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Fine structure of « decay from the variational principle
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Starting from the variational principle, the time-dependent pairing equations are generalized by including the
Landau-Zener effect and the Coriolis coupling. A system of microscopic equations of motion for configuration
mixing is deduced, allowing the determination of quantities that have the same meaning as the preformation
factors of the « particle. These equations are solved in order to reproduce the hindrance factors of the o decay
of an odd-A mass nucleus. The « decay of *!'Po is treated as a superasymmetric fission process, by following
the rearrangement of the nuclear orbitals from the parent ground state up to the scission configuration. The
probabilities of finding the excited states of the daughter at scission are obtained from the microscopic equations
of motion. The intensities of the transitions to the excited states of the daughter were evaluated theoretically. The
experimental data were compared with the theoretical findings. A very good agreement was obtained. A mean
value of the tunneling velocity of about 2 x 10* fm/fs was extracted.
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I. INTRODUCTION

A new system of microscopic equations of motion for
seniority-1 configuration mixings, that allows at the same
time the deduction of the time-dependent pairing equations,
is obtained from the variational principle. The time-dependent
pairing equations, formally similar to the time-dependent
Hartree-Fock-Bogoliubov equations, are able to supply an
estimation of the dissipated energy. The Coriolis coupling and
the Landau-Zener effect are mechanisms introduced in this
new system of differential equations, allowing single particle
excitations, i.e., a change of the configurations. The formalism
is used to evaluate the branching ratio in the «-decay fine
structure of ' Po.

a decay is the spontaneous emission of a He nucleus.
In the phenomenological description, a preformed « particle
penetrates an external barrier and attains an energy close to the
Q value of the reaction. The microscopic part in the description
of this process concerns the modality in which the particle is
born on the surface of the daughter nucleus [1-4]. Usually, the
preformation factor of the « particle is calculated as an overlap
between the initial configuration of the parent ground state
and the final configuration of the two nuclei close to scission
[5]. The fine structure of the o emission reveals modifications
of the emission probabilities for different excited states of
the daughter nucleus. This phenomenon was evidenced by
Rosenblum in 1929 by measuring the ranges of « particles in
the air [6,7]. The kinetic energy of the « particle has several
values that can be associated with a specific excitation of the
daughter nucleus. Microscopically, a phonon operator acting
on the daughter nucleus ground state may describe such an
excited state [8]. In the case of the « radioactivity of 2pg,
each final state is characterized by a single particle excitation
that can be associated with a specific seniority-1 configuration.
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In order to investigate the the fine structure phenomenon,
it is possible to consider that the total wave function of the
decaying system is a superposition of core-angular harmonic
[9] functions; that is, of combinations between an interval
wave function and an external one, connected smoothly in
the nuclear surface region of the daughter nucleus. By using
the orthogonality property of the core-angular harmonics and
projecting them on different channels, a coupled channel
description of the «-decay fine structure can be obtained.
Calculations based on this formalism were initiated in Ref. [10]
and generalized to take into account vibrational [11] and
rotational [12] excitations.

In these enumerated theories, the « particle is always
preformed on the nuclear surface, the dynamics of its formation
being unclear. But, the o particle cannot appear suddenly
on the surface of the daughter, even in the case when the
o particle preexists in the parent nucleus. As stated by Hill
and Wheeler in a seminal paper published in 1953 [13], due
to the extreme saturation of nuclear matter, the states of the
nucleons mainly depend on the boundaries of the many-body
potential. If the « particle preexists in the parent nucleus and it
is moving to the external region, implicitly the nuclear shape
of the whole system is modified. That is, all the nucleons states
are perturbed during the o-decay process. Therefore, a simple
picture consisting of an overlap between an unperturbed initial
state and a final configuration should be not sufficient to take
into account the whole complexity of the process.

In my formalism, one follows the rearrangement of the
microscopic states during the emission of an « particle,
beginning from the parent ground state and reaching the
scission. The emission of the « particle is simulated by
modifying the boundaries of the many body potential as
realized in fission-like theories. At scission, two mean field
potentials are obtained: one for the daughter nucleus and
another for the «-particle. The probabilities of obtaining
different single-particle excitations are given by the solutions
of a system of equations of motion for superfluid systems.
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In the next section, this system of equations is deduced. It
should be mentioned that a first attempt to explain dynamically
the -decay fine structure was realized in Ref. [14] with a
system of equations of motion in which the pairing field
was neglected. The calculations performed for the o decay
of 2!'Po are presented in Sec. III. The last section is dedicated
to conclusions.

II. TIME-DEPENDENT EQUATIONS OF MOTION

During the evolution of a many-body system, two dy-
namical promotion effects arise, leading to single-particle
excitations: the Landau-Zener effect and the Coriolis one
[15,16]. Both effects are included in the new system of
equations of motion deduced in the following. The microscopic
equations of motion for the configuration mixing are obtained
from the variational principle. These equations should give
the probabilities of finding the nuclear system in different
seniority-1 configurations during the evolution in time of
the nuclear system and the dynamical values of the BCS
amplitudes. The energy functional is

0 .
8L = 8{pim|H + Hg — iﬁg +H' —ANloi), (D)

where the many-body state is considered as a superposition of
products between seniority-1 Bogoliubov wave functions and
rotation functions:

lorm) = ZCQ,m|€01MQm) = Zcﬂ,mb;r,M,Q,m l_[
Q.m

Q,m (821,m)#(S2,m)
+ +
X (uQI.ml(Q,m) + UQl,ml(Q,m)thmlan,ml)|O)' @)

Here, ag’m and agq , are the single-particle creation and
annihilation operators, and cq , are the amplitudes of the
seniority-1 configurations. Therefore, the value of |cq . |*
gives the probabilities of finding the configurations with an
unpaired nucleon located on the single-particle level labeled
by the quantum numbers (£2,m). In my notations, 2 denotes
the intrinsic spin projection on the axis of symmetry, and m
is a number that identifies the single-particle state located in
the same 2 level’s subspace. The variables uq, m,(,m) and
vQ,.m,(@,m) denote the BCS vacancy and occupation amplitudes
for the single-particle states (€2;,m11) in the seniority-1 config-
uration in which the the single-particle state (€2,m) is occupied
by an unpaired nucleon. Because only the relative phases
between these amplitudes matter, the vacancy amplitude will
be considered a real quantity and the occupation amplitude is
taken as a complex variable. In the expression (2), the blocking
effect is included; that is, the variations of the BCS amplitudes
in accordance with the seniority-1 configurations are taken
into consideration.

I used the following notation for the operator bjj M.q.m that
creates a rotating state:

20+ 1\ "2/ @ \'"®
b;L,M.SZ,ml()):(W> (@) Dyg(@)ag ,10).
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Here, DIIVIQ(a)) denotes the rotation function with
Q=-9, )

2 being positive and the bar over a symbol meaning the time
reversed state in a pair. The rotation functions exhibit the
following relevant properties:

D! () =[£I T+ DI'V*DL o (@), (5

where the ladder operators are introduced through the usual
definition /. = I, £il, in terms of the angular momenta
components.

In the energy functional (1) several terms are included as
explained below. The many-body Hamiltonian with pairing
residual interaction is

_ 2 : + +
H= 6Q,m(aﬂ,mafz,m +a§2,ma§_2,m)
Q,m

+ o+
-G Z aquaQ,maQI,mlaQ],ml ’ (6)
(Q,m)(S2y,m1)

where €q ,, are single-particle energies and G is a constant
pairing interaction.
The axial symmetric rotor energy [17] is

Ho= (P = ) 2 ) - o Ge gt
2J PV ARV A
™

where J is the total momentum of inertia, I = (I,,I,,1;) is the
total angular momentum, and j = (jx,jy, ;) is the intrinsic
angular momentum of a particle. The first term in the right-
hand side of the expression (7) is a constant of motion. The
second term (/i%/2J)( jf + jf) is called the recoil term and acts
only on the intrinsic wave functions. Therefore, as proposed
in Ref. [17], it is considered to be absorbed in the Hamiltonian
responsible for the single-particle motion. This last assertion
is contradicted by the conclusions given in Ref. [18], where an
analysis of the influence of this term on the rotational structure
was realized. It was evidenced that this term cannot be properly
included in the Hamiltonian due to its dependence on the
rotational parameter /i>/2J. This behavior implies that the
potential parameters should be deformation dependent. But,
as mentioned in Ref. [19], the recoil term does not perturb
significantly the intrinsic wave functions. For simplicity, in the
following I will refer to the particle rotor model without recoil.
The third term in the expression (7) represents an interaction
between a particle and the rotational motion, known as the
Coriolis coupling. The Coriolis coupling can shift nucleons
from one single-particle level to another, allowing a change of
the configuration.

A Landau-Zener term is introduced in the functional (1), to
simulate an effect for the dynamical promotion of a nucleon
between diabatic single-particle levels characterized by the
same good quantum numbers in avoided level crossing regions
[20,21]. As specified in Refs. [22,23] the interaction that allows
this promotion mechanism contribution in superfluid systems

064607-2



FINE STRUCTURE OF o« DECAY FROM THE ...

has the following form:

H = Z B X 2.y X2 (2m)

Q,m,m’

X l_[ OKQ/,mN(Q,m’)agz_/ m,,ag/,m/«ot;; m"(2,m)? (8)
m”

where hgq ., are the interactions between the states
(2,m) and (2,m’) in the avoided level crossing regions.
I introduced the quasiparticle creation and annihilation

+ _ + g%
operators, A m@.my = Ug m@.m)da.m UQ,m(Q,m’)aQ,m)

and agm@m = (g i@ mam = Vom@.mde )
respectively. Due to the interaction hgq , ./, an exchange
of nucleons can be made between different single particle
levels (2,m) and (2,m’). The coupling matrix element
hg m.ny 1s independent of the pairing interaction G. However,
the promotion probability of a nucleon in an avoided level
crossing region is managed by the term H’ given by Eq. (8).
This term depends on the BCS vacancy or occupation
amplitudes. These last quantities depend on the pairing
interaction. The magnitude of the coupling matrix element
hg.m.m can be extracted directly from the energy diagram.
The maximum value of hq - is obtained by calculating the

J

2
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difference of energies at the point of nearest approach between
the adiabatic levels in an avoided level crossing region [24].
The product in Eq. (8) runs on all states of the selected
pairing levels space, excepting the states (Q2,m(2,m’))
and (2,m'(2,m)). As discussed in Ref. [23], due to the
interaction H’, the diabatic wave function |@;yqm) of the
superposition (2) will be “transmitted” on the diabatic level
and “reflected” on the adiabatic one after the passage of the
avoided level crossing region. A dynamical pair breaking
mechanism [25,26] was also described with interactions
similar to that given by relation (8). Dynamical excitations in
large scale collective motion are also investigated by means
of quasiparticle operators in Ref. [27]. For deformed axially
symmetric nuclei, the good quantum number is the spin
projection 2.
The particle number operator is written as

N + +
N = Z(aﬂ,maﬂ.m + aQJnaQ,m)’ (9)
Q,m

and A is the Fermi energy. The sums run over the pairing active
space of single-particle levels.

The expectation value of the energy functional (1) is
obtained by summing over the intermediate states given by
the trial function (2):

h "2 9
H+—((I*—j>) - —(.l_+j_I)—ih—+ H — AN
(pim|H + 21( Jj2) 2J(]+ +j-1) —i a7 + lora)
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Here, I denoted

|€2,m)

Q,m,m'#£m

= af,10) (11)

the eigenvectors characterized by the quantum numbers (£2,m). The overlaps of the products of quasiparticles of the BCS wave

functions are denoted

_ + + + +
T om = <0 [T (amm@.m +va m@mad mag )| T @anm@m + va,m@mad, mad ) 0>
Qp,my Q,my
*
= [ [teim@mta,m@m + Vi m@.mvem@m] (12)
Q,m

064607-3



M. MIREA PHYSICAL REVIEW C 96, 064607 (2017)

where the indexes (£21,m1) run over the active pairing level space, excepting the states (€2',m’) and (€2,m). These terms reflect the
transformation of the products of the wave functions from one configuration to another one. If the blocking effect is neglected,
then T . @.m should be unity.

After variation, the expression (10) should supply the time-dependent evolutions of the independent variables Ve (q,m)s
cq.m and of their complex conjugates. To obtain the time-dependent equations for configuration mixings, the expression (10) is
derived with respect the independent variables c,, or ¢},. The next equations follow:

—ihcg , = C?),m{z Z v mri.m|* (€@ m — 1) + (€qm — 1)
(Q/,m")#(Q2,m)

B,
-G Y |v9f,mm,m>|4} + 57 ConllU+1) -
(Q,m")#A(2,m)

-G

Z U m'(Q,m)VQ ,m'(Q2,m)
(Q'm")#(2,m)

n’ 1/2
- ﬁ{ Z chﬁm,[(l - QU +Q+ D) / [MQ,m(Q-H,m’)u9+l,m’(Q,m) + U?Z,m(9+l,m’)UQ+l.m’(Q,nz)]

m'

X AQ+ L/ | |1Qm) Togimam + ) ooyl + U — Q+ D]

m’

* /o
X [Ug -1 myUa—1m@.m T Vo m@—1,m)Va—1mcml{ — 1.m |]|Qam>T91,m’,Q,m}

1
- lhc*ﬁm[ Z E(U;Z’,ln’(Q,m)i}Q’,m’(Q,m) - v?l’m’(Q,m)vQ’,m’(Q,m)):I + Z thm'wmc;ﬁZ,m” (]3)
(,m")£(Q,m) m'#m
To obtain the preceding equations, one takes into account the condition of conservation Y, Ica.m|*> =1, so that
D am CQmCam = = 2 am CamCam- It is possible to solve only the equations for positive values of Q. The interactions
between the states = 1/2 and their time reversed ones are obsoletes because the flows of probabilities in both directions are
the same. Therefore the probabilities of finding a system in a configuration Q = 1/2 or Q = —1/2 remain unchanged.

It should be noticed that for a given configuration, the well known time-dependent pairing equations emerge if the functional
(10) is derived with respect the vg  or vg

*
U m' (,m) Ve i (2,m) >

—l'hl');;/’m/(gym) = ZUE,,m,(Q,m)(GQ/,m/ — )L) -G Z MQ”J”N(Q»”’)U?Z”,m”(ﬂ,m) UQ m'(Q,m) —
2”9’,m’(§2,m)

(Q".m")#(Q,m)

* *
Vo m(@,m)Vy . m' (Q2,m)

— UQ" m"(Qm)VQ"m"(Q,m) } - ZGUQ/J"/(QJ”)vg’,m’(ﬁ.m)vg/,m/(ﬂ,m)' (14)

2uq m(.m)
Equations (14) can be recast in terms of the single-particle densities pg m@/,m) = [VQ,m@,m) |2 and pairing moment components
KQ,m© . m'y = UQ,m@ m)Ve,m.n) [28,29], yielding a system similar to the time-dependent Hartree-Fock-Bogoliubov equations
[30-34]. These time-dependent pairing equations can be generalized to study the partition of the excitation energy between two
complementary fragments by adding a condition of conservation of the number of particles [35,36].

From the time-dependent pairing equations (14), the time derivatives of vg ,, are provided and the relation
iR ; i =2 2 1) —2G 4
T(Unf,m'(sz,m)vﬂ’,m’(ﬂ,m) - UQ’,m’(Q,m)UQ’,m’(Q,m)) = |vQ’,m’(Q,m)| (€ — ) — |UQ’,m’(Q,m)|

Ve mr(e,m|*

* s s

+ Re Qm " = Ugy i @.m) V' (2.m) (15)
Uy m@,m) VY m/(2,m)

is obtained. Therefore, the time derivative Vg ,@.m can be eliminated from Eqgs. (13). Here, Agq, =
G Z(Q,’m,)#g’m) UQ m/(Q.m) V. m'(Q.m) 1S the pairing gap parameter of the configuration (€2,m).

Equations (13), completed with the equality (15), illustrate two inherent mixing mechanisms between different seniority-1
configurations that occur in dynamical systems. The first one is the Coriolis interaction. In an axially symmetric system, this
interaction acts between states that differ by one unit in the values of 2. These configuration mixings are produced by the
nonvanishing matrix elements (2',m’|j|Q2,m). The second mixing mechanism is the Landau-Zener effect. The interaction
that causes this promotion mechanism manifests itself only between single-particle states that have the same good quantum
numbers in the avoiding crossing regions. This effect is taken into consideration in the time-dependent equations by means of the
interactions hg . If the pairing interaction vanishes, the system (13) can be particularized to the time-dependent equations of
Ref. [14] deduced only for single-particle systems.
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The energies of the many-body Hamiltonian H are

2.

(2,m")#(Q,m)

Eqm = {@imam|Hloipmam) =2

and the centrifugal ones are

2

Efg = <§01M52m|ﬁ(12 — j2)@rmam)

I? 5
—2J[1(1+1) Q] a7
where |¢;yqm) are wave functions of the superposition (2).
Both energies intervene in Egs. (13).

In order to determine the probabilities of the possible
seniority-1 configurations stemming from the o decay process,
the system (13) should be solved, starting from the ground state
and reaching the scission. The time-dependent variables of my
equations are the amplitudes of the seniority-1 configurations
and those of the BCS functions. In the literature, the equations
of motion are usually given in terms of probabilities. Therefore,
for completeness Eqs. (13) and (14) are also recast in terms
of probabilities instead of amplitudes in the Appendix. At
scission, the the probabilities Pg ,, = |com |2 should give
information compatible with those deduced from the overlap
probabilities for different excited states (or seniority-1 config-
urations) of the daughter [37,38].

III. RESULTS AND DISUSSION

In order to solve the equations of motion, the rearrangement
of the single-particle levels €, ,, should be provided beginning
from the ground state and reaching the scission point. The
time evolution of the mean field potential is required for this
purpose. In most treatments of nuclear fission, this potential is
constrained by a nuclear shape parametrization characterized
by some degrees of freedom [39]. The generalized coordinates
associated with these degrees of freedom are forced to vary
along a path in the multidimensional configuration space,
leading finally to a split of the nuclear system [40] into two
bodies. Such a fission trajectory can be obtained according to
the least action principle, by calculating the minimal values
of the action integral between the ground state of the parent
nucleus and a scission configuration compatible with the
a-decay process. The action integral requires the evaluation
of the deformation energy and of the inertia. In this work, the
deformation energy was computed in the framework of the
macroscopic-microscopic approach [41,42], while the nuclear
inertia was calculated within the cranking model [43,44]. In
the cranking model, the nucleons move freely in a mean
field potential subject to an external motion [45,46]. In the
macroscopic-microscopic formalism it is postulated that a
macroscopic theory describes quantitatively the smooth trends
of the total nuclear energy with respect to the deformations
while the microscopic effects are responsible for the local fluc-
tuations. The macroscopic deformation energy is calculated

2
Ve m,m) | (€ m

’
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|Ag
_QT_G Z

(" )A(S2,m)

- )‘-) + (EQ,m - )‘-) |UQ/,m’(Q,m)|4a

16)

(

within the finite-range liquid-drop model [47,48] extended for
binary systems. The microscopic shell and pairing corrections
were obtained by mean of the Strutinsky procedure [49]
based on a mean field solved by the Woods-Saxon two-center
shell model [23], using the so-called universal parametrization
for the potential [50]. The orthogonal eigenvalue basis is
obtained by diagonalizing the Woods-Saxon mean field in the
semisymmetric two-center harmonic potential basis [51-53].
The matrix elements for the derivative of the potential required
to calculate the inertia are also obtained with the same wave
functions. For a fixed major quantum number, the two-center
shell model provides the lower energy single-particle wave
functions for any internuclear distance between two separated
fragments. Molecular states that characterize scission config-
urations can be precisely described. Due to this advantage,
different versions of the two-center shell model are used in the
literature to treat processes such as nuclear disintegrations or
collisions [54-56]. My nuclear shape parametrization should
provide a smooth transition between one parent nucleus and a
two-body nuclear configuration. This behavior is obtained with
an axially symmetric nuclear shape parametrization given by
two spheroids joined by an intermediate surface simulating the
neck [23]. This intermediate surface is obtained by rotating an
arc of a circle tangent to both spheroids around the axis of sym-
metry. Five degrees of freedom characterize this nuclear shape
parametrization: the elongation defined by the internuclear
distance R between the centers of the spheroids, the necking
parameter that can be measured by the curvature C = s/R3
of the intermediate surface (R3 and s being the radius of the
arc of circle and the sign of the curvature, respectively), the
mass asymmetry that can be considered as the ratio of the
major semiaxes of the two spheroids, and the deformations
of both fragments characterized by their eccentricities. The
minimization of the action integral is performed numerically
as described in Ref. [57]. First of all, the ground state of the
parent is determined by calculating the lowest deformation
energy, while the scission point is considered as the touching
configuration of a dinuclear system consisting of the spherical
nuclei 2’Pb and *He. The elongations for the initial and
the final configurations are therefore established. One defines
a trajectory between these points that is approximated by
a spline function. This spline function depends on several
values of the generalized coordinates in different mesh points
fixed along the elongation parameter. So, the action integral
in the WKB approximation [40] becomes now a function
that depends on the values of the generalized coordinates
considered as variables. A numerical minimization can be now
performed to obtain the least action trajectory. Such kinds
of calculations were already performed for fission [58-60],
cluster emission [61,62], and « decay [63,64]. The potential
barrier V for o decay along the least action trajectory is plotted
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FIG. 1. The deformation energy V as function of the internuclear
distance R for « decay. The height of the barrier is renormalized by
taking into account a zero-point vibration energy of 0.5 MeV.

in Fig. 1. A pocket in the potential is formed around the
scission configuration. The origin of this pocket was explained
in Ref. [64]. The strong stabilizing shell effects of the nearly
spherical daughter produce a molecular minimum where the o«
particle is preformed on the surface. A similar potential pocked
was introduced phenomenologically in Ref. [65] in order
to improve the agreement between theory and experimental
o decay widths. In the presence of the potential pocket
displayed in Fig. 1, the a-decay potential barrier resembles
formally the double-humped barrier encountered in fission.
In fission, the double-humped barrier is responsible for the
B vibrational transitions created by collective resonances in
the second minimum. Speculating on this similarity, it is also
possible to consider that the pure a-cluster states obtained
experimentally from non-natural transitions in Ref. [66] could
be due to collective vibrational resonances in the «-decay
second well of the potential. The Woods-Saxon potentials and
the corresponding nuclear shapes during the decay process
are displayed in Fig. 2. As mentioned, the same “universal”
Woods-Saxon parametrization was used for the parent nucleus,
the daughter one, and the « particle.

The single-particle diagrams as a function of the elongation
R are displayed in Fig. 3 for neutrons and in Fig. 4 for protons.
The ground state is located around at R,; ~ 0.8 fm. The
single-particle states of the 2!'Po nucleus, considered to be
spherical, are assigned on the left with their spectroscopic
notations. At an elongation R; of about 10 fm, a dinuclear
system consisting of the 2”’Pb spherical daughter nucleus
and the « particle is obtained. Accordingly, the single-particle
levels are rearranged as function of the internuclear distance
R, resulting in a superposition of the single-particle level
belonging to the o particle (marked with 1s;,, on the right
of the Figs. 3 and 4) with the single-particle level scheme
of the daughter. In the case of protons, the electrostatic
repulsion between the formed nuclei leads to a decrease of

PHYSICAL REVIEW C 96, 064607 (2017)

90 (@)R=1 fm [[(b)R=4 fm [ (c)R=7 fm[(d)R=10 fm[{e)R=13 fm

0.0 0 O 0

Lo oYY e T g
-10 0 10 -10 0 10 -10 O 10

z (fm)

L [
-10 0 10 -10 O 10

FIG. 2. The Woods-Saxon potential Vy, g for the a-particle emis-
sion as a function of the axial cylindrical coordinate z is displayed
for several internuclear distances R. The internuclear distances are
marked on the plots. The corresponding nuclear shapes are also
represented at the top of each panel.

the single-particle energies when the nuclei get away one
from another. The slope for the variation of the single-particle
energy of the « particle is more evident than those belonging
to the daughter nucleus. As displayed in Fig. 3 concerning the
neutron diagram, the single-particle level emerging from the

[1j15/2
111/2
" 299/2

N
>
\ 7

S =\_ZA_

\E/ | 36572 T
£
[}
w

r3p1/2
L 2t5/2

3p3//2
F1i13/2
=10 F2:7/2
F1hg/2

1s1/2

_25\\\\\\ /@\ Ll Ll |

-5 0 5 10 15 20 25

R (fm)

FIG. 3. Neutron single-particle energies as a function of the
distance between the centers of the fragments R. The single-
particle levels of the spherical parent nucleus are labeled with their
spectroscopic notations on the left side. After the scission produced
at R ~ 10 fm, the single-particle levels of the daughter nucleus are
superimposed on the single-particle level belonging to the « particle,
labeled on the right side with the spectroscopic notation 1s) ;.
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FIG. 4. Proton single-particle energies. The single-particle levels
of the parent are labeled on the left with their spectroscopic notations.
The single-particle level pertaining to the « particle is marked on the
right.

parent state 2ds, with the spin projection £ = 1/2 approaches
asymptotically to the orbital 1s;,,, centered in the potential
well of the o particle. That is, during the rearrangement of
the level diagram, one single-particle level is extracted from
the parent nucleus to constitute the o particle. Therefore,
the daughter final state & = 1/2 of the orbital 2ds,, should
be filled by superior levels belonging to the same Q2 = 1/2
subspace. That is, the superior 2 = 1/2 level should replace
in the daughter fragment the single-particle level extracted by
the « particle. Indeed, the single-particle level emerging from
the parent 2d3,, replaces the 2ds;, orbital of the daughter.
Successive replacements are produced up to a complete filling
of all orbitals of the daughter nucleus. The evolutions as
function of R of some selected neutron single-particle levels
around the Fermi energy, and hence participating to the mixing
configuration process, are presented in Fig. 5. All these levels
pertain to the subspace €2 = 1/2. Their variation illustrates
how the successive replacements are produced by filling free
orbitals of the daughter at scission. In panel (a) of Fig. 5, it can
be observed that the neutron located in the last occupied orbital
of the parent nucleus denoted 2g9/, will arrive adiabatically,
after the emission of the « particle, at the state 3p;,, of the
daughter. At the same time, the superior single-particle level
emerging from 1iy;,, reaches the state 2g9/,. In the panels
(d) and (g), in a similar manner the levels emerging from

PHYSICAL REVIEW C 96, 064607 (2017)

3pi12 and 2f5/, will be finally located in the states 2 f5/,
and 3pj3,, of the daughter nucleus, respectively. During the
rearrangements of these single-particle levels, some avoided
level crossing regions should be produced. Such regions could
be identified by evaluating the differences between the energies
of two adjacent single-particle levels Ae = €, ,, — €q.m—1.In
general, the avoided level crossing regions are characterized
by some minimal values of these differences. Such differences
are plotted in panels (b), (e), and (h), corresponding to the
levels selected on the left side of the figure. The possible
avoided level crossing regions are marked with arrows. In
order to confirm the fact that these minima identify avoided
level crossing regions without ambiguities, I calculated also
the total intrinsic spins jg ,, of the microscopic states (£2,m)
[from the equation jo ,,(jo.m +1) = (2,m | j2|12,m)]. The
variation of the total intrinsic spin is plotted in the panels (c),
(f), and (i). In a true avoided level crossing region, the levels
should exchange their characteristics. For example, in atomic
physics, a pure polar electron state can become homopolar
after the passage of an avoided crossing, as remarked by
Zener [21]. As indicated by the arrows, the avoided level
crossing regions are located at the same internuclear distances
as the intersections of the values of the total intrinsic spins
Jo.n in panels (f) and (i). No intersections can be noticed in
panel (c), therefore one concludes that the minima marked
with arrows in panel (b) are not consistent with the existence
of avoided level crossing regions. Moreover, the initial and
final values of the total intrinsic spin are consistent with the
spectroscopic notations used to label the initial and final states
of the single-particle levels. The formalism of for the ladder
operators in the framework of the Woods-Saxon two-center
shell model is given in Ref. [44].

The magnitude of the interaction in the avoided level
crossing regions is evaluated as described in Ref. [24]. By
using some interpolation procedures, the behavior of the
diabatic single-particle levels can be determined. The energy
differences between the adiabatic and the diabatic states offer
an estimation for the Landau-Zener interaction.

The unpaired nucleon, initially emerging from the state
2892 with = 1/2 will mainly traverse two avoided level
crossing regions: the region located at R &~ 8.77 fm between
the adiabatic levels emerging from 2g9,, and 3p;/, and
another one located at R &~ 9.97 fm between the adiabatic
levels emerging from 3p;/, and 2 f5,,. If the nucleon follows
diabatic states, it will skip from one single-particle level to
another in each avoided level crossing region. That is, for large
internuclear velocities R, the nucleon initially located in the
parent state 2g9,, should arrive with a very large probability
at the final daughter state 3p;,;. For small internuclear
velocities, the nucleon should follow adiabatically the same
single-particle level, to arrive at the final state 3p;,, of the
daughter nucleus. In this situation, one retrieves the ground
state configuration of the daughter nucleus. For intermediate
velocities, all the three final states 3py/, 2fs5,2, and 3p3)»
can be occupied with different probabilities by the unpaired
nucleon. These probabilities can be obtained by solving the
system of equations of motion (13).

I selected several single-particle levels around the Fermi
energy in order to investigate the mixing configuration
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FIG. 5. The variations of several single-particle levels €g, ,, located around the Fermi energy as a function of the internuclear distance R are
displayed in panels (a), (d), and (g). The spin projection of these levels is 2 = 1/2. In each panel two adjacent single-particle levels are selected
and are plotted with a thick line. They are labeled with their spectroscopic notations corresponding to the parent on the left and to the daughter
on the right. The differences in energies Ae = €q ,, — €q.»—1 are plotted on the panels (b), (e), and (h) for the two adjacent single-particle levels
selected in the panels (a), (d), and (g), respectively. Minimum values of these differences should locate the avoided crossing regions. These
minima are marked with arrows. The total intrinsic spins jq ,, of the single-particle levels selected in the panels (a), (d), and (g) are displayed
in the panels (c), (f), and (i), respectively. The total intrinsic spin corresponding to the superior single-particle level is plotted with a thick line.
The arrows indicate the locations of the avoided level crossing regions. The values of jg ,, intersect in the same regions in panels (f) and (i).

mechanism; they are tabulated in Table I. Excepting the
internuclear velocity, all the ingredients required to solve
Egs. (13) are available, being supplied by the variations
of the single-particle energies or calculated in terms of the
wave functions that result form the Woods-Saxon two-center
shell model. Only the internuclear velocity d R/d¢ is missing.
Different values of the internuclear velocities ranging from
10* to 10° fm/fs were tested to reproduce the fine structure
and to estimate the disintegration time.

In the external region, the two nuclei move away from
each other. The moment of inertia increases proportionally
with the square of the internuclear distance. Therefore the
Coriolis interaction becomes very small. In the external region
as well, the single-particle energies remain unchanged and
one no longer has avoided level crossing regions. From these
reasons, configuration changes are no longer produced.

The fine structure of 2''Po o decay is characterized by
98.9% transitions to the 3p;,, ground state of the daughter,
0.55% to the 2f5), first single-particle excited state, and
0.54% to the 3 p3» second single-particle excited state [67,68].
The ground state configuration of the parent nucleus 2!!Po is
[ (ho/2)*v(g9/2)" o 2+ [69]. So, the unpaired neutron emerges
from the level 2gg/, and the total spin of the system is
I =9/2h.

The system (13) is solved by starting from the 2! Po ground
state, located at R,; ~ 0.8 fm, and arriving at the scission
point Ry ~ 10 fm. For the seniority-1 configurations (£2,m)
listed in Table I, the initial occupation vg ,u/(q,m) and vacancy
U mo.m) amplitudes correspond to the respective solutions
of the BCS stationary equations. The initial amplitude is
c=1/23p, = 1 for the seniority-1 configuration in which the
2 = 1/2 blocked level emerges from the 2g9/, parent orbital
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and reaches the 3p;/, daughter orbital. This corresponds to
a transition from the ground state of the parent nucleus to
the ground state of the daughter one. The amplitudes cgq
for the remaining configurations are initially constrained to
be zero. The system (13) is solved for different values of
the internuclear velocities. I obtained the amplitudes cg ,, for
the realization of different (2,m) seniority-1 configurations
as functions of the elongation. The absolute square Pg ,, =
lca.m|? at the scission R, has a meaning similar to the
overlap probability for final excitations (€2,m). Equations
(13) conserve the total probability, as can be verified from

J
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Table I, with the sum over the considered single-particle levels
satisfying the condition ) Pq , = 1.

The partial half-life for one transition state pertaining to a
seniority-1 configuration (£2,m) is inversely proportional to its
barrier penetrability Psbz,m and to its probability of achieving

the configuration Pg ,, = |cq.m |2 at scission [70]:

TQ,m X (ng’mPQ,m)_l- (18)

The penetrability of the barrier is determined in the WKB
approximation as

2 [k
PY . =exp {_E/R V2BRVR) + (Equ(R) — Eijpsp.) + EEQ]dR}. (19)

As mentioned, the value of the total orbital momentum is / =
9/2 h, corresponding to the parent ground state. It determines
the centrifugal term EEQ given with the expression (17). V
is the deformation energy in the macroscopic-microscopic
formalism, displayed in Fig. 1. £ 3, , is the lowest transition
state of the decaying system, pertaining to the 2 = 1/2 Fermi
level emerging from the ground state of the parent 2g9,, and
reaching the ground state of the daughter 3p;,,. The other
transition states have barriers increased by their specialization
energies [71], given by the differences Eq ,,(R) — Evp3p -
Because the energies calculated with the expression (16)

TABLEI. Selected transition levels around the Fermi energy. The
initial and final orbitals and the projections of the intrinsic spin €2 are
presented in the first three columns, respectively. The single-particle
level 2 = 3/2 emerging from 1i;,,, reaches the 1ps/, state of the
a particle. The last column display the probabilities Pq ,, = |cq.m|*
of the configurations (£2,m) for an internuclear velocity v = 2 x
10* fm/fs at an elongation R = 10.5 fm.

Initial state Final state Q Pa m

liyi)n 289, 1/2 0.102

28912 3pip 1/2 9.553 x 1072
3pi2 2fsp 1/2 7.865 x 1072
2fsp 3pap 1/2 8.323 x 1072
1i13/2 2f7/2 1/2 1.898 x 1075
Liyiyn 1p3-a 3/2 0.207

289 289, 3/2 0.1621

2fsp 2 fsp 3/2 1.965 x 1073
3p3 3p3) 3/2 1.952 x 102
Liyzpn litz) 3/2 2.067 x 1073
Litip Litin 5/2 0.1468

2fsp 2fsp 5/2 5.353 x 1073
Liyi2 ity 7/2 9.661 x 1072
2892 2892 7/2 4.570 x 1072
Litzp Litsp 7/2 1.162 x 1078
Liyi2 ity 9/2 4.331 x 1072
2892 2892 9/2 4.841 x 1073
Litzp iz 9/2 3.396 x 10711
l1.11/2 1i11/2 11/2 3.977 x 1078
Litzp Litz) 11/2 4.701 x 1071

(

contain BCS parameters that are solutions of the system
(14), the effect of the dissipated energy is included in these
differences [28]. The dissipation means a transfer of energy
or angular momentum from collective degrees of freedom
into internal ones [72]. The integral is evaluated between the
scission point R, and the exit point of the barrier R,, which
depends on the transition state. B is the effective mass along the
superasymmetric fission trajectory, evaluated in the framework
of the cranking model.

The **’Pb daughter nucleus is considered spherical. So,
the single-particle states are degenerate in the intrinsic spin
projection 2. The partial half-life for only one excitation
m of the daughter nucleus considered spherical is given by
the contributions of all transition states of different spin
projections €2 that reach the same degenerate seniority-1
configuration. That is, the partial half-life for one final
excitation m in the spherical daughter nucleus is given by
the formula

1 1
— = E . 20
Tm Q TQ ,m ( )

For example, the partial half-life for the final daughter state
2g9/> can be calculated as

11 N 1
Tago Tip22ge,  T3p2,2g0

1 1 1
+ + + , 21
Tsp20g0n  T172.2g00  T92.289p

within the seniority-1 configurations selected in Table I. The
yield for the final configuration 2g9/> is Yag,, = T/ Tag,, X
100 in percent, where T is the total half-life. Now, the yields
of the fine structure can be obtained in the same way for
other excited states of the daughter nucleus. The partial half-
life for the ground state of the daughter is given only by the
transition to the 3 p /, state of the single-particle level with spin
projection 2 = 1/2 emerging from the parent orbital 2g9 5.
Several values for the internuclear velocity v = dR/dt
were tested in order to reproduce the fine structure parameters.
The value v = 2 x 10* fm/fs gives the best agreement between
the theory and the experiment. The probabilities of the
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TABLE II. Yields Y for the fine structure, in percent, for different values of the internuclear velocity v. The spectroscopic notations label

the final state of the daughter (or of the emitted particle).

v Ylin/z Y2g9/z Y3p|/z Y2f5/z Y3P3/2 Y1i|3/2 Y2f7/2 Ylpz/zd
(fm/fs) (%) (%) (%) (%) (%) (%) (%) (%)

0.9 x 10* 1.28 x 1072 1.21 x 1071 85.38 2.97 11.63 2.98 x 107 4.88 x 1071 1.5 x 1072
2 x 10* 141 x 1073 2.34 x 1079 99.10 0.26 0.62 8.25 x 10~ 7.62 x 10~'8 2.30 x 107
3 x 10* 9.85 x 1072 4.08 x 10~13 99.66 1.59 x 1072 0.32 3.69 x 10~ 3.47 x 10718 1.84 x 1072
4 x 10* 3.69 x 107 4.69 x 10716 97.89 1.20 0.89 234 x 1073 225 x 1071 6.30 x 1075

seniority-1 configurations are listed in Table I. The yields
obtained theoretically are presented in Table II, together with
the results obtained for other velocities. I obtained theoretically
99.1% transitions to the ground state, 0.26% transitions to
the first excited state, and 0.62% transitions to the second
excited state. It is interesting to note that the theory also
predicts the emission of "He with a very small probability.
The agreement between the experimental data and the theory
is very good, keeping in mind that the parameters of the
model are not adjusted at all. The Q value is obtained within
the macroscopic-microscopic model and the single-particle
energies are given by the Woods-Saxon two-center shell model
alone. The time to penetrate the barrier is about 1.7 x 10713 s,
leading to a very large disintegration time.

In fission, the scission time is still a subject of debate.
For example, as discussed in Ref. [44], some Hartree-Fock
calculations predict mean velocities around the scission point
of the order of 1 x 10° fm/fs [33,73,74], while models that
take into consideration state dependent pairing interactions
gives values of the order of 6 x 10*—2 x 10° fm/fs [75].
A good agreement between the experimental value of the
spontaneous fission half-life and the theory was obtained for
a mean velocity 1 x 10° in Ref. [44]. A similar situation can
be encountered in the case of the w-decay process. The time
scale predictions for the « tunneling are model dependent. For
example, in Ref. [76] it was calculated that the time spent by
the nuclear system before entering the barrier and the half-life
of the o decay are of the same order of magnitude. That is,
very slow processes can be considered. On the other hand,
the tunneling velocity deduced in Ref. [77] by solving the
time-dependent Schrodinger equation for metastable initial
states is of the order of 107 fm/fs.

IV. CONCLUSIONS

A new system of equations of motion is deduced from
the variational principle. These equations can be easily
particularized to the time-dependent pairing equations if the
configuration mixing mechanism is neglected. As noticed in
Ref. [23], these equations can be also particularized to the
Landau-Zener differential equations for pure single-particle
systems, when the pairing interaction and the Coriolis coupling
are neglected. When only the pairing interaction is neglected,
the system of equations presented in Ref. [14] is retrieved.
Therefore, this new system of equations represents a gener-
alization of the time-dependent pairing equations able to mix
seniority-1 configurations. The probability of obtaining a given
configuration is determined dynamically.

These equations are solved for a simple case, the « decay
of 2''Po, in order to explain the fine structure phenomenon. A
very good agreement between the theory and the experiment
was obtained. A mean value of the tunneling velocity of
aboutv = 2 x 10* fm/fs was predicted. The calculations show
that the emission of *He is also possible with a very small
probability.

Usually, the favored transitions in the « decay of odd nuclei
proceed to daughter states with the same quantum numbers as
the parent ones. In the case of the 2! Po « decay, the transitions
to the ground state are favored due to the Landau-Zener
promotion mechanism. Concerning the proton single-particle
diagram displayed on Fig. 4, it can be noticed that an avoided
level crossing region occurs at R ~ 8 fm and E = —6.5
MeV between two single-particle levels with the same value
@ = 1/2. These levels emerge from the parent orbitals 149/,
and 3sy/. The Landau-Zener promotion mechanism can also
be responsible for the enhanced branch 9/2~ — 1/27% in the
o decay of 2!'Bi.

In my treatment, the o decay is considered as a superasym-
metric fission process. That is, a fission path is calculated in a
multidimensional configuration space, paying attention to the
structure aspects of the potential energy and to the variations of
the inertia up to the scission configuration. The variation of the
nuclear structure is analyzed during the whole disintegration
process and dynamical single-particle effects are evidenced.
There are several models in the literature where it is claimed
that the o decay is treated like a fission process. In all these
approaches, the ground state of the parent is defined only from
an energy point of view, by reproducing only the experimental
Q value of the reaction, readjusted by an zero-point vibration
energy. No deformations are associated with this parent ground
state. The variation of the deformation energy is usually
fitted in a rudimentary way by using some interpolating
functions in order to reproduce the height of the Coulomb
barrier at scission. In some models, finite range nuclear terms
are also used to improve the energy around the scission
configuration, as in, for example, the proximity potential [78]
or the Yukawa plus exponential surface term [79]. Sometimes,
the liquid drop energy is used to evaluate the variation of the
deformation energy in the overlap region by involving very
simple nuclear shape parametrizations, but phenomenological
shell corrections are introduced to reproduce the Q value
[80]. These kinds of approaches consider that the effective
mass in the overlap region is equal to the reduced mass
where the two fragments are separated. The major part of
the penetrability calculated for « decay is obtained from the
external region, the overlap region being of little importance.
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For two separated bodies, only the Coulomb field and the
reduced mass intervene. Because the height of the external
barrier is fixed by the experimental Q value, in principle,
the systematic behavior of calculated half-lives should be in
agreement with the experimental ones. Indeed, many practical
formulas for o half-life systematics are based on very simple
formulas involving the Q value [81-83]. It is true that also
in fission it is possible to introduce some double humped
parametrized barriers in order to estimate the heights of the
barriers. But, due to the fact that the scission point is located
in the external region of the barrier, it is not possible to relate
this barrier to the Q-value to estimate the half-life of the
process. So, in fission treatments the variations of the energy
and of the mass in the overlap regions are of crucial importance
and determine the spontaneous half-life. In a true fission-like

J
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model, the overlap region should be investigated carefully and
its properties should be calculated. In my dynamical treatment
in the framework of the superasymmetric fission model, one
takes into account the properties of the parent ground state and
the variation of the deformation energy (including corrections
due to the structure) and of the inertia along the fission
path. So, my treatment for o decay is really a fission-like
one.
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APPENDIX

Equations (14) can be rewritten in terms of single-particle densities po m,m) = V@, m@,m") |2 and pairing moment components

KQ m(,m") = UQ m(Q ,m")VQ,m(Q,m’) a8

P _ * *
ihpQ m m) = KSZ,m(SZ’,m’)AQ,m - KQ,m(Q/,m’)AQ,m’

IKQ e my = 2pam@.m) — DAqm + 2kQ m my(€a,m — A) — 2G0Q @ ,m)KQ.m(',m")-

(AD)

Similarly, Egs. (13) can be rewritten in terms of the probabilities Pg ,, = |cq.m | of the configurations (£2,m) and the mixing
moment components between configurations Sq myq/.m) = cQ,mcE,’m,. These equations are

ihPQ,m = ﬁ

m'

y k@ m@+1,m) % [KQ1m@.m?
PQmQ+1,m")  PQ+1,m(Q,m)

*
T KQ m(@+1,m) Kt 1,m(Q,m)

ﬁ2
{Z[Sm.,m)(ml,m’) = S tmyamlld — DU +Q+ D]

PQ,m(Q+1,m")

PQ+1,m'(2,m)
K@ m@+1,m)|? 1K@+t m@.m

x Q4+ 1m'|j |12,m)Tasim.om + Z[S(Q,m)(ﬂfl,m’) — S taamlld + U — 2+ D]
m/

o k@ m@—1.m) 1% [K@—1.m@.m|?
PQ.mQ—1m")  PQ—1,m'(Q,m)

n
X(Q — 1,m’|j+|Q,m>TQ_1’m/’Q’m} + Z hQ,m’,m[S(Q,m)(Q,m’) - S(Q,m/)(Q,m)]’

Q.m'
and

hZ

*
+ KQ,m(Qfl,m’)Kﬂfl,m’(Q,m)\/

PQ.m(Q—1,m’)

PQ—1,m'(2,m)
K@ m@—1.m)? [Ka—1m/@.m |*

(A2)

y 1
RS myc1m) = S(n,mxszl,ml){ﬁ(gz - Q)+ _5(|A91,m1 * - |A9,m|2) + (€q,m — €am —2%)

2 2
+ G( Z O m/(@y,my) Z pQ’,m’(Q,m))

(', m")#(Qy,m1)

0%
_ Z Re |:A2<21,m1 ( Q,m'(Q1,my)

K*
(.2 my) Q' m'(2,m)

LD

02

* Q' m'(2,m)
Re [ Ag PR
(@ mAHQ.m) Q' (S2,m)

(8, m")FA(82,m)

- KQ’,m’(Ql,ml)>j|
- KQ’.m’(Q,m)>:|}
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