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Microscopic approach based on a multiscale algebraic version
of the resonating group model for radiative capture reactions
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A microscopic approach to description of radiative capture reactions based on a multiscale algebraic version of
the resonating group model is developed. The main idea of the approach is to expand wave functions of discrete
spectrum and continuum for a nuclear system over different bases of the algebraic version of the resonating
group model. These bases differ from each other by values of oscillator radius playing a role of scale parameter.
This allows us in a unified way to calculate total and partial cross sections (astrophysical S factors) as well as
branching ratio for the radiative capture reaction, to describe phase shifts for the colliding nuclei in the initial
channel of the reaction, and at the same time to reproduce breakup thresholds of the final nucleus. The approach is
applied to the theoretical study of the mirror 3H(α,γ )7Li and 3He(α,γ )7Be reactions, which are of great interest to
nuclear astrophysics. The calculated results are compared with existing experimental data and with our previous
calculations in the framework of the single-scale algebraic version of the resonating group model.
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I. INTRODUCTION

Radiative capture reactions are known as one of the
major classes of fusion processes and are of great interest
to nuclear astrophysics, particularly, in studies of kinetic
processes inside stars, including the Sun, and stellar and
primordial nucleosynthesises. As a rule, their cross sections
are not available for reliable experimental measurements at
low astrophysically relevant energies (“Gamow window”)
due to strong Coulomb repulsion. The mirror 3H(α,γ )7Li
and 3He(α,γ )7Be reactions are important examples of the
radiative capture [1–10]. The cross sections of these reactions
in the low-energy range are needed to solve a number of
problems connected with big-bang nucleosynthesis [1–6] (see
Fig. 1). Moreover, the latter reaction plays an important role
in solar core investigations [4–10] (see Fig. 2). Nevertheless,
the cross sections for both the reactions at very low energies
are still inaccessible for experiments. In the current situation,
theoretical calculations based on microscopic approaches are
supposed to be one of the most justified and promising lines
of attack of the low-energy cross section problem.

Experimental investigations of the mirror 3H(α,γ )7Li and
3He(α,γ )7Be reactions have a long story that goes back to the
end of the 1950s when the first experimental measurements of
their cross sections were performed [11]. After this work, a
number of experimental studies of the 3H(α,γ )7Li [12–17]
and 3He(α,γ )7Be [18–36] reactions were carried out for
the next decades. Nevertheless, “Gamow window” for the
3He(α,γ )7Be reaction is still uncovered. Furthermore, values
of the cross sections for both the reactions considered have
significant scatter at energies available for the measurements.

As to theoretical studies for these reactions, there are a
lot of works devoted to calculations of their cross sections or
astrophysical S factors [37–76]. Among these calculations,
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there are ones based either on the direct capture model (DCM)
[37–43] or the potential cluster model (PCM) [44–49], or the
PCM modifications [50–53]. These are two-body calculations,
which are not microscopic. Different semimicroscopic
calculations are presented in Refs. [54–57]. The PCM is
combined with the resonating group model (RGM) [77,78] in
Ref. [54]. The orthogonality condition model (OCM) [79,80]
and its algebraic version [81,82] are used in the works [55]
and [56,57] respectively. Fully microscopic calculations based
on the RGM are performed for example in Refs. [58–68]. In
Ref. [69], the astrophysical S factors are extracted studying
the electric dipole polarizability of the 7Li nucleus. There
are theoretical investigations combining the PCM for the
two-body description of continuum for the colliding nuclei
either with the variational Monte Carlo method (VMC) [70,71]
or with the no-core shell model (NCSM) [72,73] for an ab
initio description of discrete spectrum for the formed nuclei.
In work [74], ab initio calculation was done in the framework
of the fermionic molecular dynamics (FMD). Study [75,76]
is based on solving the coupled Faddeev equations (FEs). It
should be noted that the results from the theoretical works
differ from each other. Moreover, there is no a microscopic
calculation describing successfully both the normalization and
the energy dependence of the modern cross section data on the
3He(α,γ )7Be reaction [26–36] and of the most reliable cross
section data on the 3H(α,γ )7Li reaction [16] simultaneously.
It means that questions concerning energy behavior of the
cross sections for these reactions are still open.

In our previous works [83–87,56,57], a microscopic ap-
proach based on the single-scale algebraic version of the RGM
(AVRGM) (the so-called conventional AVRGM approach)
for describing the radiative capture reactions was proposed
and implemented to calculate the energy dependences of the
cross sections for the discussed reactions. In Ref. [88], the
AVRGM was also utilized to treat these reactions but only at
zero-point energy without a calculation of the cross section
energy dependences.
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FIG. 1. The basic reactions of big-bang nucleosynthesis.

It should be mentioned that the AVRGM was first proposed
by Filippov [89,90]. It is a special mathematical realization of
the RGM suitable for calculations and having evident numer-
ical advantages compared to the original RGM. Initially, the
AVRGM was successfully applied to study nuclear processes

in the binary collisions [91–97]. Later on, it allowed one to
combine dynamics of cluster and collective degrees of freedom
and to describe breakups of giant resonances in light nuclei
[93,98]. This model was also used to consider three-cluster
configurations [99–104] essential for many reactions, which

FIG. 2. The pp chain of the hydrogen burning in stars.
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are of interest to nuclear astrophysics, and, recently, to study
two-cluster systems dynamics in phase space [105].

In the present work, a microscopic approach based on
the multiscale AVRGM (the so-called generalized AVRGM
approach) to describe the radiative capture reactions is devel-
oped. An important feature of this microscopic approach is the
capability of reproducing the final nucleus breakup thresholds
into the initial colliding nuclei. The multiscale AVRGM
approach is founded theoretically better than the single-scale
one proposed previously. The former also makes it possible
to describe a wider set of experimental data on the radiative
capture reactions in a unified way. All these advantages
enhance the predictive power of the novel approach and
increase the reliability of the obtained theoretical results. The
approach is applied to study the 3H(α,γ )7Li and 3He(α,γ )7Be
reactions at low energies.

It should be emphasized that one of the most important
aims of modern nuclear theory is to build ab initio microscopic
approaches. It is supposed that these approaches must describe
a dynamics of all nucleons constituting a nuclear system, take
into account the Pauli exclusion principle completely, treat
the center-of-mass motion rigorously, and finally use real-
istic microscopic nuclear potentials. From the mathematical
viewpoint, it means that the wave functions must depend
on space and spin-isospin coordinates of all the nucleons of
the system, be fully antisymmetrized for permutations of all
pairs of the nucleons, and be translationally invariant. At the
present moment, such approaches are continuously developed
to describe nuclear structure and scattering (see Refs. [73,106]
and references therein). Unfortunately, their computational
complexities require supercomputing and generalization to
reactions meets principal difficulties. For these reasons, the
ab initio NCSM was combined with the RGM oriented to
describing nuclear reactions, including ones with sufficiently
heavy nuclei. This approach, named the ab initio NCSM/RGM,
was proposed in works [107,108]. The different applications of
the approach and its improvements can be found in Refs. [109–
115]. That is why the multiscale AVRGM approach reviewed
in the present work is of additional interest to modern nuclear
theory and can be useful for calculations in the general case.

II. BASIC POINTS OF AVRGM

An effective tool for many nuclear problems is an expansion

�(q) =
∑
νlm

Cνlmfνlm(q) (1)

of a wave function over the basis of the eigenfunctions of a
three-dimensional harmonic oscillator,

fνlm(q) = (−1)(ν−l)/2

√
2Г[(ν − l + 2)/2]

r3
0Г[(ν + l + 3)/2]

(q/r0)l

×L
(l+1/2)
(ν−l)/2

(
q2

/
r2

0

)
exp

(−q2/2 r2
0

)
Ylm(nq), (2)

where Г, L(β)
n , and Ylm are the gamma function, the generalized

Laguerre polynomial, and the spherical harmonic respectively;
ν is the number of oscillator quanta; l and m are the orbital
angular momentum and its projection respectively; r0 is the

oscillator radius; q is the spatial coordinates. The convergence
of the expansion (1) for square-integrable functions is clear.
The convergence properties of this expansion for functions,
which do not belong to the space of the square-integrable ones,
are not evident. Nevertheless, it was rather successfully applied
to solve the Schrödinger equation in continuum. For the first
time, such an approach, named the J -matrix method, was
proposed in Ref. [116]. Later, a similar approach gave rise to
the AVRGM [89], which was applied to consider multinucleon
systems and to avoid a difficult numerical procedure for
the solution of the integrodifferential RGM equations in
coordinate representation. In the following works [117,118],
the methods based on the expansions over the oscillator basis
(2) were further developed. A comprehensive investigation
of the convergence properties was undertaken in Ref. [119]
where the asymptotic form of the expansion coefficients was
established and the pointwise convergence of the expansions
of the continuous spectrum wave functions was proved. This
provided a true mathematical base for applications of the
expansions in the series of the oscillator functions (2) in the
continuous spectrum problem.

The basic idea of the AVRGM is to seek for the wave
function of the relative motion of clusters (nuclei) in the form
of the expansion (1). This leads to the expansion

� =
∞∑

J=J0

J∑
M=−J

s1+s2∑
s=|s1−s2|

J+s∑
l=|J−s|

∞∑
ν=ν0

CJπ Mlsν �Jπ Mlsν (3)

of the total many-nucleon wave function of the two-cluster
system over the so-called AVRGM basis:

�Jπ Mlsν = NJπ lsν Â
{ ∑

m+σ=M

CJM
lm sσ

[
φ(1)

s1
φ(2)

s2

]
sσ

fνlm(q)

}
.

(4)

Here NJπ lsν is the normalization; Â is the antisymmetrization
operator; φ(1)

s1
and φ(2)

s2
are intrinsic wave functions of the

clusters with the spins s1 and s2 coupled to the channel spin s
with the projection σ ; J and M are the total angular momentum
and its projection respectively; π is the parity of the system;
CJM

lm sσ is the Clebsch-Gordan coefficient; ν0 is the minimum
number of oscillator quanta allowed by the Pauli exclusion
principle; CJπ Mlsν are unknown expansion coefficients; q is
the Jacobi vector proportional to the relative distance between
the cluster centers of mass:

q =
√

A1A2

A1 + A2

(
1

A1

A1∑
i=1

ri − 1

A2

A1+A2∑
i=A1+1

ri

)
, (5)

ri is the radius vector of ith nucleon, A1 and A2 are the mass
numbers of the clusters. The intrinsic wave functions of the
clusters are usually chosen in the form of the translationally
invariant oscillator shell model wave functions for the lowest
states compatible with the Pauli exclusion principle. Here we
follow this choice.

The oscillator radius in the intrinsic wave functions and
in the oscillator functions (2) is supposed to be the same.
The corresponding choice of a value of this parameter partly
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allows us to compensate for an inaccuracy of the approximate
description of the internal cluster states. The main idea of the
multiscale AVRGM is to use different values of the oscillator
radius in the AVRGM basis for the expansions of the wave
functions for bound states and continuum. Evidently, it is
more natural for the wave functions of the different types. By
this way, the mutual cluster influence resulting in monopole
cluster deformations in the bound states can be taken to some
extent into account. It should be emphasized that one of the

principal advantages of the use of the different oscillator radii
is an opportunity to adjust the breakup thresholds to their
experimental values for the nuclei formed in the radiative
capture reactions. This is an important feature, for example,
because the corresponding breakup thresholds directly enter
into the expression for the radiative capture cross section [see
Eq. (24) in Sec. IV].

The expansion coefficients over the AVRGM basis (4) obey
an infinite set of linear algebraic equations [89,91]

⎧⎨
⎩

s1+s2∑
s=|s1−s2|

J+s∑
l=|J−s|

∞∑
ν=ν0

(〈JπMl̃s̃ν̃|H |JπMlsν〉 − E δs̃sδl̃lδν̃ν

)
CJπ Mlsν = 0,

s̃ = |s1 − s2|, . . . ,s1 + s2, l̃ = |J − s̃|, . . . ,J + s̃, ν̃ = ν0,ν0 + 2, . . . ,

(6)

where H and E are the Hamiltonian and the total energy of the system respectively; δij is the Kronecker symbol. Equations (6)
follow from the multiparticle Schrödinger equation after substituting the expansion (3) in it and projecting onto the corresponding
basis functions (4).

For the bound states, the expansions over the AVRGM basis (4) can be truncated at a sufficiently large value ν = νmax, which
depends on a desired accuracy. Thus, the problem reduces to a finite set of homogeneous algebraic equations⎧⎨

⎩
s1+s2∑

s=|s1−s2|

J+s∑
l=|J−s|

νmax∑
ν=ν0

(〈JπMl̃s̃ν̃|H |JπMlsν〉 − E δs̃sδl̃lδν̃ν

)
C

(D)
Jπ Mlsν = 0,

s̃ = |s1 − s2|, . . . ,s1 + s2, l̃ = |J − s̃|, . . . ,J + s̃, ν̃ = ν0,ν0 + 2, . . . ,νmax,

(7)

and to a diagonalization of the Hamiltonian matrix in a truncated AVRGM basis. The negative sign of the difference between
some eigenvalue and the sum of the intrinsic energies of the clusters calculated with the intrinsic cluster functions involved in
Eq. (4) indicates a bound state.

The case of the continuous spectrum is somewhat more complicated. The expansion coefficients decrease rather slowly and
the corresponding expansion terms cannot be neglected as in the case of the bound states. Moreover, such neglect is principally
impossible due to the significant distortion of the nature of the continuous spectrum wave functions. An accurate approach in
this case implies a replacement of the expansion coefficients by their asymptotic values [90,119]:

C
(as)
Jπ Mlsν = δlleδsseC

(−)
lν − SJπ

ls, lese
C

(+)
lν , (8)

C
(±)
lν =

√
2πm(2le + 1)

h̄k3q0
il+1r0

[
Gl(η,kq0) ± iFl(η,kq0)

]
exp(∓iσl), (9)

starting from a sufficiently large value ν = νas. Here le and se relate to the entrance channel; SJπ

ls, lese
is the element of the scattering

matrix; Fl and Gl are the regular and irregular Coulomb functions respectively; η is the Coulomb parameter; σl is the Coulomb
phase shift; q0 = r0

√
2ν + 3 is the classical turning point for the oscillator; k = √

2mEc.m./h̄ is the wave number; m is the nucleon
mass; Ec.m. is the relative motion energy of the clusters in the center-of-mass system; h̄ is the Planck constant. Expression (8)
allows us to take into account the boundary condition in the oscillator representation for the continuum. It corresponds to the
superposition of the incoming and outgoing Coulomb-distorted spherical waves in coordinate representation at large distances.
It should be noted that a more precise expression for the asymptotic expansion coefficients can be found in Ref. [119]. So, in
contrast to the previous case of the bound states, an inhomogeneity occurs in the equations:⎧⎨

⎩
s1+s2∑

s=|s1−s2|

J+s∑
l=|J−s|

νas−2∑
ν=ν0

(〈JπMl̃s̃ν̃|H |JπMlsν〉 − E δs̃sδl̃lδν̃ν

)
C

(C)
Jπ Mlsν = FJπ Ml̃s̃ν̃ ,

s̃ = |s1 − s2|, . . . ,s1 + s2, l̃ = |J − s̃|, . . . ,J + s̃, ν̃ = ν0,ν0 + 2,...,νas,

(10)

FJπ Ml̃s̃ν̃ = −
s1+s2∑

s=|s1−s2|

J+s∑
l=|J−s|

ν ′
max∑

ν=νas

〈JπMl̃s̃ν̃|H |JπMlsν〉C (as)
Jπ Mlsν . (11)

Formally, the infinite sum is truncated in Eq. (11) at some upper limit ν = ν ′
max. This follows from the fact that the matrix

elements entering into Eq. (11) decrease significantly for ν → ∞ [91] and the contribution of the corresponding terms is
negligible. The elements of the scattering matrix and the expansion coefficients can be determined from Eqs. (8)–(11) by the
usual way (see, for example, Refs. [89,90,97]).
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Thus, the general scheme of the AVRGM has been fully
described in this section. It is worthwhile to mention that
the most complicated task for the AVRGM realization is
to calculate the Hamiltonian matrix elements. The main
complexity originates from the antisymmetrization of the total
wave function with respect to every pair permutation of the
nucleons. This leads to the great number of terms in bra and
ket vectors of the matrix elements.

III. MATRIX ELEMENTS CALCULATION.
THE GENERATING FUNCTIONS METHOD

A set of the Jacobi coordinates has a significantly more
complicated transformation law under permutations of the
nucleons than a set of the single-particle ones. For this
reason, the latter is more preferable in the calculations of the
matrix elements. To pass from the former set to the latter
one, it is worthwhile to introduce into the functions (4) the
additional factor representing the wave function of the total
center-of-mass motion in the form of zero-point oscillations,

F000 = exp

[
−A

2

(
rc.m.

r0

)2
]
, (12)

where A is the mass number of the nuclear system and
rc.m. is the center-of-mass radius vector. So, it is the first
simplification in the calculations of the matrix elements.
Dependence on the center-of-mass motion arises in the matrix
elements of a transnationally invariant operator in the form of
the common multiplier 〈F000 |F000〉, which can be extracted
easily from the final results.

The further improvement of the calculations can be pro-
vided by the generating functions method [89,91–93]. The
main idea of the method is to utilize the generating function

exp
(−q2

/
2r2

0 + qR/r0 − R2/4
)

= ∑
νlm

Bνlfνlm(q)
Rν

ν!
Y ∗

lm(nR), (13)

Bνl = (πr0)3/2ν!

2ν−1/2
√
Г[(ν − l + 2)/2]Г[(ν + l + 3)/2]

, (14)

for the oscillator functions (2), where R is the generating
parameter. Replacing fνlm in Eq. (4) by the left-hand side
of the relation (13), one can obtain the generating function for
the AVRGM basis. Then, it is desirable to introduce instead of

Eq. (12) to some extent a more complicated function:

F (rc.m.) = exp

[
−A

2

(
rc.m.

r0

)2

−
√

A2A

A1

Rrc.m.

r0
− A2

4A1
R2

]
.

(15)

The choice (15) has an advantage: it leads to the calculations
with antisymmetrized many-particle functions, which can be
expressed in the form of Slater determinants composed of
single-particle states:

|i〉 ≡ gi(ri)|ξi〉, (16)

where i is the number of a nucleon; |ξi〉 is the spin-isospin
function (|↑ p〉, |↓ p〉, |↑ n〉, |↓ n〉) of ith nucleon; gi is the
coordinate function having either the form

exp

[
−1

2

(
ri

r0

)2
]

(17)

for the nucleons of the first cluster or the form

exp

[
−1

2

(
ri

r0

)2

+ riR̃
r0

− 1

4
R̃2

]
(18)

for the nucleons of the second one. Here the clusters are
assumed to be s clusters and the scaled generating parameter

R̃ = −
√

A

A1A2
R (19)

is introduced (in the following, we omit the tilde sign for a
simplification in the notation of the generating parameter).
The coordinate dependences of gi are rather convenient for
analytical calculations.

The general properties of determinant allow us to orthog-
onalize the single-particle states (16) from the bra and ket
vectors, which are the Slater determinants, and to reduce
significantly difficulties in the calculations of the matrix
elements of the translationally invariant operator

V =
A∑

i>j=1

Vij (20)

being the sum of the pair operators Vij . The calculated
matrix elements should be divided by the factor 〈F |F 〉 to
remove the admixture of the center-of-mass motion. So, the
generating matrix elements 〈Q|V |R〉 for the operator V have
been obtained. All its matrix elements between the AVRGM
basis functions (4) can be derived from 〈Q|V |R〉 in accordance
with Eq. (13):

〈
J

πf

f Mf lf sf νf

∣∣V ∣∣Jπi

i Milisiνi

〉 = 1

κνf lf sf
κνi li si

νf !νi!

∂νf

∂Qνf

∂νi

∂Rνi
Ii→f (Q,R)

∣∣∣∣
Q=R=0

, (21)

Ii→f (Q,R) =
∑

mf +σf =Mf ,

mi+σi=Mi

C
Jf Mf

lf mf sf σf
C

JiMi

limi siσi

∫∫
Y ∗

lf mf
(nQ)〈Q,sf σf |V |R,siσi〉Ylimi

(nR) dnQdnR, (22)

κ2
νls = 2π

(ν!)2

∂ν

∂Qν

∂ν

∂Rν

∫ 1

−1
〈Q,sσ |R,sσ 〉Pl(t) dt

∣∣∣∣
Q=R=0

, (23)
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FIG. 3. Scheme of the mirror 3H(α,γ )7Li and 3He(α,γ )7Be
reactions at low energies.

where Pl(t) is the Legendre polynomial and t = cos θQR, θQR
is the angle between the vectors Q and R. The relation (23)
is a consequence of the AVRGM basis orthonormality. An
additional advantage of the generating functions method is
that it allows us to apply the recurrence technique [91], which
is very effective for the computations of the matrix elements
in the AVRGM basis.

The generating matrix elements and expressions, which are
needed to calculate the matrix elements of the Hamiltonians
for the systems considered in this work, are presented in the
Appendix.

IV. PARTIAL CROSS SECTIONS FOR THE MIRROR
3H(α,γ )7Li AND 3He(α,γ )7Be REACTIONS WITHIN

THE MULTISCALE AVRGM APPROACH

To demonstrate capabilities of the developed approach, the
mirror 3H(α,γ )7Li and 3He(α,γ )7Be reactions were adopted
for consideration. As it is well known [63,70], electric dipole
transitions (E1 transitions) of the 4He + 3H and 4He + 3He
systems from their continuum to the ground and first excited
states of the 7Li and 7Be nuclei respectively play the dom-
inating role in those reactions at low energies (see Fig. 3).
Their total cross sections can be represented as the sums
of the partial ones characterizing the contributions of the
corresponding partial waves in the expansion of the initial
state. The colliding nuclei are supposed to be unpolarized
and polarization of the emitted photons and the formed nuclei

is not considered. Therefore, averaging over spin projections
of the projectile and the target and summation over the spin
projections of the final products should be performed. As a
result, in the long-wavelength limit, the partial cross sections
for the considered reactions within the AVRGM approach take
the form [84–86]

σi→f (Ec.m.) = 8π

9h̄(2li + 1)

(
Eγ

h̄c

)3
∣∣∣∣∣∣
∑
νi ,νf

C
(D)

J
πf
f lf sνf

× 〈
J

πf

f lf sνf

∥∥ME
1

∥∥Jπi

i lisνi

〉
C

(C)
J

πi
i li sνi

∣∣∣∣∣∣
2

, (24)

where C
(D)
f and C

(C)
i are the expansion coefficients of the

wave functions for the final and initial states of the nuclear
system over the AVRGM bases with the different values of
the oscillator radius [these coefficients are solutions of the
AVRGM equations sets (7) and (10) respectively]; c is the
light velocity; Eγ = Ec.m. + εn is the energy of the emitted
photon, εn is the breakup threshold for nth bound state of
the 7Li (7Be) nucleus into the corresponding colliding nuclei
4He + 3H (4He + 3He); ME

1μ is the electric dipole operator
defined by

ME
1μ = e

A∑
i=1

gl(i)|ri − rc.m.|Y1μ

(
nri−rc.m.

)
,

(25)

gl(i) = 1

2
− t3,i ,

in which e is the elementary charge (e > 0) and t3,i is the
isospin projection operator for ith nucleon. The channel spin
s is equal to 1/2 in the initial and final states (the clusters
are considered to be unexcited). The partial wave functions of
the initial state are assumed to be normalized to the unit flux
density of the incident plane wave. In Eq. (24), the quantum
numbers (Ji,li) are equal to (1/2, 0), (3/2, 2), and (5/2, 2)
for the E1 captures proceeding to the ground state of the 7Li
(7Be) nucleus with the quantum numbers (Jf ,lf ) = (3/2,1).
In turn, (Ji,li) are equal to (1/2, 0) and (3/2, 2) for the E1
captures to the first excited state of the 7Li (7Be) nucleus with
(Jf ,lf ) = (1/2,1).

The matrix elements for the operator ME
1μ depend on the

magnetic quantum numbers according to the Wigner-Eckart
theorem. This allowed us to perform summations in Eq. (24)
over these numbers analytically and to express the partial cross
section via the reduced matrix elements of the operator (25).
In the framework of the multiscale AVRGM approach, these
reduced matrix elements are given by [120]

〈
J

πf

f lf sνf

∥∥ME
1

∥∥Jπi

i lisνi

〉 = ζ (−1)Ji+lf +s+1 e

14

(
2r01r02

r2
01 + r2

02

)10
√

3(2li + 1)(2Ji + 1)(2Jf + 1)

π

{
li s Ji

Jf 1 lf

}

× C
lf 0
li0 10

κνf lf sκνi li sνf !νi!

(
r01νf

∂νf −1

∂Qνf −1

∂νi

∂Rνi
Uli (Q,R) + r02νi

∂νf

∂Qνf

∂νi−1

∂Rνi−1
Ulf (Q,R)

)∣∣∣∣
Q=R=0

.(26)

Here

ζ =
{−1 for 4He + 3H system,

1 for 4He + 3He system,
(27)
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Ul(Q,R) = 2π

∫ 1

−1
exp

(
3
(
r2

01 − r2
02

)
(Q2 − R2) − 9r01r02QRt

7
(
r2

01 + r2
02

)
)[

exp

(
r01r02

r2
01 + r2

02

QRt

)
− 1

]3

Pl(t) dt, (28)

κ2
νls = 2π

ν!

[(
6

7

)ν

− 3

(
5

14

)ν

+ 3

(
−1

7

)ν

−
(

− 9

14

)ν]
ενl, (29)

ενl =
⎧⎨
⎩

2 l+1ν!((ν + l)/2)!

(ν + l + 1)!((ν − l)/2)!
, l � ν, l + ν − even,

0 , in other cases,
(30)

and
{a b c

d e f

}
is the 6j symbol. The oscillator radius used in the

expansions of the wave functions over the AVRGM basis (4)
has been denoted as r01 for the continuum of the 4He + 3H and
4He + 3He systems and as r02 for the bound states of the 7Li
and 7Be nuclei. It should be noted that matrix elements for the
electric quadrupole (E2) and magnetic dipole (M1) operators
can be calculated using results of the work [120].

At low sub-barrier energies, a cross section of a reaction
induced by charged particles rapidly decreases with the
relative motion energy Ec.m.. This strong dependence is
predominantly caused by penetrability of the Coulomb barrier.
The astrophysical S factor has smoother energy behavior than
the cross section because the penetrability of the Coulomb
barrier is explicitly extracted from it:

S(Ec.m.) = Ec.m. exp
(√

EG/Ec.m.

)
σ (Ec.m.), (31)

where

EG = 2mc2

(
πe2Z1Z2

h̄c

)2
A1A2

A1 + A2
(32)

is the Gamow energy for the colliding particles (nuclei) with
the charge numbers Z1 and Z2. For example, the Gamow
energy EG is equal to 6.76 and 27.04 MeV for the considered
4He + 3H and 4He + 3He systems respectively.

V. RESULTS AND DISCUSSION

A. Binding energies and nuclear phase shifts
for the 4He + 3H and 4He + 3He systems

The oscillator radius r01 involved in the expansions of the
continuum wave functions of the 4He + 3H and 4He + 3He
systems over the AVRGM basis was fixed at a value 1.386 fm
to obtain α particle binding energy coinciding with its
experimental value 28.296 MeV [121] and at the same time to
reach triton and hellion binding energies, which are the closest
to their experimental values 8.482 and 7.718 MeV respectively
[121].

In order to describe nuclear interaction, the effective
modified Hasegawa-Nagata potential [122] has been used with
a single adjustable parameter—the intensity of the central
Majorana force gc. Energy dependences of s- and d-wave
nuclear phase shifts for the 4He + 3H and 4He + 3He systems
calculated by using that potential with the gc values equal
to 0.974, 0.977, and 0.980 are presented in Figs. 4 and
5 respectively. The curves for the s-wave phase shift δ1/2+

calculated at the adopted gc values differ only slightly from
each other. The difference between the curves for the d-wave

phase shift δ3/2+ is more minor. The similar situation is in the
case of the d-wave phase shift δ5/2+ . The phase shifts δ3/2+ and
δ5/2+ calculated at the same value of the gc parameter lie on top
of each other in the figures and are almost indistinguishable
from each other on the scale of the plots. Nevertheless, they
are not identical because of the noncentral components of
the nuclear potential [122]. Increasing the gc values leads to
decreasing the phase shift values. Only small variations of
this parameter are usually assumed. That is why the gc values
remain close to unity [94,96].

As to data on the nuclear phase shifts δ1/2+ , δ3/2+ , and
δ5/2+ extracted from the 4He + 3H [123,124] and 4He + 3He
[124–129] scattering experiments, they are characterized by
a large scatter of values (see Figs. 4 and 5). Nevertheless,
their energy dependences are described rather reasonably by
the obtained curves for both the 4He + 3H and 4He + 3He
systems simultaneously.

The nuclear phase shifts for the considered systems calcu-
lated with the parameter values r01 = 1.22 fm and gc = 1.035,
which were used in our single-scale AVRGM calculations

FIG. 4. Nuclear phase shifts for the 4He + 3H system. Dash-
dotted, solid, and dashed lines are the calculations with the gc values
equal to 0.974, 0.977, and 0.980 respectively (r01 = 1.386 fm). Dotted
line is the calculation with r01 = 1.22 fm and gc = 1.035. The lower
curves represent δ1/2+ . The upper ones assign to δ3/2+ . The δ5/2+

curves lie on top of δ3/2+ ones. Symbols are the data taken from
works [123,124].
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FIG. 5. Nuclear phase shifts for the 4He + 3He system. Lines: see
Fig. 4 caption. Different symbols: the data [124–129].

performed in the previous studies [56,57], are presented in
Figs. 4 and 5 by dotted lines. At relatively low energies,
these curves lie very close to the others and to the data but
they give a worse description of the data at higher energies
than the other curves. Moreover, the given r01 value does not
allow us to obtain cluster binding energies, including that for
α particle, consistent with the experimental values. All the
binding energies turn out to be underestimated [86].

B. The 3H(α,γ )7Li reaction: Total and partial astrophysical
S factors and branching ratio

Values of the oscillator radius r02 involved in the expansions
of the wave functions of the ground and first excited states of
the 7Li nucleus over the AVRGM basis are tuned to reproduce
the experimental values [130] for the breakup thresholds of the
ground ε

(α + t)
0 and first excited ε

(α + t)
1 states of the 7Li nucleus

into the initial 4He + 3H fragments:

ε
(α + t)
0 = 2.467 MeV, ε

(α + t)
1 = 1.989 MeV. (33)

The total astrophysical S factor for the 3H(α,γ )7Li reaction
calculated in the framework of the multiscale AVRGM ap-
proach, using the r01 value 1.386 fm and the different gc values
0.974, 0.977, and 0.980 adopted above in the calculations of
the nuclear phase shifts, is shown in Fig. 6. As it can be seen
in Fig. 6, the curve obtained for the gc value equal to 0.977
is in a perfect agreement with some of the latest data [16]
covering the widest energy range and having relatively small
errors compared to the other data. The values of the oscillator
radius r02, which correspond to the adopted optimal r01 and gc

values, are presented in the second row of Table I.
Astrophysical S0 and S1 factors for the capture to the ground

and first excited states of the 7Li nucleus, respectively, as
well as the partial astrophysical S factors calculated within
the multiscale AVRGM approach at the parameter values
r01 = 1.386 fm, gc = 0.977, and r02 from Table I are shown
in Fig. 7. Here it is a reasonable enough agreement between

FIG. 6. Total astrophysical S factor for the 3H(α,γ )7Li reaction.
Dash-dotted, solid, and dashed lines are the multiscale AVRGM
calculation with the gc values equal to 0.974, 0.977, and 0.980
respectively (r01 = 1.386 fm). Dotted line is the single-scale AVRGM
calculation with r0 = 1.22 fm and gc = 1.035. The experimental data
are taken from Refs. [11–17].

the obtained results for the astrophysical S0 and S1 factors
and the data extracted from direct measurements [12–14,16].
At lower energies, the E1 captures from the s waves play the
dominating role. At relatively higher energies, the E1 captures
from the d waves also turn out to be significant.

The calculations of the total astrophysical S factor and of the
astrophysical S0 and S1 factors for the 3H(α,γ )7Li reaction on
the basis of our single-scale AVRGM approach (r01 ≡ r02 ≡
r0 = 1.22 fm, gc = 1.035) [56,57] are respectively presented
in Figs. 6 and 7 by dotted lines. The obtained curve for the total
astrophysical S factor slightly overestimates the data [16] but,
at the same time, the astrophysical S0 and S1 factors describe
the data [16] quite accurately. There is a principal disadvantage
of this single-scale AVRGM calculation: the obtained 7Li
breakup thresholds are underestimated (ε(α + t)

0 = 1.672 MeV,
ε

(α + t)
1 = 1.546 MeV) in comparison with their experimental

values (33). It is also interesting to note that the multiscale
AVRGM approach provides smoother low-energy behavior of
the calculated astrophysical S0 and S1 factors in contrast to the
single-scale one.

For the sake of completeness, the branching ratio between
the radiative captures to the first excited and ground states

TABLE I. Values of the oscillator radius r02 (in fm) used in
calculations with r01 = 1.386 fm and gc = 0.977. The r02 values
reproducing ε0 and ε1 experimental values [see Eqs. (33) and (34)]
for the considered nuclei are denoted as r02,0 and r02,1 respectively.

Nucleus r02,0 r02,1

7Li 1.3030 1.2820
7Be 1.3068 1.4205
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FIG. 7. Partial astrophysical S factors for the 3H(α,γ )7Li re-
action. Solid lines are the multiscale AVRGM calculation of the
astrophysical S0 and S1 factors; dotted lines and symbols are the
same quantities calculated within the single-scale AVRGM approach
and extracted from experimental works [12–14,16] respectively.
Short-dashed and short-dotted lines are the multiscale AVRGM
calculation of the partial astrophysical S factors for capture to the
ground and first excited states of the final nucleus respectively.

of 7Li determined as R = σ1/σ0, where σ0 and σ1 are the
radiative capture cross sections related to the corresponding
astrophysical S0 and S1 factors by Eq. (31), is plotted in Fig. 8.
The result of the single-scale AVRGM calculation (dotted line,
r0 = 1.22 fm, gc = 1.035) [57] is seen to agree well with the
experimental data [16] while the multiscale one (solid line,
r01 = 1.386 fm, gc = 0.977, r02—see Table I) underestimates

FIG. 8. Branching ratio for the 3H(α,γ )7Li reaction. Solid and
dotted lines are the multiscale and single-scale AVRGM calculations
respectively. Symbols are the experimental data [12–14,16].

FIG. 9. Total astrophysical S factor for the 3He(α,γ )7Be reaction.
Lines: see Fig. 6 caption. Symbols: the data from “old” [11,18–21,23–
25] and modern [26–36] experimental works.

these data. Moreover, the former is almost energy independent,
but the latter demonstrates more evident energy dependence.
In fact, these interesting findings are a result of the energy
behavior of the astrophysical S0 and S1 factors.

C. The 3He(α,γ )7Be reaction: Total and partial astrophysical
S factors and branching ratio

Similarly to the mirror system considered above, values
of the oscillator radius r02 involved in the expansions of the
wave functions of the ground and first excited states of the
7Be nucleus over the AVRGM basis are chosen to reproduce

FIG. 10. Partial astrophysical S factors for the 3He(α,γ )7Be re-
action. Lines: see Fig. 7 caption. Symbols are the data extracted from
“old” [18–20,23,24] and modern [29,30,32,34] direct measurements.
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FIG. 11. Branching ratio for the 3He(α,γ )7Be reaction. Lines: see
Fig. 8 caption. Symbols: see Fig. 10 caption.

the experimental values [130] for the breakup thresholds of the
ground ε

(α + h)
0 and first excited ε

(α + h)
1 states of the 7Be nucleus

into the initial 4He + 3He fragments:

ε
(α + h)
0 = 1.586 MeV, ε

(α + h)
1 = 1.157 MeV. (34)

Theoretical curves for the 3He(α,γ )7Be total astrophysical
S factor calculated in the framework of the multiscale AVRGM

approach, using the fixed r01 and gc values, are depicted
in Fig. 9. The calculated total astrophysical S factor for
the 3He(α,γ )7Be reaction agrees with the existing modern
experimental data [26–36] in the best way at the same values
of the r01 and gc parameters as in the case of the mirror reaction
(r01 = 1.386 fm, gc = 0.977). The values of the oscillator
radius r02 for these optimal r01 and gc values are given in
the third row of Table I. The corresponding astrophysical S
factors for the capture to the ground and first excited states
of the 7Be nucleus, including the partial contributions of the
E1 captures from the s and d waves, are displayed in Fig. 10.
The calculated astrophysical S0 and S1 factors show a rather
reasonable agreement with the modern experimental data
from direct measurements [29,30,32,34]. One can conclude
analogously to the mirror 3H(α,γ )7Li reaction (see Fig. 7)
that the contributions of the E1 captures from the s waves to
the total astrophysical S factor for the 3He(α,γ )7Be reaction
turn out to be crucial at very low energies because of the
centrifugal barrier. However, the effect of the d-wave E1
captures increases at higher energies.

The results of the single-scale AVRGM calculation [56,57]
of the total astrophysical S factor and of the astrophysical
S0 and S1 factors for the 3He(α,γ )7Be reaction, using the
same parameter values as in the case of the mirror reaction,
are also presented in Figs. 9 and 10 respectively. These
astrophysical S factors give a good description of the modern
data. However, the breakup thresholds obtained in this calcu-
lation turn out to be underestimated (ε(α + h)

0 = 0.828 MeV,
ε

(α + h)
1 = 0.710 MeV) compared with their experimental

TABLE II. The 3H(α,γ )7Li zero-energy S-factor S(0) and S ′(0)/S(0) values.

Authors, reference Year Method S(0) (keV b) S ′(0)/S(0) (MeV−1)

Experiment
Holmgren, Johnston [11] 1959 direct measurement 0.051 −1.28
Griffiths et al. [12] 1961 direct measurement 0.064
Schröder et al. [14] 1987 direct measurement 0.14 ± 0.02
Brune et al. [16] 1994 direct measurement 0.1067 ± 0.0004

Theory
Williams, Koonin [40] 1981 DCM −2.034
Kajino [63] 1986 RGM 0.098 ± 0.006 −2.056 ± 0.123
Buck, Merchant [45] 1988 PCM 0.089 ± 0.030 −2.02
Kajino et al. [65] 1988 RGM 0.083 ÷ 0.15
Altmeyer et al. [66] 1988 RGM 0.112; 0.124
Kajino et al. [69] 1988 7Li polarizability study 0.097 ± 0.038
Chopovsky [88] 1989 AVRGM 0.154
Kajino et al. [41] 1989 DCM 0.11 ± 0.03
Mohr [42] 1993 DCM 0.100 −1.02
Csótó, Langanke [67] 2000 single-channel RGM 0.099 ÷ 0.131 −2.19 ÷−1.82

multichannel RGM 0.138 ÷ 0.184 −2.26 ÷−2.07
Nollett [70] 2001 VMC+PCM 0.095
Igamov, Yarmukhamedov [50] 2007 PCM modification 0.0974 −1.19
Mason et al. [53] 2009 PCM modification 0.13
Sadeghi [76] 2013 FEs solution 0.107; 0.112
Solovyev et al. [57] 2016 single-scale AVRGM 0.111 −1.188
Present paper 2017 multiscale AVRGM 0.092 −0.955
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TABLE III. Theoretical predictions for the 3He(α,γ )7Be zero-energy S-factor S(0) and S ′(0)/S(0) values.

Authors, reference Year Method S(0) (keV b) S ′(0)/S(0) (MeV−1)

Christy, Duck [37] 1961 DCM 1.24
Kim et al. [55] 1981 OCM 0.48 ± 0.01 −0.60
Liu et al. [58] 1981 RGM 0.45; 0.61
Williams, Koonin [40] 1981 DCM −0.575
Walliser et al. [59] 1983 RGM 0.698 −0.607
Walliser et al. [60] 1984 RGM 0.598 −0.720

0.621 −0.685
0.698 −0.607

Buck et al. [44] 1985 PCM 0.47 ± 0.02
Langanke [54] 1986 PCM+RGM 0.56
Kajino [63] 1986 RGM 0.50 ± 0.03 −0.548 ± 0.033
Mertelmeier, Hofmann [64] 1986 single-channel RGM 0.53

multichannel RGM 0.58
Buck, Merchant [45] 1988 PCM 0.51 ± 0.03 −0.53
Kajino et al. [65] 1988 RGM 0.36 ÷ 0.63
Kajino et al. [69] 1988 7Li polarizability study 0.49 ± 0.14
Chopovsky [88] 1989 AVRGM 0.690
Mohr [42] 1993 DCM 0.516 −0.711
Csótó, Langanke [67] 2000 single-channel RGM 0.52 ÷ 0.70 −0.53 ÷−0.50

multichannel RGM 0.83 ÷ 1.16 −0.70 ÷−0.57
Nollett [70] 2001 VMC+PCM 0.40
Arai et al. [68] 2002 single-channel RGM 0.52 −0.63

multichannel RGM 0.63 −0.57
Mason et al. [53] 2009 PCM modification 0.42
Mohr [43] 2009 DCM 0.497 ÷ 0.611 −0.791 ÷−0.536
Neff [74] 2011 FMD 0.593
Tursunmahatov, Yarmukhamedov [51] 2012 PCM modification 0.613+0.026

−0.063

Sadeghi [75] 2013 FEs solution 0.563; 0.581
Solovyev et al. [57] 2016 single-scale AVRGM 0.561 −0.524
Present paper 2017 multiscale AVRGM 0.502 −0.225

values (34). Analogously to the considered mirror reaction, the
astrophysical S0 and S1 factors within the multiscale AVRGM
approach demonstrate smoother behavior at very low energies
than those of the single-scale one.

The 3He(α,γ )7Be branching ratio calculated within the
single-scale [56,57] and multiscale AVRGM approaches is
shown in Fig. 11. Both the calculated branching ratios provide
relatively weak energy dependence, which agrees with the
modern data [29,30,32,34], but the former is closer to these
experimental results.

Thus, one can see that the well-founded multiscale AVRGM
approach reproduces to a greater or lesser extent the whole set
of the data on the considered dynamic quantities for the mirror
3H(α,γ )7Li and 3He(α,γ )7Be reactions and even very impor-
tant kinematical quantities—the breakup thresholds of the final
nuclei produced in both the reactions. Indeed, as it was shown,
the experimental data on the total astrophysical S factors for
the reactions and on the nuclear phase shifts in the initial
channels are simultaneously described well enough. At the
same time, the experimental values of the breakup thresholds
for 7Li and 7Be are reproduced. Concerning the 3H(α,γ )7Li
calculated astrophysical S0 and S1 factors, the former slightly

overestimates while the latter underestimates the data [16]. In
case of the mirror reaction, the situation looks opposite: the
calculated S0 factor underestimates whereas the calculated S1

factor slightly overestimates the modern data [29,30,32,34].
As a consequence, the 3H(α,γ )7Li calculated branching ratio
lies lower than the data [16] but the 3He(α,γ )7Be branching
ratio occurs higher than the modern data. Nevertheless, the
qualitative description of the branching ratios for both the
reactions looks rather reasonable. It should be emphasized
that the problems of such type often arise in the microscopic
studies based on the RGM (see, for example, [60,66–68]).
These problems also accompany the mixed approaches, which
combine either the VMC [70] or the NCSM [72] with the
PCM, and even the fully ab initio FMD approach [74].

In turn, the single-scale AVRGM approach describes well
both the absolute scale and the energy dependence of the
data on the astrophysical S0 and S1 factors as well as on the
branching ratios for both the considered reactions and this
description on the whole looks slightly better than that of
the multiscale one (see Figs. 7, 8, 10, and 11). However, the
breakup thresholds calculated within the single-scale AVRGM
approach underestimate the experimental values. Moreover,
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TABLE IV. The 3He(α,γ )7Be zero-energy S-factor S(0) and S ′(0)/S(0) values obtained by extrapolation of the experimental data.

Authors, reference Year Experimental method S(0) (keV b) S ′(0)/S(0) (MeV−1)

Holmgren, Johnston [11] 1959 direct measurement 1.20 −1.28
Parker, Kavanagh [18] 1963 direct measurement 0.47 ± 0.05 −0.596
Nagatani et al. [19] 1969 direct measurement 0.61 ± 0.07 −0.951
Kräwinkel et al. [20] 1982 direct measurement 0.30 ± 0.03
Robertson et al. [21] 1983 activation measurement 0.63 ± 0.04
Volk et al. [22] 1983 activation measurement 0.56 ± 0.03

0.38 ± 0.03
Osborne et al. [23] 1982, 1984 direct and activation measurements 0.53 ± 0.03
Alexander et al. [24] 1984 direct measurement 0.47 ± 0.04
Hilgemeier et al. [25] 1988 direct measurement 0.53 ± 0.03
Nara Singh et al. [26] 2004 activation measurement 0.53 ± 0.02
Bemmerer et al. [27] 2006 activation measurement 0.547 ± 0.017
Gyürky et al. [28] 2007 activation measurement 0.547 ± 0.017
Confortola et al. [29] 2007 direct and activation measurements 0.560 ± 0.017
Brown et al. [30] 2007 direct and activation measurements 0.595 ± 0.018
Costantini et al. [31] 2008 direct and activation measurements 0.567 ± 0.018
Di Leva et al. [32] 2009 recoil and activation measurements 0.590 ± 0.016
Kontos et al. [34] 2013 direct measurement 0.554 ± 0.020

this approach suffers some difficulties in the simultaneous
description of the normalization and the energy behavior of the
3He(α,γ )7Be total astrophysical S-factor modern data [26–36]
and of the 3H(α,γ )7Li total astrophysical S-factor most reliable
data [16] (see Figs. 6 and 9). In order to avoid these problems,
one has to use different sets of the parameter values in the
calculations [84–86].

D. 3H(α,γ )7Li and 3He(α,γ )7Be zero-energy astrophysical
S factors and their derivatives

In calculations of rates for reactions being of astrophysical
interest, it is very important to know their zero-energy
astrophysical S-factor values S(0). A summary of existing
results on the S(0) value as well as on ratio of zero-energy
derivative S ′(0) of the astrophysical S factor to the S(0) value
obtained by theoretical predictions and extrapolations of the
experimental data is provided in Table II for the 3H(α,γ )7Li
reaction and in Tables III and IV for the 3He(α,γ )7Be reaction.
Moreover, recommended values for these quantities taken from
the modern compilations [1,4,5,9,10] and evaluation [6] of

the modern data are summarized in Table V. As it can be
seen, Tables II–IV show a significant variation of the values
while Table V demonstrates an overlap of all the recommended
S(0) values for the respective reactions but a discrepancy of
the S ′(0)/S(0) values. A scatter of the theoretical predictions
could be caused by various reasons: using different nuclear po-
tentials, internal cluster wave functions, models with specific
parametrizations, and so on.

Our result for the S(0) and S ′(0)/S(0) values from the
single-scale and multiscale AVRGM approaches are given in
Tables II and III (the last two rows). As to the 3H(α,γ )7Li
and 3He(α,γ )7Be S(0) values from the multiscale AVRGM
approach, our result is close to a large number of the presented
values. In particular, the obtained S(0) values for both the
reactions are in good agreement with the RGM [63,65] and
PCM [45] predictions as well as with the result of work [69].
Moreover, the S(0) value for the 3H(α,γ )7Li reaction agree
well with the DCM prediction [41]. The S(0) value obtained
for the 3He(α,γ )7Be reaction is also in good correspondence
with the DCM prediction [43] and with the extrapolations of
the direct measurements [18,23–25]. It should be emphasized

TABLE V. Evaluated S(0) and S ′(0)/S(0) values for the 3H(α,γ )7Li and 3He(α,γ )7Be reactions from the modern analyses of the data.

Reaction, authors, reference Year S(0) (keV b) S ′(0)/S(0) (MeV−1)

3H(α,γ )7Li
Angulo et al. [4] 1999 0.10 ± 0.02 −1.5
Descouvemont et al. [1] 2004 0.095 ± 0.005
Xu et al. [5] 2013 0.098+0.011

−0.008
3He(α,γ )7Be
Adelberger et al. [9] 1998 0.53 ± 0.05 −0.566
Angulo et al. [4] 1999 0.54 ± 0.09 −0.963
Descouvemont et al. [1] 2004 0.51 ± 0.04
Cyburt, Davids [6] 2008 0.58 ± 0.043 −0.92 ± 0.18
Adelberger et al. [10] 2011 0.56 ± 0.04 −0.643
Xu et al. [5] 2013 0.056+0.05

−0.07
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that our S(0) values coincide within the errors with all the
recommended values for 3H(α,γ )7Li and overlap with most
values for 3He(α,γ )7Be from Table V. The S(0) and S ′(0)/S(0)
values for both the reactions extracted from the single-scale
AVRGM approach have larger magnitudes than those from
the multiscale one. Nevertheless, the S(0) values are also in
agreement with many values and the S ′(0)/S(0) values are even
closer to the variety of values presented in the tables. Reasons
for the difference of our S ′(0)/S(0) values from the predictions
could be the same that were mentioned above for a possible
explanation of the discrepancy between these predictions. The
difference between the results of our present and previous
studies indicates that the breakup thresholds reproducing
implemented in the present work is rather important for
description of the radiative capture reactions. One should pay
more attention to this feature, making a microscopic approach.

VI. CONCLUSION

In the present work, the microscopic approach to the
description of the radiative capture reactions based on the
multiscale AVRGM was proposed. The mirror 3H(α,γ )7Li
and 3He(α,γ )7Be reactions were studied in the framework
of this approach. The calculated energy dependences of the
total astrophysical S factors for both the reactions describe
the experimental data remarkably well. At the same time, the
calculated breakup thresholds for the ground and first excited
states of the 7Li and 7Be nuclei into the corresponding colliding
nuclei reproduce their experimental values. In addition, the
nuclear phase shifts and the astrophysical S factors for the
captures to the ground and first excited states of the formed
nuclei agree reasonably well with the data. The qualitative de-
scription of the data on the branching ratios is also reasonable
enough but the quantitative one is to some extent not so perfect.

Thus, the developed approach demonstrates its capability for
the treatment of the radiative capture reactions induced by
the light nuclei and makes it possible to achieve the unified
description of a wide enough set of the experimental data. All
these advantages produce good prospects and opportunities for
its further applications.

There are two possible ways to improve the approach. The
first one is to use more complicated intrinsic cluster wave
functions taking into account excitations of the clusters and
a greater number of the expansion terms. The second one is
to apply the modern microscopic nuclear potentials. These
improvements will allow us to cover a wider class of nuclear
reactions and to increase the predictive power of the approach.
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APPENDIX

The generating matrix elements for the operators of the
mirror 4He + 3H and 4He + 3He systems and expressions uti-
lized in the calculations of the corresponding matrix elements
between the AVRGM basis functions (4) are presented below.

The generating matrix elements for the unit operator read

〈Q,sσf |R,sσi〉 = 〈Q|R〉δσf σi

= u−9/7(u − 1)3δσf σi
, (A1)

where

u = exp (QR/2). (A2)

The generating matrix elements of the kinetic energy are
expressed by

〈Q,sσf |T − Tc.m.|R,sσi〉 = h̄2

2mr2
0

(
9 − 3

7
Q2 − 3

7
R2 + t

∂

∂t

)
〈Q|R〉δσf σi

. (A3)

The generating matrix elements of the Coulomb potential are given by

〈Q,sσf |VCoul|R,sσi〉 =
√

2

π

e2

r0

[
〈Q|R〉 + u−9/7(u − 1)2

∫ 1

0

(
2uU (+) − U (−) − U (0)

)
dς

]
δσf σi

(A4)

for the 4He + 3H system and

〈Q,sσf |VCoul|R,sσi〉 = 2

√
2

π

e2

r0

[
〈Q|R〉 + u−9/7

∫ 1

0

(
u(2u2 − 3u + 1) U (+) − (u2 − 3u + 2) U (−) − 2u(u − 1) U (0)) dς

]
δσf σi

(A5)

for the 4He + 3He system, where

U (±) = exp

(
− (R ± Q)2

8
ς2

)
, (A6)

U (0) = exp

(
−Q2

8
ς2

)
+ exp

(
−R2

8
ς2

)
− 1. (A7)
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The generating matrix elements of the central nuclear interaction of the modified Hasegawa-Nagata potential [122] take
the form

〈Q,sσf |Vc|R,sσi〉 = 9〈Q|R〉δσf σi

3∑
n=1

ς3/2
c, n (αc, n − δc, n) + 3 u−9/7δσf σi

3∑
n=1

ς3/2
c, n

{
[(4αc, n + 2βc, n + 2γc, n + δc, n) u

− 2αc, n − 2βc, n − 2γc, n − 3δc, n]u(u − 1) U (+)
c, n + [3αc, n + 2βc, n + 2γc, n + 2δc, n

− (αc, n + 2βc, n + 2γc, n + 4δc, n) u](u − 1) U (−)
c, n − (αc, n − δc, n) (5u2 − 6u + 1) U (0)

c, n

}
. (A8)

Here the following denotations are introduced:

ςc, n = ac, n

2r2
0 + ac, n

, ac, n = 1

μc, n
, (A9)

αc, n = Vc, n[wc, n + (1 − gc) mc, n], βc, n = Vc, n bc, n, γc, n = −Vc, n hc, n, δc, n = −gcVc, n mc, n, (A10)

U (0, ±)
c, n = U (0, ±)

(
ς =

√
2r2

0 ςc, n
/
ac, n

)
. (A11)

See Ref. [122] for values of the parameters Vc,n, wc,n, mc,n, bc,n, hc,n, and μc,n.
The general expression (21) for the matrix elements in the AVRGM basis can be simplified for the considered operators and

written in the form〈
J

πf

f Mf lf sf νf

∣∣V ∣∣Jπi

i Milisiνi

〉 = 2π
δJf Ji

δMf Mi
δlf li δsf si

κνf li si
κνi li si

νf !νi!

∂νf

∂Qνf

∂νi

∂Rνi

∫ 1

−1
〈Q,siσi |V |R,siσi〉Pli (t)dt

∣∣∣∣
Q=R=0

. (A12)

Substituting the generating matrix elements presented above into Eq. (A12) and realizing the recurrence technique [91], one can
calculate all the necessary matrix elements in the AVRGM basis for those operators.

The methods for calculating the matrix elements of the operators considered above can be generalized to the case of
noncentral interaction. For this purpose, it is needed to transform the general expression (21) for this interaction to the form
similar to Eq. (A12) [91,131]. For example, in the case of spin-orbit interaction of the modified Hasegawa-Nagata potential
[122], Eq. (21) can be written

〈
J

πf

f Mf lf sf νf

∣∣Vls

∣∣Jπi

i Milisiνi

〉 = 2π
δJf Ji

δMf Mi
δlf li δsf si

κνf li si
κνi li si

νf !νi!

∂νf

∂Qνf

∂νi

∂Rνi

∫ 1

−1
χls(t)Pli (t) dt

∣∣∣∣
Q=R=0

, (A13)

χls(t) = 7

(
Ji(Ji + 1) − li(li + 1) − 3

4

)
u−9/7

2∑
n=1

als, nς
3/2
ls, n

×
[(

2αls, n + γls, n

17r2
0 + 12als, n

u2 − 2(αls, n + 2γls, n)

3r2
0 + 5als, n

u − 3γls, n

11r2
0 + 2als, n

)
uU

(+)
ls, n

+
(

αls, n + 2γls, n

17r2
0 + 5als, n

u2 − 2(2αls, n + γls, n)

3r2
0 − 2als, n

u − 3αls, n

11r2
0 + 9als, n

)
U

(−)
ls, n

]
, (A14)

where

ςls, n = als, n

2r2
0 + als, n

, als, n = 1

μls, n

, (A15)

αls, n = Vls, n wls, n, γls, n = −Vls, n hls, n, (A16)

U
(±)
ls, n = U (±)

(
ς =

√
2r2

0 ςls, n

/
als, n

)
. (A17)

Values of the parameters Vls,n, wls,n, hls,n, and μls,n can be found in Ref. [122]. As compared to Eq. (A12), the function χls is
involved in Eq. (A13) instead of the generating matrix elements. This function is determined by the corresponding generating
matrix elements [131].
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