + nT
j − 1

)
η2

kj

E+
kj�kj[

(E+
kj )2 + �2

kj

]2 Fkj
μ F jk

ν ,

(48)

Mμν(0)

= h̄2
′∑

jk

(
nT

k − nT
j

)
ξ 2
kj

E−2
kj [E−

kj − 3�kj ][
(E−

kj )2 + �2
kj

]3 Fkj
μ F jk

ν

+ h̄2
∑
jk

(
nT

k + nT
j − 1

)
η2

kj

E+2
kj [E+

kj − 3�kj ][
(E+

kj )2 + �2
kj

]3 Fkj
μ F jk

ν .

(49)

In the above expressions for friction and mass tensors, the
infinitely small quantity ε was replaced by the average of
the collisional widths �k and �j of k and j states, �kj =
(�k + �j )/2. In this way one can take into account the effect
of residual interaction V̂ (2)

res , which is absent in the mean-field
Hamiltonian. The calculation of �k is discussed in detail in
Ref. [15].

For the description of the fission process we will solve
the Langevin equation for the time evolution of parameters
which define the shape of the nuclear surface. The shape of
the nucleus in the present calculations is parametrized by the
shape parametrization of the two-center shell model with three
deformation parameters. So, we will need multidimensional
tensors of friction and mass. For this purpose we will use
expressions (48) and (49) obtained within the linear response
approach. These expressions were derived within the quantum
approach with the shell and pairing effects taking into account.
In what follows we will call expressions (48) and (49)
microscopic transport coefficients.

The comparison of the microscopic and macroscopic
transport coefficients calculated within the two-center shell
model shape parametrization can be found in Refs. [3,38].
At large temperatures both microscopic friction and mass
coefficients look similar to macroscopic friction and mass
coefficients. At small temperatures the microscopic and
macroscopic transport coefficients deviate from each other
very much. The microscopic mass tensor decreases with
increasing temperature T , while the friction tensor increases
as T increases, and the macroscopic mass and inertia tensors
are temperature independent. Thus, the results of dynamical
calculations at low excitation energies with the microscopic
and macroscopic transport coefficients can deviate from each
other, since at the saddle the temperature can be quite small.

V. THE CALCULATED RESULTS

We start the integration of the Langevin equations (7) from
the initial point q0 = {z0/R0 = 0.8, δ = 0.2, α = 0.0}. This
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point corresponds to the second minimum on the potential
energy surface. The evolution of q(t) over time will generate
a trajectory across the potential surface. On each step of
integration the neck radius is checked. If the trajectory reaches
a scission point, rneck = 0, we consider such a trajectory to be
a fission event. Each fission event provides information on the
time it took for scission, the value of collective coordinates and
velocities, the prescission kinetic energies, and the intrinsic
excitation energy (temperature) at scission. Due to the presence
of the random force, each trajectory gives somewhat different
results. The integration of Eq. (7) is repeated typically up to
500 000 times in order to get results that are stable with respect
to the number of trajectories.

A. Mass distribution of fission fragments

In this section, we compare the calculated mass distri-
butions with experimental information. The upper limit of
the excitation energy was set to 20 MeV. We are aware of
the fact that there are contributions from second and third
chance fission above several MeV. The effect of multichance
fission may be estimated by using the Hauser-Feshbach model
calculation with generically available codes such as TALYS [39]
or EMPIRE [40]. Still, we compare here the calculated results
for only first chance fission with experimental data, since it
is not our purpose to fit the data with our model; rather, we
wish to understand the reaction mechanisms in terms of the
fluctuation dissipation dynamics.

We obtain the mass distributions of fission fragments from
the number of trajectories with given α that managed to reach
the scission configuration. For positive value of α, the light
fragment mass number is expressed as AL = (A/2)(1 − α),
and for the heavy fragment it is AH = (A/2)(1 + α). For
negative value of α, the converse is true.

The application of effective temperature and microscopic
transport coefficients allowed us to obtain using the 3D
Langevin calculation quite reasonable mass distribution height
and width for the 236U compound nucleus; see Fig. 3. The
excitation energy Ex = 6.545 MeV corresponds to fission
fragment yield from thermal incident neutron data. Hence,
comparison is made with the evaluated thermal incident
neutron fission product yield, such as that from JENDL 4.0
[43]. The calculated fission fragment light and heavy mass
averages are 〈AL〉 = 93.92 and 〈AH 〉 = 141.83, while the
JENDL fission product mass averages are 94.75 and 138.68.
We expect our fission fragment yield to deviate slightly
from the fission product yield from evaluated data because
prompt neutron emissions are not included. Deviations of our
light mass averages from JENDL are quite reasonable, but
deviations from JENDL heavy mass averages are quite large.
However, if we look through the perspective of Flynn’s mass
average systematics [44], the deviation of our results from
Flynn’s 〈AH 〉Flynn = 139 ± 1 is still acceptable.

At Ex = 20 MeV the mass averages in our microscopic
calculations with effective temperature also seem to be shifted
slightly towards heavier mass in comparison to our previous
calculations [3] that did not use the effective temperature
treatment. Both calculations are for the fission chance fission
where we assumed flat neutron emission for fair comparison
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FIG. 3. Fission fragment yield of 236U. Top: at Ex = 6.545 MeV;
bottom: at Ex = 20 MeV. The black histogram shows our cal-
culation with pre-neutron (pre-n) emission for Ex = 6.545 MeV
and flat-neutron (flat-n) emission for Ex = 20 MeV. The green
histogram shows our calculation with neutron emission calculated
from [41] (top) and neutron emission calculated using GEF [42]
(bottom). Our calculations (denoted by red circles) are compared
with evaluated post-neutron (post-n) distributions stored in JENDL. We
also compare them with (a) our previous data [3] for single-chance,
flat-neutron (flat-n) emission calculations using microscopic transport
coefficients.

with previous data. The mass averages of the fragments are
〈AL〉 = 97.01 and 〈AH 〉 = 136.94, respectively; a little off
from evaluated fission fragment mass averages for a 14 MeV
neutron incident on 235U, but still close to the expected fission
fragment mass average systematics.

Using the same methodology, we made an attempt to
describe the fission of 258Fm at an excitation energy of
3.34 MeV. For the fragment mass distribution we got a single
symmetric peak with an mass average around AF = 129. Our
calculations are very close to the experimental results [45] (the
fission yield peak is at AF = 130) shown in Fig. 4.

In Fig. 5 we collected the results of present calculations
for 236U at Ex = 6.545 and 20 MeV, and for 254,256,258Fm
at 1 MeV above the second fission barrier Bf 2, together
with the data from our previous calculations [46,47] and
experimental mass averages. The barriers Bf 2 are obtained
from generic calculations using the GEF code [42]. Thus, the
254,256,258Fm isotopes are calculated at Ex of 4.07, 3.66, and
3.34 MeV respectively. GEF is used in the estimation of Bf 2

as it is computationally fast and the barrier heights are usually
adjusted to the experimental values.
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FIG. 4. Fission fragment yield for 258Fm at Ex = 3.34 MeV in
comparison with experiment [45].

At present, however, we are still unable to reproduce the
transition from the double peak in 256Fm to the single peak
in 258Fm by 3D Langevin calculations. All Fm isotopes in the
current calculations have a single peak mass yield. We see also
some traces of events with standard fission modes.

B. The total kinetic energy

We calculate TKE as a sum of prescission kinetic energy in
the fission direction, KEpre, and the Coulomb repulsion energy
KECoul. The Coulomb repulsion energy is calculated using
the point charge approximation for the sake of computational
speed and simplicity:

KECoul = e2 Z1Z2

R12
with e2 = 1.44 MeV fm, (50)

where R12 is the distance between centers of mass of left and
right parts of the nucleus at the scission point.
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Present, Ex=20 MeV, pre-n

Present,254,256,258Fm, Ex=Bf2+1
(a)

〈AL〉 

〈AH〉 

FIG. 5. Fission fragments mass systematics (solid line) obtained
by fitting the average mass for light and heavy fission fragments
(filled circles). These mass averages are calculated from the fission
fragment mass yield of JENDL 14 MeV incident neutron data. We
also plot 256,258Fm experimental results from [44] (open squares)
and [45] (filled squares). We compare them with (a) our previous
data [46,47] (blue inverted triangles) for compound nucleus at
Ex = 20 MeV.

FIG. 6. The minimized-in-δ potential energy surface of 236U at
T = 0 calculated within TCSM. The white line shows the position of
zero neck radius for δ = 0 (solid) and δ = 0.1 (dash).

In the phenomenological treatment of TKE profiles [48] the
contributions of standard, super-long, and super-short fission
modes are mentioned and related to the prescission shape of the
nucleus. As the name of these fission modes indicate, the super-
short, standard, and super-long fission modes correspond to
a short, medium and long elongations, respectively. It was
suggested that these fission modes came from different fission
channels along different paths on the potential energy surface.

This suggestion was based on the results of fitting the mass
distributions by a few Gaussians. The existence of super-short,
standard, and super-long fission valleys was not confirmed by
the calculations of potential energy surfaces. In the cases of
uranium, thorium, and californium most of the fission events
came from the standard fission mode. On the potential energy
surface of 236U (see Fig. 6), one can clearly see the fission
valley of the standard mode. From the numerical results it
follows that the main contribution to the standard mode comes
from shapes with δ ≈ 0. The scission line for δ = 0 is shown in
Fig. 6 by a white solid line. There is also some hint of another
valley at mass symmetric deformations, α ≈ 0. This valley is
caused mainly by somewhat longer shapes, δ ≈ 0.1. In this
sense the second valley can be referred to as super-long.

The contributions of both standard and super-long, modes
are clearly seen in the mass-energy distribution of fission
fragments; see Fig. 7. As one could expect, the calculations of
TKE show a strong standard fission mode. Around symmetric
splitting there is also a small contribution from the super-long
fission mode.

The comparison of calculated TKE distributions for 236U at
Ex = 6.545 MeV and Ex = 20 MeV with experimental data
is shown in Fig. 8. In the bottom part of Fig. 8 we show the
mean elongation of the nucleus at the scission point at fixed
mass asymmetry: the average value of the distance between
centers of mass of left and right parts of the nucleus,

〈R12(A)〉 =
NA∑
i=1

R12(Ai,rneck = 0)/NA. (51)

064617-8



ANALYSIS OF THE TOTAL KINETIC ENERGY OF . . . PHYSICAL REVIEW C 96, 064617 (2017)

60 80 100 120 140 160

140

160

180

200

220

Fragment Mass Number, A(u)

T
K

E
 (

M
eV

)
Q + 6.545 MeV

Standard

Super-long

0.01%

0.1%

0.3%

FIG. 7. The calculated distribution of fission events of 236U in
kinetic energy and fragment mass at Ex = 6.545 MeV. The red curve
denotes the kinematically allowed maximal value of TKE, namely,
Q + Ex .

The summation in Eq. (51) is carried out over the trajectories
i with the fragment mass Ai that fulfills the condition
A − 1/2 � Ai � A + 1/2 and the sum of these trajectories
is NA. From the bottom part of Fig. 8 one can see that for
larger excitation energy the scission shapes around symmetric
splitting (super-long mode) become somewhat shorter. Con-
sequently, the Coulomb repulsion energy and fission fragment
kinetic energy become larger.

The decrease of TKE at symmetric splitting is in accord
with the experimental results, but the total agreement of
calculated and measured distributions of TKE is not so
good. The reason could be the restricted (three-dimensional)
shape parametrization. We tried to do the calculations with
δ1 
= δ2. The preliminary results [51] show that 4D Langevin
calculations reproduce experimental TKE distributions much
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FIG. 8. The average value of TKE (top) and average elongation
〈R12〉 of fissioning nucleus at the scission point for Ex = 6.545 MeV
(red) and Ex = 20 MeV (blue). The experimental data are taken from
(a) [49] (En ≈ 0) and (b) [50] (En = 15.5 MeV), correspondingly.

FIG. 9. The minimized-in-δ potential energy surface of 258Fm at
T = 0 calculated within TCSM. The white line shows the position of
zero neck radius for δ = −0.2 (dash) and δ = 0.15 (solid).

more accurately. Unfortunately, 4D Langevin calculations are
much more time consuming.

In the case of 258Fm, we could infer from Fig. 9 that the
standard fission mode also exists but it is not a dominant fission
channel. The 258Fm fission is predominantly mass symmetric.
The fission fragments in this case are close to the double magic
132Sn. Due to the very strong shell structure in spherical 132Sn,
the configuration just before fission consists of two almost
spherical fragments. Within the TCSM shape parametrization,
we can get almost spherical fragments with negative δ. Such a
configuration is very short; see Fig. 9. So, the corresponding
fission valley can be referred to as super-short. The main
contribution to the TKE in the case of 258Fm comes from
the super-short mode with large kinetic energy.

Another (smaller) contribution seen in Figs. 9 and 10 can be
referred as the standard mode. It corresponds to more elongated
mass asymmetric scission shapes with lower kinetic energy.

We are positive in our assessments that these traces are the
standard fission mode because it has a 〈TKE〉 = 198.29 MeV,
which is close to 〈TKE〉 values from 256Fm that are dominated
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FIG. 10. The calculated mass-energy distribution of fission events
of 258Fm at Ex = 3.34 MeV. The red curve denotes kinematically
allowed maximum values of TKE, namely, Q + Ex .
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FIG. 11. Systematical trends of average TKE of fission fragments
as a function of Z2/A1/3 of the fissioning system. We compare our
present results with (a) [52] and (b) [54] linear least squares of the
TKE systematics as a function of the fissioning system. Included are
(c) evaluated data from JENDL [43] and experimental spontaneous
TKE from (d) [55] and (e) [56]. We compare also with several other
nuclides using our previous results at Ex = 20 MeV [46,47] for (f)
microscopic and (g) macroscopic transport coefficients.

by standard fission modes, as we can see from the prominent
two peaks in its fission yield. The dominant fission modes in
258Fm, however, are obviously due to the super-short fission
modes that have 〈TKE〉 = 234.58 MeV. This helps us show
that Viola’s systematics [52] only tracks the TKE due to
standard fission, modes as is clear from Fig. 11.

The peculiar emergence of the standard modes, however,
could be seen in the TKE profiles only if the effective
temperature formulation is in use. We know from experimental
evidence [53] that for 258Fm the two fission modes coexist.
We start calculations from the mass symmetric minimum
in the potential energy surface, and almost all trajectories
immediately fall down into a very deep super-short fission
valley. Only if the fluctuations are very large can some
trajectories jump into the standard fission valley, which lies
much higher in energy.

This crossover to another valley is possible only because
the effective temperature allowed the trajectories to experience
stronger random fluctuations. We can see this from Eq. (10).
For example, given T = 0.5 MeV from (11) we will find for
T ∗ the saturated value of 1 MeV. This means that gij is

√
2

times larger in magnitude, giving it the necessary impetus to
cross to the nearby valley.

Figure 11 exhibits a comparison of the average TKE values
calculated by our 3D Langevin model with experimental data,
Viola’s systematics [52], and values given in the evaluated
library JENDL 4.0. From Ac to Cm, both the experimental
and calculated results are in accord with the monotonically
increasing trends given by Viola’s systematics. However, there
are two groups in Fm isotopes: a lower TKE group which
agrees well with Viola’s systematics, and a higher energy
one which corresponds to the super-short fission mode. Our
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FIG. 12. The TKE as a function of neutron energy En calculated
for compound nucleus 236U. The red lines are the present results for
pre-neutron (pre-n) emission, single chance fission TKE, KEpre, and
KECoul. We compare 236U with (a) our previous data [46] calculations
with macroscopic transport coefficients without using the effective
temperature description in Eq. (10), (b) experimental data from [50],
and (c) experimental data from [58].

calculation with microscopic transport coefficients (shown by
triangles) agrees better than those of macroscopic transport
coefficients to both the Viola’s trends for lower TKE group
and the abnormally high TKE group for Fm region.

1. Average TKE dependence on excitation energy

In the present work we have also calculated and compared
with experimental data the dependence of average TKE values
on the kinetic energy En of incident neutrons in Figs. 12 and
13. For this we related En to the excitation energy Ex by
the formula En = Ex − Sn. The neutron separation energies
were calculated using Sn = MA−1 + Mn − MA, where MA−1

is the target mass excess, MA is the compound mass excess,
and Mn is the mass excess of a neutron. The values of mass
excess was obtained from Reference Input Parameter Library
(RIPL-3) that gave either experimental or recommended mass
data given by [57]. We only fall back to the theoretical mass
data in RIPL-3 in the very rare cases when no experimental or
recommended values are available.

The separation energy values we obtained are 6.545, 4.806,
6.534, and 5.549 MeV for 236U, 239U, 240Pu, and 232Pa
respectively. We assumed that, in the case of thermal neutrons,
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FIG. 13. The TKE as a function of neutron energy En calculated
for three compound nuclei: 239U, 240Pu, and 232Pa on the top,
middle, and bottom panels respectively. The red lines are the present
results for pre-neutron emission (pre-n), single chance fission for the
corresponding compound nucleus TKE. Our calculated TKE’s for
240Pu are compared with experimental data from (a) [61], (b) [62],
and (c) [63]. We compare the 239U fission TKE from post-neutron
(post-n) and pre-neutron emission with (d) experimental data from
[60]. 232Pa TKE’s are compared with experimental data for thermal
neutrons in (e)[64].

the excitation energy is approximately equal to the neutron
separation energy. The compound nuclei produced in the
reaction of neutrons with fissile nuclei such as 236U, 240Pu, and
232Pa have a fission barrier lower than the neutron separation
energy, so the nucleus can easily undergo fission and we
could obtain sufficient statistics from incident neutrons at
thermal energy. In the case of the compound nucleus 239U, the
neutron separation energy is lower than the fission barrier. The
compound nucleus 239U could be produced by bombarding
the fertile 238U with neutrons. Fission could only occur
when the excitation energy used in our calculation was higher
than the fission barrier. Since sufficient statistics are obtained
at En = 500 keV, it means that the fission barrier of 239U
(approximately equal to 5.30 MeV) was overcome.

As depicted in Fig. 12, in the case of 236U the average TKE
calculated by Langevin procedure with microscopic transport
coefficients increase from 171 to 173 MeV for neutron energies
0 � En � 5 MeV, and then decays to 167 MeV. Experimen-
tally observed average TKE values [58,59] increase slightly for
0 � En < 2 MeV and afterwards decrease at higher En. Such
an increasing trend of TKE at low En values is reproduced,
although not perfectly, by the present Langevin calculation
with microscopic transport coefficients. In contrast, results
from our Langevin calculation with macroscopic transport
coefficients [46] are approximately constant, giving an average
TKE of 167.5 MeV irrespective of En. We can see that in
comparison to results with macroscopic transport coefficients,
those with the microscopic transport coefficients are much
closer to the trend of experimental pre-neutron data and behave
similarly with higher En. Therefore it is important to employ
the microscopic transport coefficients.

As one can see in the middle panel of Fig. 12, the Coulomb
repulsion energy practically does not depend on En. This
means that increase of the super-long mode, which gives lower
Coulomb repulsion energy, is not the origin of the decrease
of the TKE as excitation energy increases. The decrease of
the TKE, is, thus, brought by the decrease of the prescission
kinetic energy KEpre. This effect can be easily understood.
In the microscopic approach the friction force is larger for
higher excitation energies. Consequently, the motion in the
fission direction gets slower and the prescission kinetic energy
turns out to be smaller. We have checked that 3D Langevin
calculations with macroscopic transport coefficients do not
show any dependence of TKE on the excitation energy Ex .

We also plotted the average TKE for 239U, 240Pu, and 232Pa
as a function En in Fig. 13. In the case of 239U, the average
TKE increases from 169 MeV at En = 0.5 MeV to 170 MeV
at En ≈ 8 MeV and then decays to 166 MeV at En ≈ 45 MeV.
The calculated TKE values behave similarly to the pre-neutron
and post-neutron experimental data [60] and have average TKE
values between pre-neutron and post-neutron experimental
values.

Experimental TKE values for 240Pu, at En up to around
5 MeV [61–63] do not increase as in 236,239U but linearly
decrease with En. This is contrary to the pattern we see from
our calculation but the absolute values of the calculated TKE
are close to experimental values. Experimental values for En >
5 MeV [61] seems to saturate at 175 MeV. The calculated TKE
also decays at En higher than 5 MeV and then saturates at
174 MeV.

There are insufficient experimental data to study change
of average TKE with En for 232Pa. The calculated average
TKE increases from 167 to 169 MeV and then decreases to
166 MeV. The only experimental data are pre-neutron average
TKE values from thermal neutrons [64]. In all the cases, the
TKE decreases as En (therefore excitation energy) increases.
Our calculations follow this general trend.

In Fig. 14, we plotted the distributions of prescission kinetic
energies KEpre for 236U as functions of fragment mass at
excitation energies of 6.545, 20, and 30 MeV. As we can see,
the average KEpre for the so-called super-long mode, which
stays around the region of symmetric mass division, does not
decrease much as excitation energy increases. Instead, the
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FIG. 14. The dependence of average KEpre on the fragment mass.
KEpre was calculated for Ex = 6.545 MeV (black), Ex = 20 MeV
(blue), and Ex = 30 MeV (red).

average KEpre for the standard modes gradually decreases
when excitation energy increases. This is the reason for the
decrease of total average TKE as excitation energy increases.
This happens because, as excitation energy (therefore tem-
perature) increases, the microscopic friction tensors generally
increase, which results in less momentum gain during the
descent from the saddle to scission configurations. This again
shows the importance of using the microscopic transport
coefficients which are dependent on the temperature of the
system instead of using the traditional macroscopic ones. This
tendency is, of course, somewhat diluted if we consider the
effects of multichance fission.

VI. SUMMARY

We have calculated the mass distribution and the total
kinetic energy of fission fragments for a series of ac-
tinides and Fm isotopes at various excitation energies within
the three-dimensional Langevin approach with microscopic
transport coefficients. For the diffusion tensor we used the
modified Einstein relation with an effective temperature that

accounts for the quantum features of the fluctuation-
dissipation theorem.

The systematic trends of TKE as a function of both
Z2/A1/3 of the fissioning system and excitation energies
are well reproduced by the present calculations. The sudden
appearance of the super-short mode in the Fm region is also
well reproduced. It was found that the decrease of the average
TKE with growing excitation energy is due to the decrease of
the prescission kinetic energy, not by the Coulomb repulsion
energy. The decrease of prescission kinetic energy has a clear
reason: the microscopic friction tensor gets larger for larger
excitation energy. Consequently, the collective motion become
slower and the kinetic energy smaller. This demonstrates the
importance of the dynamical description of the fission process
and the use of the microscopic transport coefficients.

Without introduction of effective temperature, it is difficult
for us to probe the fission reactions of 236U, 239U, 240Pu, and
232Pa at low excitation energy. As a bonus, we found that it
is a necessary ingredient to see the emergence of standard
fission modes in 258Fm. We realize that using a more accurate
prescription for the effective temperature could give better
results, but in this case it might be necessary to adjust it for
different nuclides.

In the present calculations, the mass yields are not perfect
but they still give reasonable values. For a better description
one should introduce a more flexible (4D) shape parametriza-
tion and account for the contributions from the multichance
fission. After all, it is difficult to reproduce the evaluated
fission product yield without reproducing a good prompt
neutron emission multiplicity. An attempt to describe the
prompt neutron emission from its charge polarizations as was
undertaken in Ref. [65].
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