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Four-dimensional Langevin approach to low-energy nuclear fission of 236U
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We developed a four-dimensional (4D) Langevin model, which can treat the deformation of each fragment
independently and applied it to low-energy fission of 236U, the compound system of the reaction n + 235U.
The potential energy is calculated with the deformed two-center Woods-Saxon (TCWS) and the Nilsson-type
potential with the microscopic energy corrections following the Strutinsky method and BCS pairing. The transport
coefficients are calculated by macroscopic prescriptions. It turned out that the deformation for the light and heavy
fragments behaves differently, showing a sawtooth structure similar to that of the neutron multiplicities of the
individual fragments ν(A). Furthermore, the measured total kinetic energy TKE(A) and its standard deviation
are reproduced fairly well by the 4D Langevin model based on the TCWS potential in addition to the fission
fragment mass distributions. The developed model allows a multiparametric correlation analysis among, e.g., the
three key fission observables, mass, TKE, and neutron multiplicity, which should be essential to elucidate several
longstanding open problems in fission such as the sharing of the excitation energy between the fragments.
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I. INTRODUCTION

Nuclear fission is a unique large-amplitude collective
motion of nuclear matter, which should be described in
principle as a quantum many-body system. Predicting fission
observables with high accuracy by studying the underlying
properties of nuclear matter has been one of the challenging
topics in nuclear physics, especially for low-energy fission
where microscopic properties associated with the shell struc-
ture play an essential role. For this goal, various theoretical
models have been proposed, see, for example, the recent
review article [1]. Among the experimental data, the fission
fragment mass distribution (FFMD), the total kinetic energy
(TKE), and the prompt neutron multiplicity ν(A), all as
functions of mass number of fission fragments, are the most
important fission observables. They are largely connected to
the configuration at the scission point, characterized by the
fragment mass asymmetry, the Coulomb repulsion energy,
and the deformation energies of both fragments. Furthermore,
they are strongly correlated with each other under energy
conservation through the fission process. It is well known that
ν(A) shows a so-called sawtooth structure and has a mirror
asymmetry around symmetric fission (e.g., Ref. [2]), indicating
an independence of the deformation of both fragments. A
reliable fission theory for prediction of these key observables
should thus include at least four shape parameters: the
mass asymmetry, charge-center distance (elongation), and the
deformation of each fragment.
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Quite recently the concept of the Brownian shape motion
was introduced in nuclear fission, which demonstrated high
predictive power of calculating FFMD [3,4] by performing
random walks on a five-dimensional (5D) potential energy
surface. In this model, however, important features of nuclear
dynamics such as energy dissipation cannot be treated, due to
the assumption of overdamped motion. Thus several important
quantities in fission such as the prescission kinetic energy
(PKE) [5] and the fission time scale [6] have not been
considered at the moment in this framework.

The fluctuation-dissipation model (the Langevin formula)
can calculate the time evolution of energies associated with
the collective motion as well as their dissipation into intrinsic
excitation energy, thus the prescission kinetic energy and
intrinsic excitation energy at the scission point are calculated
on the same footing. The model can also determine the fission
time scale, which is not the case for the Random-walk method
[3]. At present there are several groups that use the Langevin
approach for the description of the fission process [5,7–11].
Due to the difficulty of the calculation of the multidimensional
transport coefficients used in the Langevin equations, and due
to the lack of sufficient resources for numerical calculations
the number of shape parameters in most cases is restricted to
two or three collective variables. The only exception is a very
recent work [12] where the mass and TKE distributions of
fission fragments were calculated within the five-dimensional
Langevin approach with macroscopic transport coefficients.
Their calculation starts at a point outside the saddle due to,
again, the huge computation time required.

In the case of three-dimensional models, the three param-
eters typically used in the Langevin equations are elongation,
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FIG. 1. The bottom figure shows a snapshot of the configuration
of a 236U nucleus calculated by the TCSM. The top figure is the
corresponding potential shape. Two harmonic oscillator potentials are
smoothly connected around the elongated neck. The neck parameter
ε is defined as the ratio of the intercept of the harmonic oscillator
potentials and that of the connecting function.

mass asymmetry, and fragment deformation. Sometimes the
neck-radius is chosen instead of fragment deformation. In all
these cases the deformations of both fragments were confined
to be identical. On the other hand, the low-energy fission data
show a behavior, which cannot be treated properly by the 3D
model as explained above. One of the typical examples is the
ν(A) of the fission of actinide nuclei, showing the different
deformations of both fragments at the scission point. This was
solved in this work by developing a 4D Langevin model, which
can treat the deformation of each fragment independently. In
addition, our Langevin trajectories start from a point inside
the saddle where the compound system stays a long time and
reaches to a state of quasiequilibrium, a condition that must
be satisfied implicitly for the concept of the Langevin theory
to be valid.

This paper is organized as follows. In Sec. II, the two-
center shell-model parametrization to express nuclear shapes
appearing in fission is explained, and collective variables we
treat are defined. In Sec. III, a new potential formulation, the
two-center Woods-Saxon model, is introduced. In Sec. IV,
the Langevin equations are explained with supplementary
theorems and formulas necessary to carry out the calculation.
In Sec. V, results of numerical calculations are shown and new
insights into the dynamical aspects of fission, obtained by the
present 4D approach, will be described. Section VI is devoted
to the summary of this paper.

II. TWO-CENTER SHELL MODEL

In the present paper we use the two-center shell-model
(TCSM) parametrization of nuclear shape suggested by
Maruhn and Greiner [13] to express a set of nuclear shapes
appearing in fission. In this model the mean-field potential
includes the central part V (ρ,z), as well as l s and l2 terms.
The central part potential V (ρ,z) in the TCSM consists of two
oscillator potentials smoothly joined together by a fourth-order

polynomial in z, see Eq. (1) and Fig. 1. It is defined as

V (ρ,z) =
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with the quadratic functions in z

f1(z,zi) = 1 + ci(z − zi) + di(z − zi)
2,

f2(z,zi) = 1 + gi(z − zi)
2, (i = 1,2), (2)

where ci , di , and gi are constants. The shape of the nuclear
surface in the TCSM is fixed by the requirement that at the
surface ρ = ρ(z) the potential V (ρ(z),z) is constant.

The central potential given in Eq. (1) contains 12 pa-
rameters. By imposing the conditions that V (ρ,z) and its z
derivative are continuous at z = {z1,0,z2} and the volume
conservation, the number of parameters is reduced to five.
Two of them are the elongation parameter z0 ≡ z2 − z1, the
mass asymmetry α = (V1 − V2)/(V1 + V2) (V1 and V2 are the
volume of the left-hand and right-hand side from z = 0).
The ratios of oscillator frequencies ωρi

/ωzi
(i = 1,2) were

expressed in terms of another two deformation parameters
δi [14,15],

ωρi

ωzi

= 3 + δi

3 − 2δi

. (3)

The ratios ωρi
/ωzi

define the deformation of the left and right
oscillator potentials and, thus, the deformation of the outer
(z � z1 or z2 � z) spheroidal part of the fragments, since
ωρi

/ωzi
= ai/bi , where ai and bi are the semiaxes in the z

and ρ direction, respectively, see Fig. 1. The deformation of
the inner part of the nucleus (z1 � z � z2) depends on all
five deformation parameters. Therefore, in general, it does not
mean that the fragment as a whole is prolate if δi is positive,
or oblate when δi is negative.

The fifth parameter ε is defined as the ratio of the potential
height E at z = 0 to the value E0 of the left and right harmonic
oscillator potentials at z = 0, see Fig 1. In our present and
previous calculations [5], we have fixed ε = 0.35. This value
leads to shapes that are very close to the so-called optimal
shapes [16]—the shapes that correspond to the lowest liquid
drop energy at fixed elongation and mass asymmetry. All
parameters that appear in Eqs. (1) and (2) can be expressed in
terms of the above five parameters.

In order to make the Langevin model realistic and widen
the fission observables to be studied, we use in the present
work a four-dimensional TCSM shape parametrization such
that the fission fragments can have independent deformations.
The set of deformation parameters is: {qi} ≡ {z0/R0,δ1,δ2,α},
where z0/R0, δ1, δ2, and α are the elongation of the compound
nucleus, the deformation of both outer parts of the nucleus, and
the mass asymmetry, while the 3D model had the restriction
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FIG. 2. Comparison of four-dimensional calculations of the mass
distribution of fission fragments with different neck parameters ε for
236U at the excitation energy of 20 MeV. The experimental data are
taken from JENDL/FPY-2011 data library [17] for 14 MeV neutrons
impinging on 235U.

of δ1 = δ2 = δ. R0 is the radius of a spherical compound
nucleus. The neck parameter ε, being fixed at 0.35 in the
present calculation, can be an additional shape parameter for
the future development to the 5D Langevin model.

Please note that within the TCSM the neck radius depends
not only on ε but on all other four parameters. Even in case
of fixed ε, the neck radius varies in a very broad region due
to the variation of the other parameters. We have checked that
the variation of ε within reasonable limits does not affect the
calculated results noticeably as shown in Fig. 2.

Throughout this paper, whenever we compare the calculated
values with experimental data, our calculations are performed
for 236U at the same excitation energy, which is populated as a
compound nucleus in the neutron-induced fission on 235U, for
which experimental data are most abundant. Furthermore, we
ignored the contribution of multichance fission by constraining
our analysis to the low-energy region. Still, we notice that
effects of multichance fission should exist in some cases
we studied. Such effects can be described by combining the
Langevin calculation with statistical Hauser-Feshbach theory.
Such an analysis will be an important future subject, but we
did not attempt to do that in the present work since we wish
to elucidate how the newly developed 4D Langevin model can
describe the fundamental aspects of low-energy nuclear fission
without complication coming from the other effects.

III. POTENTIAL ENERGY

It turns out that the extension of the number of dynamical
variables within the TCSM framework, on which our previous
3D model was based, is not sufficient to reproduce the
experimental results. Consequently we have modified also the
mean-field potential. Instead of the Nilsson type of potential of
the TCSM we used a more realistic finite-depth Woods-Saxon
(TCWS) potential. For this the shape function ρ(z) of the
TCSM was expanded in a series of Cassini ovaloids. In total,
20 deformation parameters were taken into account to describe
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FIG. 3. An example of the expansion of the TCSM shapes close
to the scission point in a series of Cassini ovaloids (TCWS).

closely enough the nuclear shape given by the TCSM, as shown
in Fig. 3.

For the shape given by an expansion in Cassini ovaloids
the two-center deformed Woods-Saxon approach [18] was
used in order to calculate the single-particle energies and
shell corrections [19–21]. The parameters of the Woods-
Saxon potential in Ref. [18] were used. In the macroscopic-
microscopic model [19–21], the energy correction originating
from the shell structure in a nucleus is added to the classical
macroscopic potential energy. Thus the macroscopic potential
energy U (q,T ) can be expressed as

U (q,T ) = EMacro
def (q) + δE(q,T ). (4)

The macroscopic part of the potential energy, EMacro
def , was

calculated within the finite-range liquid drop model [22]. The
temperature (excitation) dependence of the shell corrections
δE was estimated by the Ignatyuk prescription [23] with the
damping energy Ed = 20 MeV,

δE(q,T ) = δE(q,T = 0) · e−Ex/Ed , (5)

where Ex is the excitation energy, see Eq. (9) below.
The shell energy δE contains the contributions from the

shell effects in total single-particle energy and in the pairing
energy,

δE(q,T = 0) =
∑
n,p

(
δE

(n,p)
shell (q) + δE(n,p)

pair (q)
)
. (6)

The δEshell and δEpair were calculated by the BCS approxi-
mation and Strutinsky prescription [19–21] from the single-
particle energies obtained with TCSM or TCWS shell models.

We consider in the present work fission process at low
excitation energies. The corresponding temperatures do not
exceed 1 MeV. For such temperatures the damping of shell
effects is not so large and it was neglected. So, the calculations
were done with full shell effects taken into account.
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IV. LANGEVIN APPROACH

The Langevin equation is written as follows using the shape
coordinates qi and their conjugate momenta pi :

q̇i = m−1
ij pj (7)

ṗi = −∂U

∂qi

− 1

2

∂m−1
jk

∂qi

pjpk − γijm
−1
jk pk + gijRj (t). (8)

The quantities, mij , γij , and gijRj , correspond to the inertial
mass tensor, the friction tensor, and the random force,
respectively. For the transport coefficients, we adopt the
Werner-Wheeler approximation [24] for the mass tensor mij

and the wall and window model [25] (ks = 0.27) for the
friction γij . The random force gijRj (t) is the product of white
noise Rj (t) and the temperature-dependent strength factors
gij . The factors gij are related to the temperature and friction
tensor via the modified Einstein relation [26],

gikgkj = T ∗γij , with T ∗ = h̄


2
coth

h̄


2T
, (9)

where T ∗ is the effective temperature. The parameter 
 is the
local frequency of collective motion [26]. The minimum of T ∗
is given by h̄
/2, which corresponds to the zero-point energy
of oscillators forming the heat bath. Based on the pioneering
works [27,28], we estimated the zero-point energy as 1 MeV,
which lies in the middle of the corresponding quantities for
various modes 0.45–2.23 MeV estimated in Ref. [28]. The
temperature T in this context is related to the initial excitation
energy Ex and the internal energy Eint by,

Eint = Ex − 1
2 (m−1)ijpipj − U (q,T = 0) = aT 2, (10)

where a is the level density parameter [29].
We started the Langevin calculation as far inside the saddle

as possible in order to account for the stochastic fluctuation
in an equilibrated medium of nuclear collective motion inside
the saddle. As shown in Fig. 4 the trajectory stays inside
the saddle for a long time, especially in the region near
the potential minimum, before it gets over the saddle point
of the potential energy surface. Thus, the distribution of
trajectories at the saddle in mass asymmetry, kinetic, and
excitation energy emerges as a result of fluctuating motion
inside the saddle. Beyond the saddle the trajectory falls into

FIG. 4. A trajectory in the 4D Langevin model (the red solid line)
is shown on the color map of the potential energy surface for 236U.

the potential valley and reaches the scission point quickly. If we
started the calculation from the top of (or outside) the saddle,
we would lose the stochastic nature of Langevin trajectories
on the way from potential energy minima till the saddle point,
which are the essential features in the Langevin model based
on the fluctuation-dissipation dynamics.

Initially, the momenta pi were set to zero, and Langevin
motions were initiated by the conservative and random forces.
Such calculations are continued until the trajectories reach
the scission points, which were defined as the points in
deformation space where the neck radius becomes zero. Using
such a 4D model, we have calculated the fission fragment
mass distribution (FFMD), total kinetic energy (TKE), and its
standard deviation σT KE for 236U as a compound system of
neutron-induced fission of 235U.

V. NUMERICAL RESULTS

The FFMDs for 236U and 258Fm are shown in Fig. 5. In
both cases, we renormalized data in such a way that the total
area becomes 2. In Fig. 5(a) we show the FFMD for 236U
at Ex = 20 MeV calculated with the 3D and 4D Langevin
models. One can see that the use of the finite-depth TCWS
potential (blue) reproduces the experimental peak positions
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FIG. 5. (a) Mass distribution of fission fragments for the fission
of 236U at an excitation energy of 20 MeV. The 3D and 4D Langevin
calculations (histograms) are compared with the experimental in-
formation given in the JENDL/FPY-2011 data library [17] for n +
235U at 14 MeV. (b) Mass distribution of fission fragments for the
fission of 258Fm at the excitation energy of 7.5 MeV is plotted with
the experimental data for 258Fm spontaneous fission [30] (red open
circles) and the post-neutron FFMD of nth + 257Fm fission [31] (red
filled circles).
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and their widths better than the infinite-depth TCSM potential
(green). For comparison, results of the 3D Langevin model
using the TCSM [5] is shown (black). Both of the 3D TCSM
model and the 4D TCWS model can reproduce well the whole
structure of the experimental FFMDs. The peak widths in the
3D TCSM model is broader than in the 4D TCWS model. This
is because of the difference of the potential energy surfaces
between these models. For symmetric components around A =
118, the potential energy has the minimum at δ1 = δ2 both in
the 3D and 4D models. On the other hand, for asymmetric
components, the minimal potential energy can be lower in
the 4D model than that in the 3D model due to the additional
degree of freedom (δ1 �= δ2). As a result, the depths of potential
valleys giving the two peaks become deeper in the 4D model
than that in the 3D model. It provides narrower peak widths
in the 4D model. However, it will become clear that the 4D
model is suitable to describe the dynamical features of fission
better than the 3D model in a comprehensive manner due to
its advantages of the 4D model to be shown below.

Figure 5(b) shows the FFMD for 258Fm fission with the
excitation energy Ex = 7.5 MeV and the full shell correction
(no shell damping) as reference. The energy Ex = 7.5 MeV,
corresponds to the 258Fm spontaneous fission, because the
fission barrier height of our model is about 7 MeV in this
case. In Fig. 5(b), we compare our Ex = 7.5 MeV result with
258Fm spontaneous fission data [30] and nth + 257Fm fission
data [31]. A strong single-peak component can be seen in
both experimental data. However, please note that the thermal
fission data [31] was measured after prompt neutron emission.
According to their paper, a triple-humped FFMD was produced
after their neutron correction although they also mentioned that
the neutron correction has considerable uncertainty.

Thus, the finite-depth potential plays an essential role to
produce mass peaks at the right positions, although we may
need the improvement of the transport coefficients for more
accurate FFMDs. Further investigation of FFMDs of actinides
are a topic for future research.

As mentioned earlier, other models such as the random
walk on a 5D potential surface [3], also reproduce the mass
distribution rather accurately. Compared to such models, the
advantage of the present approach lies in the fact that it
can give a prediction of the TKE including the effects of
prescission dynamics. Our previous 3D model [5], which gives
good agreement with the experimental FFMDs [Fig. 5(a)],
explains the qualitative behavior of the TKE, but it is not
able to reproduce quantitatively the experimental values.
In the current 4D model, both the TKE and its standard
deviation agree with the experimental data, qualitatively and
quantitatively as shown in Figs. 6, 7 and Table I (see also
discussion below). It is clear from Fig. 6 that the fission events
are widely distributed around the average TKE value. The
average value of TKE is well below the upper limit of the TKE,
Q + Ex . However, we have noticed that some events give TKE
that are larger than Q + Ex , even though we checked that the
constraint from the energy conservation was satisfied.

The Q value was calculated with the assumption that the
charge-to-mass ratio was conserved before and after scission,
using the values of mass excess obtained from the Reference
Input Parameter Library (RIPL-3) that provides either experi-
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FIG. 6. Calculated fission events on the mass-TKE plane for
236U fission at (a) Ex = 7 MeV and (b) Ex = 20 MeV. Number of
events are shown by different colors, increases from blue to red. The
locations of the standard and superlong modes in Brosa’s terminology
(see text) are shown by ellipses. The upper limit of the TKE, Q + Ex ,
from the mass database is shown by open circles [32]. The same plot
as (a) and (b) but in the case of 258Fm at Ex = 7.5 MeV is shown in
(c) for reference.

mental or recommended mass data [32]. For the case that we
cannot find both experimental and recommended mass data,
we refer to the theoretical mass data in RIPL-3. Discrepancy of
nuclear masses given in RIPL-3 and those given by the TCWS
could give rise to events having TKE above the Q + Ex .
This cannot be avoided since our TCWS is not optimized
to reproduce nuclear masses. Apart from the definition of the
Q + Ex in our model, in the Langevin equations, which on
each integration step add (or subtract) some amount of kinetic
energy, the additional energy gained from the random force
accidentally can be large and can exceed the Q + Ex at the
final step of the calculation. In such cases the local intrinsic
energy defined by Eq. (7) is negative and we put T = 0.

In Brosa model [33] the nuclear scission process can be
interpreted in terms of several fission modes, namely, the
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FIG. 7. TKE distributions, calculated by 3D and 4D Langevin
models, for 236U fission at Ex = 7 MeV (corresponding to thermal
neutron induced fission of 235U) are shown in comparison with the
experimental data [35,36].

standard modes, the superlong modes, and the supershort
modes. In Figs. 6(a) and 6(b), indeed, we can see the
contributions from the standard and superlong modes in
the mass-TKE distribution of 236U. The standard modes are
dominant at Ex = 7 MeV as shown in Fig. 6(a), while more
superlong components appeared at higher excitation energy
as shown in Fig. 6(b). In Fig. 6(c), we also show the TKEs
for 258Fm at Ex = 7.5 MeV as reference. In 258Fm case, we
can see that the supershort mode is dominant. In our 3D
Langevin study for Fm region [34], the microscopic transport
coefficients is necessary to produce the TKE quantitatively.
However, the current 4D model can reproduce the averaged
TKE values of the standard modes and the supershort mode
not only qualitatively but also quantitatively even with the
macroscopic transport coefficients.

In Fig. 7, we compare the calculated TKE values averaged
at each fragment mass with the experimental data. The calcu-
lations were done for compound 236U while the experimental
data are for the neutron-induced fission of 235U at incident
energies of 0.0253 eV and 1.08 MeV. A remarkable agreement
is seen for the TKE distribution between the 4D calculations
(the red solid line for the TCWS case, the blue solid line for
the TCSM case) and two sets of experimental data. The two
sets of 3D models shown by triangles, one with microscopic
transport coefficients, the other with macroscopic ones, cannot
reproduce the data well. Considering the agreement with the
data for the mass and TKE distributions simultaneously, we can
conclude that the 4D Langevin models are superior to the 3D
ones. Between the 4D models, on the other hand, the agreement
with the data is better in the TCWS than in the TCSM.

The 4D model describes well not only the TKE, but also
its standard deviation σTKE in its dependence on the neutron
energy En impinging on 235U, therefore, excitation energy of
236U, as tabulated in Table I. It is known from experiments
that the standard deviation of the TKE is almost constant,
about 11 MeV, as a function of the neutron energy En.
The magnitude of σTKE is also improved by the 4D models
compared to the 3D ones.

Hereafter we will concentrate on the TCWS case, be-
cause the 4D Langevin approach with the TCWS potential

TABLE I. Standard deviation of the TKE of fission fragments,
σT KE , for neutron-induced fission on 235U (exp.) or excited 236U
(calc.) corresponding to the same excitation energy.

σT KE (MeV)

En (MeV) Present 4D 3D Pre-n [37] Post-n [37]

0.5(Ex = 7) 9.65 6.19 10.65 10.85
3.5(Ex = 10) 10.54 6.63 10.60 10.83
5.5(Ex = 12) 10.82 7.43 10.83 10.99
8.5(Ex = 15) 11.35 8.38 10.90 11.09
13.5(Ex = 20) 11.72 9.54 11.18 11.44

reproduces the data better than the TCSM. The remarkable
agreement of the TKE shown in Fig. 7 and its standard
deviation given in Table I indicates that the prescission
dynamics and the nuclear shape at scission is described well
by the 4D Langevin calculation based on the TCWS potential
since the TKE is the sum of the prescission kinetic energy and
the Coulomb repulsion energy between the nascent fragments
at the scission.

In Fig. 8 we also present the distribution of the prescission
kinetic energy (PKE), the collective kinetic energy in the
elongation directionat at the instance of neck rupture. It is the
advantage of dynamical theories like ours to be able to obtain
this physical quantity. As a matter of fact, the TKE shown
in Fig. 7 is expressed in our model as the sum of the PKE
and Coulomb repulsion energy between point charges at the
scission point. The difference between the Coulomb repulsion
energy with the point-charge model and that with the TCSM,
which takes into account of the spatially extended diffuse
charge distributions of two fission fragments, is negligibly
small around the scission point and after scission. For the
details of the Coulomb calculation of the TCSM, see Ref. [15]
and the references therein. Therefore, we used the point-charge
model for simplicity in this paper.

The PKE contains a memory of dynamical nuclear motion
from the initial position to scission. The mean PKE is obtained
to be about 18.56 MeV at Ex = 7 MeV in the present 4D
model, and is almost independent of the fragment mass. The
value amounts to about 10% of the TKE shown in Fig. 7; thus,
the PKE is an important component of the TKE of fission
fragments.
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FIG. 8. Contour map of the prescission kinetic energy as a
function of mass number of fission fragments at Ex = 7 MeV for
236U.
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FIG. 9. The distribution of the deformation parameter δ in its
dependence on the mass number is illustrated in (a) (Ex = 20 MeV),
while mean values of δ at excitation energies of 7, 12, and 20 MeV
are shown as functions of fragment mass number in (b). Both are
for 236U.

The reason for the present high average PKE value can
be interpreted as follows. In the Langevin model, there exist
various fission paths on the potential energy surface because
each trajectory is affected by the random force, which leads
to variation of the collective momenta as well as the potential
energy gradient event by event. This leads to, even for the
symmetric fission component, strong variations of the history
of the fission paths and also scission shapes that lead to a
broad distribution of PKE, from 0 to around 35 MeV, unlike
the scission-point model [38], which has a fixed value of PKE.
The high component of the PKE values pushes up the average
PKE value in our model. However, we recognize that there is
still room for discussion of validity of the high average PKE
value obtained in this work. The remarkable agreement of TKE
with experimental data as shown in Fig. 7, on the other hand,
strongly indicates that the prescission dynamics described in
our 4D Langevin model, hence, our PKE distribution, reflects
a certain aspect of the correct fission mechanisms.

In order to investigate the shapes of a fissioning nucleus
at the scission point, we have plotted in Fig. 9(a) the
distribution of the parameter δ as function of fragment mass
number calculated within the 4D TCWS model. The light
fragments apparently show different deformation from the
heavy fragments. This feature cannot be achieved in the 3D
formulation.

Note that the shape of heavy fragment at AH = 132 has a
negative δ on the average but this does not necessarily mean
the oblate shape, as is seen in Fig. 10. The parameter δ specifies
only the deformation of the outer part (z � z1 or z2 � z) of
the fissioning nucleus. It can be seen that a nearly spherical

-2 -1 0 1 2

-1

0

1

ρ (
z)

 / 
R

0

z / R0

236U

δ1= - 0.1, δ2=0.2, α=0.11

FIG. 10. The average nuclear shape near the scission point. The
three curves correspond to rneck = 0, 1, and 2 fm. The δ1 in all three
cases is negative, δ1 = −0.1. The mass number of heavy fragment is
equal to 132.

or even slightly prolate nucleus is produced at A − H = 132
while the light fragment is very elongated.

The similarity between the fragment deformation immedi-
ately after scission and the neutron multiplicity was already
noticed in the pioneering study by Wilkins [38]. In Fig. 9(b),
the mean value of the deformation δ is shown for three
excitation energies. From the mean values of the deformation
δ(A), we see that on average the lighter fragments have more
elongated (prolate) shapes compared to the heavier fragments.
The mean deformation δ also reveals another specific feature,
a sawtooth structure, which is remarkably similar to that of
the prompt neutron multiplicity ν(A). For neutron energies
0.05 MeV � En � 5.55 MeV impinging on 235U, the prompt
neutron multiplicities for lighter fragments are independent of
the excitation energy Ex , while those for heavier fragments
increase as Ex [39] increases. The mean deformations δ in
our 4D model show a similar energy dependence as for the
prompt neutrons, i.e., the Ex dependence can be seen only in
the heavier mass components around 130 < A < 150.

VI. SUMMARY

We have developed a four-dimensional Langevin model to
improve the description on fission dynamics at low excitation
energy and applied it to fission of 236U at low excitation
energy, which is a compound nucleus in neutron-induced
fission of 235U. This system has the most abundant set of
experimental information among neutron-induced fission to
verify the model, and also it is important from the application
point of view. Our model deals with not only the independent
deformation parameters of fission fragments, but also with
the modifications of the potential such as the infinite-depth
two-center shell-model (TCSM) potential and the finite-depth
two-center Woods-Saxon (TCWS) potential. It turns out that
the width of the peak of fission fragment mass distributions
(FFMDs) in the 4D model is narrower compared with the 3D
model due to the deeper potential valley as a consequence of
taking into account the additional degree of freedom. In spite
of this behavior of FFMDs, we have successfully reproduced
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the experimental total kinetic energy (TKE), which is a good
indicator of the nuclear shape at scission. This agreement
gives a support to our 4D model, which is ascribed to dealing
with independent deformations between the two fragments at
scission. In our model, we predict that about 10% of the TKE
came from the prescission kinetic energy (PKE).

It should be stressed that the present 4D Langevin model
reproduces the mass distributions of fission fragments, the
dependence of the total kinetic energy on the fragment mass,
and its standard deviation as a function of the neutron kinetic
energy (excitation energy of compound nucleus) simultane-
ously with better accuracy than the 3D Langevin models.
We also find a strong correlation between the mass-dependent
deformation of fragments at the scission point and the sawtooth
structure of prompt neutron multiplicity [40] including their
dependence on excitation energy.

In the present paper, we concentrated our attention on the
system of 236U as the compound nucleus. It is also worth
applying the present model to, at least, neighboring actinides
to see how it can describe fission observables of other nuclei
in a systematic manner. A quantitative analysis of the neutron

multiplicity data within the framework of the present 4D model
is also promising. Application of the linear response theory
to calculate the four-dimensional transport coefficients in a
microscopic manner is also a necessary step for refinement
of the theory as well as extension to the 5D dynamical
model where the ε parameter enters the category of dynamical
variables. All these features are subjects for future research.
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