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Mean free path and shear viscosity in central 129Xe + 119Sn collisions below 100 MeV/nucleon
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Thermal and transport properties of hot nuclear matter formed in central 129Xe + 119Sn collisions at the Fermi
energy are investigated using the isospin-dependent quantum molecular dynamical model. Temperature (T ),
average density (ρ), chemical potential (μ), mean momentum (P ), shear viscosity (η), and entropy density (s)
are obtained from the phase-space information. The mean free path (λnn) and the in-medium nucleon-nucleon
cross section (σnn) in the highest compressible stage at different incident energies are deduced and compared
with the experimental results from Phys. Rev. C 90, 064602 (2014). The result shows that λnn and σnn have the
same trend and similar values as the experimental results when the beam energy is greater than 40 MeV/nucleon
at maximum compressed state. Furthermore, the derived shear viscosity over entropy density (η/s) shows a
decreasing behavior to a saturated value around 3

4π
as a function of incident energy.
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I. INTRODUCTION

In the past decades, extensive experimental and theoretical
efforts have been devoted to investigating the properties of
nuclear matter with the help of heavy-ion collision (HIC)
[1–9]. Many probes have been suggested to be linked to the
properties of nuclear matter, such as thermodynamic variables
and transport coefficients [10–13]. All these observables
contribute to the determination of the equation of state (EOS)
[14,15] in nuclear matter and are also important in the
description of the supernova core collapse and the formation
of a neutron star [16–18]. Among them, determination of
temperature and shear viscosity over entropy density ratio ( η

s
)

are of great interest in heavy-ion collision. For the former,
many efforts have been carried out by studies of various
thermometers [12,19,20], and for the latter, it is found that the
ratio of shear viscosity over entropy density of any fluids seems
to have the bound of 1

(4π) , proposed by Kovtun-Son-Starinets
(KSS) in a certain supersymmetric gauge theory [21]. Many
efforts to study the quark gluon plasma phase transition
through these quantities have been performed [22–26]. For
example, empirical observation of the temperature or incident
energy dependence of the shear viscosity over entropy density
reached its local minimum at the critical point for the phase
transition [27]. In addition, there are many interesting studies
on the ratio of η

s
in intermediate-energy heavy-ion collisions

[6,10,11,28–39], especially focus on the nuclear liquid-gas
phase transition by studying the behavior of η

s
[10,11,32–35].

The intermediate-energy nuclear reaction process is quite
complex, where both the mean field effects and the two-body
interactions play an equally important role and, furthermore,

*ygma@sinap.ac.cn

the blocking effect is another important ingredient. The knowl-
edge of the dissipation mechanism for nuclear matter in HIC
is related to the properties of the mean field via the one-body
dissipation and nucleon-nucleon collisions via the two-body
dissipation in the nuclear medium. To treat the HIC dynamics
in this energy range, two classes of transport theory models,
namely the Boltzmann-Uehling-Ulenbeck (BUU) [15,40–43]
model and the quantum molecular dynamics (QMD) [44,45]
model, are very successful to describe various experimental
observables. The former is a one-body transport theory and
the latter is based on the many-body transport theory.

Many theoretical studies on the mean free path (λnn)
and the in-medium nucleon-nucleon cross section (σnn) have
been performed in the last decades [46–51]. However, ex-
perimental results are difficult and not extensively reported
so far. Recently, by looking at free protons specifically,
the INDRA Collaboration presented a comprehensive body
of experimental results concerning the mean free path, the
nucleon-nucleon cross-section, and the in-medium effects in
nuclear matter by performing a systematic experimental study
of nuclear stopping in central collisions for different combi-
nations of heavy-ion-induced reactions in the Fermi-energy
domain below 100 MeV/nucleon [52]. Nuclear stopping
governs the amount of dissipated energy, the amplitude of
large collective motion, and the competition between various
mechanisms such as deep inelastic reaction, neck emission,
and fusion reaction [53–55]. It is found that λnn = 9.5 ±
2 fm at Ebeam = 40 MeV/nucleon and λnn = 4.5 ± 1 fm for
Ebeam = 100 MeV/nucleon. In addition, they also estimated
values of the in-medium nucleon-nucleon cross section when
nuclear matter is in a compression state.

In this paper, our motivation is to study the thermal
and transport properties, and extract the information of the
in-medium nucleon-nucleon cross section as well as the
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mean free path during the compression stage for the central
collisions of 129Xe + 119Sn, which is one of the focused
systems in the INDRA data mentioned above [52], based on
the isospin-dependent quantum molecular dynamics model
(IQMD). Using the parametrization function proposed by
Danielewicz [57,58], the time evolution of shear viscosity can
be obtained. The in-medium nucleon-nucleon cross section is
less than 10 mb below 100 MeV/nucleon in the central region
of the reaction system during the compression stage, which
is consistent with the experimental results from the INDRA
data of Lopez et al. [52]. The deduced mean free path is also
consistent with the experimental result from the same data
[52] above 40 MeV/nucleon, which is close to the data value
4.5 ± 1 fm. Based on the reasonable simulation results of σnn

and λnn, we further deduce the shear viscosity over entropy
density ratio for the hot nucleus formed in central collision
129Xe + 119Sn below 100 MeV/nucleon, and find the η

s
value

tends to 3
4π

, which indicates the hot nucleus behaves like a
perfect fluid.

This paper is organized as follows. Section II provides
a brief introduction for the IQMD model and calculation
formalisms. In Sec. III we present the calculation results
and discussion, where the time evolution of thermodynamic
quantities and shear viscosity over entropy density ratio are
focused. Finally a conclusion is given.

II. MODEL AND FORMALISM

A. Model

The IQMD model is an extended version of quantum molec-
ular dynamics (QMD) model, which uses a many-body theory
to describe the behavior of heavy-ion collision at intermediate
energies [44,56,59–63]. The IQMD model includes the effects
of isospin and Pauli blocking. Each nucleon is represented by
a Gaussian wave packet in the model, i.e.,

φi(R,t) = 1

(2πL)3/4 exp

[
− (R − Ri)

2

4L
+ i

h̄
r · pi

]
, (1)

where Ri and Pi are the time-dependent variables, respectively.
L is the Gaussian width, which is set to 2.16 fm2 in the present
work. The total effective Hamiltonian can be expressed as

〈H 〉 = 〈T 〉 + 〈V 〉, (2)

where 〈T 〉 is the kinetic energy, and 〈V 〉 is the mean field part:

〈V 〉 = USky + UCoul + UYuk + USym, (3)

where USky, UCoul, UYuk, USym represent the Skyrme potential,
the Coulomb potential, the Yukawa potential and the symmetry
potential, respectively. The Skyrme potential is

USky = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ

+ δ ∗ ln2[ε(
P)2 + 1]
ρ

ρi

, (4)

where ρ is the total density of nuclear system, ρ0 is the
saturation density at ground state and ρ0 = 0.168 fm−3. α,
β, γ are the Skyrme parameters, which connect with the
EOS of bulk nuclear matter. δ and ε are parameters of the

momentum-dependent potential [44]. The symmetry potential
is

USym = Csym

2ρ0

∑
i �=j

τizτjz

1

(4Lπ )3/2
exp− (ri − rj )2

4L
(5)

where Csym is the symmetry energy coefficient, τz is the
zth component of the isospin degree of freedom for the
nucleon, which equals 1 or −1 for nucleon or proton,
respectively. The expression of the other potentials can be
found in Ref. [44,59]. In the present work, the parameter
α = −390 MeV, β = 320 MeV, γ = 1.14, δ = 1.57 MeV
and ε = 500 c2

GeV 2 are used, corresponding to the soft EOS with
momentum-dependent interaction and the incompressibility
of K = 200 MeV. Within the present framework, reasonable
phase-space information of the nucleon in intermediate-energy
collisions can be obtained.

B. Formula

Thermal properties of the hot nuclear matter can be
extracted in two steps. First, based on the IQMD simulation,
one could calculate the nuclear matter densities at each point
in coordinate space at every time step by

ρ(R,t) =
AT +AP∑

i=1

1

(2πL)3/2 exp
−(R − Ri)

2

2L

with the summation over all nucleons, where L = 2.16 fm2

as mentioned before. Second, by using the value of nuclear
matter density to calculate other thermodynamical properties
of hot nuclear matter formed in heavy-ion collisions, such as
temperature, shear viscosity, entropy density, etc. In recent
years, many thermometers to extract nuclear temperature
have been developed, for instance, the slope temperature,
double isotopic ratios, and the population of excited states
thermometer [64–67]. Here, another method for measuring the
temperature, which was proposed in Ref. [12] is applied, which
is based on momentum fluctuations of detected particles. The
variance is given by the formula

σ 2
xy =

∫ (〈
Q2

xy

〉 − 〈
Q2

xy

〉2)
n(p)d3p, (6)

where n(p) is the momentum distribution of particles, the
Qxy = p2

x − p2
y is the quadruple momentum, which is defined

in a direction transverse to the beam axis, and px , py are the
components of momentum vector extracted from the phase
space of the IQMD model. The average in Eq. (6) is performed
over events. The proton and neutron, which are fermions and
follow the Fermi statistics, carry important information on
densities and temperatures in heavy-ion collision. Therefore,
the Fermi-Dirac distribution can be used in Eq. (6) [31,65–68].
Using the Fermi-Dirac distribution n(p), we can use

σ 2
xy =

∫ (
p2

x − p2
y

)2
n(p) d3p∫

n(p) d3p

= (2mT )2 4

15

∫ ∞
0 y5/2 1

exp(y−υ)+1 dy∫ ∞
0 y1/2 1

exp(y−υ)+1 dy

= (2mT )2FQC(z), (7)
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where FQC(z) is the quantum correction factor and z =
exp(μ/T ), μ is the chemical potential of the nucleon, which
is determined by the following implicit equation:

1

2π2

(
2m

h̄2

)3/2 ∫ ∞

0

√
ε

e
ε−μ
T + 1

dε = ρ. (8)

Expanding to the lowest order in T
εf

, where εf =
εf 0( ρ

ρ0
)2/3 = 36( ρ

ρ0
)2/3 MeV is the Fermi energy of nuclear

matter, the following result was obtained in Ref. [67]:

σ 2
xy = (2mT )2 4

35

[
1 + 7

6
π2

(
T

εf

)2

+ o

(
T

εf

)4
]
. (9)

The variance σ 2
xy , density, and chemical potential can be cal-

culated by phase-space information from spatial distribution
of nucleons, and with Eqs. (8)–(9) the value of temperature of
nuclear matter can be obtained. In hydrodynamics, the internal
friction occurs when there exists relative motions in a fluid
(liquid and gas), and this is called viscosity. The nuclear shear
viscosity has been derived microscopically [57,58] and can be
parametrized as a function of density and temperature

η

(
ρ

ρ0
,T

)
= 1700

T 2

(
ρ

ρ0

)2

+ 22

1 + T −210−3

(
ρ

ρ0

)0.7

+ 5.8
√

T

1 + 160T −2
, (10)

where η is in MeV/fm2c, T is MeV and ρ0 = 0.168 fm−3.
In the kinetic theory [69,70], the shear viscosity (η) can be
expressed as

η = 1
3mρνλ, (11)

where ρ is the density, ν is the mean velocity of particles
at given density and temperature, m is the mass of particle,
and λ is the mean free path. Assuming p̃ = mν is the mean
momentum, Eq. (11) can be expressed as

η = p̃

3σ
, (12)

where σ is the in-medium nucleon-nucleon cross section. The
relation of σ and λ is shown in following function:

λ = 1

ρσ
. (13)

The mean momentum is a function of density and temper-
ature. Using the nucleon Fermi-Dirac distribution, the mean
momentum

p̃(T ,ρ) =
∫

pn(p)d3p∫
n(p)d3p

=
√

2m

∫ ∞
0

ε

e
ε−μ
T +1

dε∫ ∞
0

√
ε

e
ε−μ
T +1

dε
, (14)

where ε = p2

2m
is the energy, μ is the chemical potential,

T is the temperature, and m is the mass of nucleon. So
the mean momentum at a given density and temperature is
obtained. With the shear viscosity from Eq. (10) and the mean

momentum from Eq. (14), the in-medium nucleon-nucleon
cross section

σ = p̃

3η
(15)

can be extracted. At the same time, the value of mean free path
λ is obtained, using Eq. (13).

The nucleon-nucleon cross section in the IQMD model uses
the cross section of the experimental parametrization form,
which was also used by the VUU model, it includes elastic and
inelastic channels, and distinguishes the isospin [71–73]. In
this context, we can label the nucleons and output the nucleon-
nucleon cross section of each pair of nucleons at each time step.
In order to compare with the experimental results, we sum over
the valid nucleon-nucleon (i.e., Pauli allowed) cross section of
all nucleons and get the average value in the selected region
as the in-medium nucleon-nucleon cross section, which can
be compared to the experimental result. Then we use it and
the value of shear viscosity calculated before to calculate the
mean free path of reaction system by applying the Eq. (13).

The entropy density is calculated by

s = U − A

T
· 1

V
=

[
5

2

f5/2(z)

f3/2(z)
− lnz

]
ρ, (16)

where fm(z) = 1
�(m)

∫ ∞
0

xm−1

z−1 exp(x)+1dx, U , and A are the inter-
nal and Holmholtz free energy, respectively [69,70].

III. CALCULATION AND DISCUSSION

In this paper, central collisions of 129Xe + 119Sn at different
beam energies from 15–100 MeV/nucleon are simulated
by employing the IQMD model with the soft momentum-
dependent interaction (MDI). In order to study the behavior
of nucleons at the compressible stage, we choose the anterior
80 fm/c as the research object during the heavy-ion collision.
The central region is defined as a [−3,3]3 fm3 cubic box and
its center locates in the center of mass of collision system.
Additionally, in order to calculate quantities at the same
condition, we chose the moment when two nuclei just touch
as the zero moment of the time evolution.

A. Time evolution of thermodynamic variables

Figure 1 shows the time evolution of average density and
temperature in the central region [−3,3]3 fm3 at incident en-
ergies of 15–100 MeV/nucleon, respectively. From Fig. 1(a),
it is seen that the average density increases in the compression
stage and decreases in the expansion stage. The average density
reaches a maximum before 20 fm/c. At higher incident energy,
the larger average density is reached when the system is at
the highest compression. Similar to the average density, the
time evolution of temperature has the same trend at different
energies, which is shown in Fig. 1(b). At a given beam energy,
it is seen that at zero moment the initial temperature is close
to zero. Then it increases to a local maximum around 20 fm/c
and decreases at later times. The higher the incident energy,
the larger the maximum value is. The corresponding time at
maximum value of the temperature is a little later than that for
the density, which was also observed in Ref. [10], indicating
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FIG. 1. The time evolution of the (a) average density and
(b) temperature of central region at different incident energies.

that the momentum exchange among interacting nucleons does
not cease even though the largest overlap of the system has
been reached.

The time evolution of shear viscosity, mean momentum, and
chemical potential are shown in Fig. 2. Here it should be noted
that the formula of shear viscosity is principally applicable
only when the system is largely equilibrated. However, a full
equilibrium is hardly achieved during the whole heavy-ion
collision process. Nevertheless, a local equilibrium could be
more or less realized since the nuclear stopping characterizing
the extent of equilibrium reaches its local maximum during
the largest compression stage. From top to bottom, Fig. 2(a)
shows that in most cases η drops at first ∼20 fm/c and tends
to a local minimum around ∼25 fm/c. As Eq. (10) shows, the
shear viscosity depends on both temperature and density which
vary with time. A combined effect leads to a local minimum
of the shear viscosity.

Figure 2(b) shows the time evolution of the chemical
potential (μ). It is seen that μ increases in the compression
stage and decreases in the expansion stage. Generally, its
time evolution is very similar to the density evolution, i.e.,
the time reaching to their corresponding peaks seems very
close to each other. With the chemical potential, density, and
temperature, the mean momentum of the central region is
obtained, using the Eq. (14). From Fig. 2(c), it can be seen
that the time evolution of mean momentum has the same
behavior as temperature at different energies, and the time
of peak values are almost synchronous. Then, with Eq. (15)
and Eq. (13), the time evolution of the mean free path and
the in-medium nucleon-nucleon cross section for the central
region of the reaction system are shown in Figs. 3(a) and
Fig. 3(b), respectively. We can see that σnn generally shows
peaks around ∼30 fm/c, which are a little delayed with
respect to the time of the peak of mean momentum due to
a combination effects of the mean momentum and the shear
viscosity, while the mean free path displays a wider valley
around 20–25 fm/c due to its inverse proportionality to ρσnn.
Roughly speaking, the mean free path tends to be the shortest
during the compression stage due to the larger in-medium

FIG. 2. The time evolution of (a) shear viscosity, (b) chemical
potential, and (c) mean momentum in central region at different
energies.

density and nucleon-nucleon cross section, which makes the
nucleons transport in a short path range.

The time evolution of entropy density is shown in Fig. 4. It
is seen that the entropy density almost synchronically evolves
with the temperature. At the compression stage, entropy
density reaches a local maximum and decreases at expansion
stage. The higher the incident energy, the larger the entropy
density is.

B. Excitation function of the thermodynamic variables
at the highest compression

In the above figures, there exist maxima or minima of some
quantities around the largest compression stage. To compare
the value of different quantities at the same time, we select
the moment of maximum density at different energies as
the given time, then the relationship between thermodynamic
quantities with incident energy at the corresponding time are
plotted. Figure 5 shows the energy dependence of maximum
average density and the corresponding time at the maximum
density in different beam energies. From Fig. 5(a), it illustrates
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FIG. 3. The time evolution of the (a) mean free path and the (b)
nucleon-nucleon cross section of central region at different incident
energies.

that the maximum density can exceed over normal density at
30 MeV/nucleon and it increases with the beam energy to
1.3ρ0 at 100 MeV/nucleon. The corresponding time when the
largest compression is reached decreases with the increase of
the reaction evolution as depicted in Fig. 5(b) due to the faster
reaction kinematics.

FIG. 4. The time evolution of entropy density in central region at
different energies.

FIG. 5. The maximum density and the corresponding moment of
central region at different energies.

In order to study the behavior of the mean free path
and the in-medium nucleon-nucleon cross section at different
incident energy in the largest compressed stage, their values
are extracted at the corresponding time. The value of the
in-medium nucleon-nucleon cross section of the IQMD model
output is also obtained and using its value the mean free
path is calculated employing Eq. (13). The result is shown
in Fig. 6(a) and Fig. 6(b). We can see that the in-medium
nucleon-nucleon cross section shows a general increasing
behavior with the beam energy regardless of the calculation
methods [σ ∗ is the IQMD output method and σ comes from
Eq. (15)]. Even though the two results are quantitatively
different, both are in a range of a few mb, which are close
to the values of the in-medium nucleon-nucleon cross section
(σ ∗∗) deduced from the experiments above 40 MeV/nucleon
[52]. The calculated mean free paths (λ∗ and λ) have the
similar trend as the experimental results when the energy is
larger than 40 MeV/nucleon in the maximum compressed
stage and decrease toward an asymptotic value about 6 fm at
E = 100 MeV/nucleon, which is very close to the deduced
experimental value (λ∗∗) of Lopez et al. [52]. In addition, the
shear viscosity can be obtained as displayed in Fig. 7. Similar
to the behavior of mean paths, the shear viscosity tends to
decrease at higher energy and close to the similar values for
both calculations.

Since we have gotten reasonable results of the in-medium
nucleon-nucleon cross section as well as mean free path, we
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FIG. 6. (a) Energy dependence of in-medium nucleon nucleon
cross section. σ ∗ and σ are the result of the IQMD model output and
the value calculated by formula, respectively. (b) Energy dependence
of the mean free path. λ∗ and λ are the value calculated from the value
of σ ∗ and σ shown in Fig. 6, respectively. σ ∗∗ and λ∗∗ are the result
from Ref. [52].

can further deduce the shear viscosity and its ratio over entropy
density at the largest compression stage, which are shown in
Fig. 7 for their energy dependence. Clearly, shear viscosity
drops as a function of beam energy and trends to more or less
saturated value around 100 MeV/nucleon, indicating the hot
nuclear matter becomes more fluidlike at higher beam energy.
The ratio of shear viscosity over entropy density displays the
similar decreases with the beam energy, which reaches to the
value of around 2−4

4π
at 80–100 MeV/nucleon. This asymptotic

value is also consistent with our previous results from different
models calculations for the hot nucleons [10,11,28,31,33–35]
as well as GDR [36], which means that this asymptotic value is
less model dependent and demonstrates its fluidlike feature for
hot nuclei formed in intermediate energy heavy-ion collisions.
In fact, this value is also not so different from a QCD matter,
which was found at RHIC and LHC where the matter is in
the quark level, but here it is nucleonic matter. Therefore, the
value of η/s is not so much different even though it is a very
different microscopic matter level. Interestingly, it is noted that
this η/s value is also close to the deduced experimental value
from the GDR experimental data [74].

FIG. 7. Energy dependence of (a) shear viscosity (η) and (b) the
shear viscosity over entropy density (η/s, in units of 1/4π ) at the
largest compressible state. η∗ and η are the values calculated from
the value of σ ∗ and Eq. (11), respectively.

IV. SUMMARY AND OUTLOOK

In summary, we studied thermodynamic variables and
transport coefficients, specifically η/s in central 129Xe + 119Sn
collisions at intermediate energy in a framework of the
isospin-dependent quantum molecular dynamics model. The
properties of central region of nuclear reaction are discussed
with some quantities. Time evolutions of density, temperature,
entropy density, and shear viscosity are presented, which
give thermal and transport information on nuclear matter of
collision system. Then using the kinetic theory, the mean free
path and the in-medium nucleon-nucleon cross section are
extracted. When the reaction system reaches the maximum
compressed stage, the comparison between the values of the
mean free path at different energies and the experimental
results from Ref. [52] is made, which shows a reasonable
consistency with the data when the beam energy is above
40 MeV/nucleon. Furthermore, the shear viscosity over
entropy density is deduced at the highest compressible state
in different energies, which demonstrates that a decreasing
trend of η/s versus incident energy. When beam energy
reaches to 100 MeV/nucleon, η/s value is about three times
of KSS bound, which indicates the hot nucleonic matter is
very close to perfect fluid, not too much different from the
partonic fluid, even though the particle level is very different.
Since our simulated results of mean free path and in-medium
nucleon-nucleon cross section are very close to the data, we
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believe that our derived shear viscosity over entropy density
could be regarded as the experimental one.
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