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Experimental data on Coulomb breakup and neutron removal indicate that 31Ne is one of the heaviest halo
nuclei discovered so far. The possible ground state of 31Ne is either 3/2− coming from the p-wave halo or 1/2+

coming from the s-wave halo. In this work, we develop a treatable model to include deformed wave functions
and a dynamical knockout formalism that includes the dependence on the nuclear orientation to study the neutron
removal from 31Ne projectiles at energies around E ≈ 200 MeV/nucleon. A detailed account of the effects of
deformation on cross sections and longitudinal momentum distributions is made. Our numerical analysis indicates
a preference for the 31Ne ground state with spin-parity 3/2−.
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I. INTRODUCTION

The neutron-rich 31Ne nucleus is expected to be strongly
deformed with the pf -intruder configuration near the island
of inversion. Its halo structure is relevant because it is one of
the heaviest halo nuclei discovered so far [1]. The known data
seem to indicate a mixing of valence spherical orbitals due to
deformation. The valence neutron of 31Ne is found to be in
2p3/2 or in 2s1/2, but not in 1f7/2 which is expected from the
standard shell model [2–11]. There are also uncertainties in the
deformation and the neutron binding energy for two possible
ground spin-parity states.

In Ref. [12], the measured large Coulomb breakup cross
section of 31Ne was interpreted simply in terms of a p-wave
neutron halo together with the deformed core. Hamamoto [12]
suggests that the ground state of 31Ne has either the spin-parity
1/2+ with a neutron separation energy of Sn > 0.5 MeV and a
quadrupole deformation of β2 � 0.59 or the spin-parity 3/2−
with Sn < 0.5 MeV. The 1/2+ assignment arises from the
Nilsson level [200 1/2] while the 3/2− assignment is due to
either (1) the [321 3/2] Nilsson level with Sn < 0.2 MeV and
0.40 � β2 � 0.59 or (2) the [330 1/2] level with 0.2 MeV <
Sn < 0.5 MeV and 0.22 � β2 � 0.30.

In this work we consider one-neutron removal reactions
as a probe of deformation and calculate cross sections and
longitudinal momentum distributions with respect to the
incident beam direction. We use a modified version of the
Glauber model developed in Ref. [13] and extensively used in
the literature [14–16]. In this model, a few approximations
are made. It is assumed that the excitation energy of the
relative motion between the core and the removed neutron
is much smaller than the projectile energy and is neglected.
This adiabatic condition is well satisfied for collisions on a
light target with projectiles at intermediate energies (Elab � 50
MeV/nucleon). In the spectator-core approximation, the core
can be at most elastically scattered by the target. With these
assumptions, the shape of the momentum distribution of the
core can be used to determine the degree of deformation of
projectiles, the angular momentum content, and the binding
energy of a valence nucleon. As an example, we show that

these distributions can be used to identify the spin-parity of
the ground state of 31Ne.

Theoretical studies of nucleon removal reactions from
deformed projectiles have been reported previously [11,17–
21] and the longitudinal momentum distribution of stripping
reactions has been calculated by using the Nilsson model.
Glauber-type deformed potential S matrices have been used in
Ref. [17], and the core-target S matrix has been calculated
in the absorbing-disk approximation [22] in Ref. [20]. In
this work, we calculate the momentum distribution with
orientation-dependent S matrices obtained by the nuclear
ground-state densities and the nucleon-nucleon cross section
[23–25]. Orientation dependence is important because the
valence nucleon knockout depends on the angle between the
intrinsic deformation axis and the beam axis. The deformed
states used in our calculations are obtained by a solution of
coupled equations for a deformed Woods-Saxon potential.
The approach is superior to the Nilsson model because the
harmonic oscillator wave functions used in the model decay
too fast at long distances and the asymptotic behavior of the
Nilsson states is not correct. This is of relevance for reactions
induced by halo nuclei, such as 31Ne.

In Sec. II, we discuss nucleon removal reactions from
deformed projectiles in an extension of the Glauber model
of Ref. [13] to include deformation. We apply this formalism
to study one-neutron removal reactions from deformed 31Ne
in Sec. III. The longitudinal momentum distributions and
the total cross sections are then considered as functions
of quadrupole deformation and neutron binding energy. By
including spherical calculations for neutron removal from the
core to populate excited core states, the inclusive momentum
distributions are compared with experimental data. Finally, we
summarize our results in Sec. IV.

II. NUCLEON REMOVAL FROM DEFORMED
PROJECTILES

We consider single-nucleon removal reactions from a
two-body composite projectile consisting of a core and a
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valence nucleon. In our model, the nucleon removal reactions
have contributions from two processes: diffraction dissociation
and stripping [13,26]. Diffraction dissociation is the elastic
breakup process in which a valence nucleon is separated from
the core whereas the target remains in its ground state. In the
stripping or absorption process, the removed nucleon reacts
with the target and the target is excited. In nucleon removal
from halo nuclei, the momentum distribution becomes narrow
due to the large spatial extension of their intrinsic wave
functions. Thus, it is useful to interpret the distribution in
terms of the momentum-space wave function of the halo
nuclei. Using the Glauber model [13,26], the nucleon removal
under a spherical potential has been discussed by several
authors, e.g., in Refs. [14–16]. In our work, the momentum
distribution and the cross sections of stripping and diffraction
dissociation are calculated with an extended version of the
numerical code MOMDIS [15] to accommodate the changes
described below. In the next subsections, we show how we
include the projectile deformation in the nucleon removal
cross sections in reactions with a spherical target.

A. Deformed states

To obtain the projectile deformed states, we use an updated
version of the numerical code PSEUDO [27]. In the single-
particle model for a deformed potential with axial symmetry,
we have

V (r,�̂) =
∑

λ=0,2,4,...

Vλ(r)Yλ0(�̂), (1)

and the ground state can be written as

�ω(r,�̂) =
∑

α,m,sz

〈
lm

1

2
sz

∣∣∣∣jω

〉
uαω(r)

r
Ylm(�̂)χ 1

2 sz
, (2)

where α = {l,j} and �̂ defines the orientation of the symmetry
axis relative to the laboratory system. The radial wave function
is obtained by solving the following coupled system of
ordinary differential equations:

− h̄2

2μ

[
d2

dr2
− lα(lα + 1)

r2

]
uαω(r)

+
∑
α′,λ

[
Vαα′λ(r) + 1

r
V

sing
αα′λ(r)

]
uα′ω(r) = Euαω(r), (3)

where Vαα′λ is the potential component corresponding to
the coupling between α = {l,j} and α′ = {l′,j ′} channels in
the presence of deformation βλ, and V

sing
αα′λ(r)/r corresponds

to the singular part (such as spin-orbit interaction) of the
potential, which requires a special numerical treatment. In the
present work, we consider quadrupole deformation (λ = 2)
only.

The potential consists of the nuclear potential and the
Coulomb potential. By expanding a deformed Woods-Saxon
form factor with R(�̂) = R0[1 + ∑

λ βλYλ0(�̂)] (βλ is the
deformation parameter) and keeping only linear orders of

deformation, the nuclear potential is given by

VN (r,�̂) = −V0f (r) − VSO

(
h̄

mπc

)2 1

r

df (r)

dr
l · s

+V0R0
df

dr

∑
λ

βλYλ0(�̂), (4)

where f (r) is a spherical Woods-Saxon form factor and
h̄/(mπc) = 1.414 fm is the pion Compton wavelength. The
potential depths are adjusted to reproduce the ground-state
energy. The Coulomb potential is parametrized as

VC(r,�̂) = Z1Z2e
2

r
θ (r − RC) + Z1Z2e

2

2RC

×
(

3 − r2

R2
C

)
θ (RC − r) +

∑
λ

3Z1Z2e
2

2λ + 1

×
[

Rλ
C

rλ+1
θ (r − Rc) + rλ

Rλ +1
C

θ (RC − r)

]
βλYλ0(�̂),

(5)

where Rc is the Coulomb radius and θ (r) is the unit step
function. For the case of 31Ne (30Ne + n), the Coulomb
potential has no influence in the calculations. For more details,
see Ref. [27].

The basis functions are expressed in the projectile body-
fixed frame with the ẑ′ axis along the core symmetry axis.
Thus, we need to project them (with ω′) on the laboratory
coordinate system with the ẑ axis along the beam direction:

�ω(r,�̂) =
∑
ω′

D
j
ω′ω(�̂) �ω′(r), (6)

where D
j
ω′ω(�̂) is the Wigner D matrix with the Euler angles

�̂ = (φo,θo,0).

B. Reaction S matrix

In the eikonal approximation, the S matrix is given by
S(b) = exp[iχ (b)], with

χ (b) = − 1

h̄v

∫
dzV (b + z ẑ), (7)

where v is the beam velocity along the ẑ axis, and V (b +
z ẑ) is the optical potential for core-target or nucleon-target
interaction. The eikonal phase is obtained from the nuclear
ground-state densities [23,24] as

χ (b,�̂) = 1

2πkNN

∫
d3rd3r ′ρp(r,�̂)ρt (r ′)

×
∫

d2qfNN (q)e−i(b−ρ−ρ ′)·q, (8)

where kNN is the nucleon-nucleon collision wave number,
ρp(r) [ρt (r ′)] is the nuclear density of the projectile (target),
and fNN (q) is the high-energy nucleon-nucleon scattering
amplitude at forward angles. Assuming a spherical projectile
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or an orientation-independent S matrix, the eikonal phase is

χsph(b) = 1

kNN

∫
dqqρp(q)ρt (q)fNN (q)J0(qb), (9)

where we have taken the Fourier transform of the densities.
For a deformed core, we expand the core density to linear

orders of deformation [28]:

ρc(r,�̂) = ρc(r) + R0

∑
λ

βλYλ0(�̂)
∂ρc

∂r

∣∣∣∣
βλ=0

. (10)

Here, the spherical harmonics need to be rotated into the
laboratory frame, Yλ0(�̂) = ∑

m Dλ
m0(�̂)Yλm(r̂). The eikonal

phase of the core-target S matrix is then given by

χdef(b,�̂) = 1

kNN

∫
dq qρc(q)ρt (q)fNN (q)J0(qb)

+
∑
λ,m

R0βλD
λ
m0(�̂)

∫
d3rYλm(r̂)

∂ρc

∂r

∣∣∣∣
βλ=0

× 1

2πkNN

∫
d2qρt (q)fNN (q)e−i(b−ρ)·q .

(11)

For the quadrupole deformed core, we obtain (see the
Appendix)

χdef(b,�̂) = 1

kNN

∫
dq qρc(q)ρt (q)fNN (q)J0(qb)

+
√

5π

kNN

R0β2D
2
00(�̂)

∫
dr

∂ρc

∂r

∣∣∣∣
β2=0

∫
dqJ0(qb)ρt (q)fNN (q)

1

q2r
[(3 − q2r2) sin(qr) − 3qr cos(qr)]

+
√

15π

2

1

kNN

R0β2
[
D2

20(�̂) + D2
−20(�̂)

] ∫
dr

∂ρc

∂r

∣∣∣∣
β2=0

×
∫

dq J2(qb)ρt (q)fNN (q)
1

q2r
[(3 − q2r2) sin(qr) − 3qr cos(qr)]. (12)

The core and target densities are obtained using the liquid-
drop model [29]. We also include the effect of the nucleon size.
For a valence nucleon, we use a Gaussian form of density given
by exp[−(r/0.7)2]. The nucleon-nucleon scattering amplitude,
fNN (q), is parametrized as [25]

fNN (q) = kNNσNN

4π
(i + αNN )e−βNN q2

, (13)

where σNN , αNN , and βNN are obtained by fitting the nucleon-
nucleon scattering data.

C. Cross sections

The basic assumption in the application of the Glauber
theory to stripping reactions is that one can write the cross
sections as integrals over the transverse coordinates, and the
impact parameter dependent S matrix can be interpreted as
a survival probability [26]. In nucleon removal reactions, the
core reaches a detector intact (with the probability |Sc|2) and
the valence nucleon is absorbed by the target (with 1 − |Sn|2,
where Sc and Sn are the core-target and nucleon-target S
matrices, respectively) [13,26].

For unpolarized projectile beams, we need to average over
all orientations. Thus, the longitudinal momentum distribution
of the stripping cross section is given by [13]

dσstr

dkz

= 1

2π

1

4π

∫
d�̂

∫
d2bn[1 − |Sn(bn)|2]

∫
d2ρ

×
∣∣∣∣
∫

dze−ikzzSc(bc,�̂)�ω(r,�̂)

∣∣∣∣
2

. (14)

The total cross section of stripping is calculated by integrating
over kz, yielding

σstr = 1

4π

∫
d�̂

∫
d2bn[1 − |Sn(bn)|2]

×
∫

d3r�∗
ω(r,�̂)|Sc(bc,�̂)|2�ω(r,�̂). (15)

Another process, elastic breakup or diffraction dissociation,
can also be interpreted in terms of survival amplitudes with
the help of the eikonal S matrices [13]. Including the effects of
deformation, the total cross section for diffraction dissociation
is

σdiff = 1

4π

∫
d�̂

∫
d2bc

×
[ ∫

d3r �∗
ω(r,�̂)|Sn(bn)Sc(bc,�̂)|2�ω(r,�̂)

−
∑
ω′

∣∣∣∣
∫

d3r �∗
ω′(r,�̂)Sn(bn)Sc(bc,�̂)�ω(r,�̂)

∣∣∣∣
2]

.

(16)

One may first assume that the S matrices do not depend
on orientation and that deformation effects are solely due to
the extended (halo) deformed single-particle wave functions.
In this work, we also ignore interference contributions so
that the coupled system is diagonal in the {l,j} basis. Then
the average over all orientations in the cross sections can
be simplified by using the orthogonality of the Wigner D
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FIG. 1. (a) The channels p3/2, f5/2, and f7/2 in �3/2− . They are compared with the spherical single-particle radial wave function 1f7/2.
(b) The channels s1/2, d3/2, and d5/2 in �1/2+ . They are compared with the spherical single-particle radial wave function 1d3/2.

matrices

∫
dφ

∫
dθ sin θD

j∗
kn(φ,θ,0)Dj ′

k′n′(φ,θ,0)

= 4π

2j + 1
δjj ′δkk′δnn′ . (17)

This method allows us a straightforward use of the longitudinal
momentum distribution and the cross sections of stripping and
diffraction dissociation as calculated by the MOMDIS code for
each {l,j} component of the radial wave function and to sum
the contributions separately, with the average over orientations
for the halo wave function accounted for properly.

In general, the core-target S matrix, Sc(bc,�̂), depends
on orientation. Therefore, we have modified the MOMDIS

code to include deformation effects in the S matrix or in
the eikonal phase as in Eq. (12). We have then proceeded
to calculate momentum distributions and cross sections for
deformed projectiles following Eqs. (14)–(16). Our results are
presented in the next section.

III. RESULTS AND DISCUSSIONS

In this work we are particularly interested in neutron
removal from 31Ne projectiles. We consider two possible
ground spin-parity states, 3/2− and 1/2+, for 31Ne. Following
Refs. [12,30], we use the parameters of a deformed Woods-
Saxon potential given by R0 = RSO = RC = 3.946 fm, a0 =
aSO = 0.67 fm, and VSO = −17.33 MeV.

A. Deformed states in 31Ne

For the quadrupole deformation β2 = 0.4 and the effective
binding energy E = −0.15 MeV, we obtain the following
normalized deformed state with spin-parity 3/2−:∑

α

uα3/2− (r) =
√

0.24 p3/2(r) +
√

0.01 f5/2(r)

+
√

0.75 f7/2(r), (18)

with V0 = −40.0 MeV. In Fig. 1(a), the dashed lines represent
the radial functions of the deformed state, and the solid line
is the spherical single-particle radial wave function 1f7/2

obtained with β2 = 0 and an appropriate potential depth V0
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FIG. 2. The longitudinal momentum distribution for 12C(31Ne,30Ne)X at 230 MeV/nucleon. (a) The solid line is for the deformed state �3/2−

with β2 = 0.4 and E = −0.15 MeV, and the dashed line is for the spherical single-particle wave function 1f7/2 with the same binding energy.
(b) The solid line is for the deformed state �1/2+ with β2 = 0.6 and E = −0.6 MeV, and the dashed line is for the spherical single-particle
wave function 1d3/2 with the same binding energy.
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FIG. 3. Squared amplitudes,
∫

dr[uαω(r)]2, for the expansion of the states (a) �3/2− and (b) �1/2+ in the basis α = {l,j}.

to reproduce the same binding. We see that the deformation
shifts substantial contributions from the 1f7/2 state to the 2p3/2

state, at the level of 24%. Because there are uncertainties
in the quadrupole deformation parameter and the effective
binding energy, we consider the deformed state for several
values of β2 and E. As the deformation decreases, the state
�3/2− approaches the spherical wave function 1f7/2. It is worth
noticing that it is mostly the tail of the wave function (r � 4 fm)
that contributes to nucleon knockout reactions [14]. However,
studies with tightly bound nucleons have shown that this is not
always true [31].

For β2 = 0.6 and E = −0.6 MeV, another deformed state
with the spin-parity 1/2+ can be obtained,∑

α

uα1/2+ (r) =
√

0.59s1/2(r) +
√

0.37d3/2(r)

+
√

0.04d5/2(r), (19)

with the potential depth V0 = −38.1 MeV. In Fig. 1(b) we
show that the state �1/2+ approaches the spherical 1d3/2 state as
β2 → 0. Deformation drains the contribution of the 1d3/2 state
to the 2s1/2 state and makes their amplitudes nearly similar in
strength.

B. Nucleon knockout from 31Ne

We now consider the single-neutron removal reaction
12C(31Ne,30Ne)X at the laboratory energy of 230 MeV per
nucleon. The nucleon-nucleon scattering parameters αNN =
0.73, βNN = 0.58, and σNN = 3.02 fm2 are used [24,25]. The
intrinsic matter density of the neutron (or proton), ρ(r), is
taken as a Gaussian function, corresponding to a form factor,
ρ(q) = C exp(−a2q2/4). We use a = 0.7 fm for a nucleon
density rms radius of 0.86 fm. The density rms radii of the core
and target are 3.69 and 2.90 fm, respectively. For the core we
have used a liquid-drop model density [29], and for the carbon
target we have used the density parametrization taken from
Ref. [32]. We have verified that using a core density based on
a Hartree-Fock-Bogoliubov calculation with the SLy5 Skyrme
interaction does not change our results in a noticeable way. On
the other hand, Ref. [20] (see their Fig. 5) has shown that cross
sections have some sensitivity to the relative sizes of the core
and the neutron wave function.

In Fig. 2, we plot the calculated longitudinal momentum
distributions of the two deformed states (solid lines) and
compare with the distributions obtained using the spherical
single-particle wave functions (dashed lines). Near kz = 0, the
cross sections obtained with the deformed states are larger
than those obtained with the spherical wave functions. We
note that the width of the momentum distribution changes with
projectile deformation. This is expected because the p3/2 state
and the s1/2 state [in Eqs. (18) and (19)] have different, less
space confining, centrifugal barriers than the corresponding
f7/2 and d3/2 states, respectively. Therefore, admixture with the
p3/2 state and the s1/2 state will induce narrower momentum
distributions due to a larger spatial extension of the wave
functions. In fact, the spatial extension (the rms radius) of
the deformed states is larger than that of the spherical waves.
In summary, we expect the deformed states to produce larger
cross sections at low momentum and narrower momentum
distributions in comparison with the spherical waves.

To investigate the core deformation effects, we have
obtained the solutions with different values of the deformation
parameter β2 for fixed energy E. All the parameters of the
Woods-Saxon potential are fixed while the central potential
depth is adjusted so that the energy E of the state with β2 is
reproduced. Depending on β2, each shell occupation amplitude
in Eqs. (18) and (19) changes and so do their wave functions,
as displayed in Fig. 1 (see also Fig. 3). The rms radius of the
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FIG. 4. The wave functions’ rms radii.
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FIG. 5. Longitudinal momentum distributions of core fragments from neutron knockout from the deformed state �3/2− . (a) The dependence
on the quadrupole deformation is displayed. The dashed, dash-dotted, and dotted lines represent the calculated results using Eq. (12). The solid
lines are for the results obtained with Eq. (9). (b) The dependence on the effective binding energy of the valence neutron is shown.

deformed states, rrms = [
∑

α

∫
dr [uαω(r)]2r2]

1/2
, is shown in

Fig. 4. We note that rrms increases with deformation for fixed
E for reasons explained above.

In Figs. 5(a) and 6(a), we present the dependence of the
calculated longitudinal momentum distributions on projectile
deformation. The calculated results using the orientation-
dependent core-target S matrix, Eq. (12), are compared with
the results using the spherical S matrix, Eq. (9). With the
deformed phase, the total cross section increases by 2%–11%
compared with the spherical phase. The effect of the deformed
phase is pronounced near kz = 0 for strong deformation. As
expected from the relation between rrms and deformation
(Fig. 4), the stronger the quadrupole deformation is, the larger
cross section we obtain.

Similarly, in Figs. 5(b) and 6(b), we have calculated the
momentum distributions depending on E for fixed β2. The
rrms decreases as |E| increases, which is reflected in the
cross sections. We observe that the widths of momentum
distributions are sensitive to the effective binding energy of
the valence neutron, as in the spherical case. Smaller widths
are associated with smaller binding due to the larger extension
of the wave function. They are also influenced by the angular
momentum l content of the deformed state.

Evidently, the cross sections increase with the rms radii of
deformed states. This result contrasts with those reported in

Ref. [20] where no correlation between the cross sections and
the rms radii of the Nilsson states has been found. In Fig. 7,
we present the average l value, 〈l〉 = ∑

α lα
∫

dr[uαω(r)]2,
as a function of β2 and E. As the quadrupole deformation
grows, 〈l〉 decreases. This is because the probability of the
f7/2 (d3/2) component in the state �3/2− (�+

1/2) decreases
while that of p3/2 (s1/2) increases (see Fig. 3). As the core
mean-field deformation changes, the occupation probabilities
of spherical orbitals redistribute. Therefore, the cross sections
and the widths of the corresponding momentum distributions
change appreciably with deformation. When the binding
energy grows, the probability of each channel changes in the
opposite way. If the opposite behavior would increase 〈l〉 with
|E|, then the cross section would display an inverse trend with
the average l value. We note that the widths of longitudinal
momentum distributions increase with the average l value.
Although our deformed states show different behaviors with
the rms radii from the Nilsson states, the dependence of the
cross sections and momentum distributions on 〈l〉 obtained
with our method is similar to the results reported in Ref. [20].

For prolate projectile deformation, the cross section is
expected to be the largest when the symmetry axis is perpen-
dicular to the beam axis and the smallest when parallel. This
behavior is shown in Fig. 8 where we present our calculations
for neutron removal cross sections as a function of the Euler
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FIG. 7. The average l values of the states �3/2− and �1/2+ .

angle θo of the core symmetry axis. The distributions calculated
with the deformed eikonal phase are compared with those with
the spherical phase. In contrast to momentum distributions,
we find that orientation distributions are sensitive to the
orientation dependence of the core-target S matrix. Depending
on deformation, the core density in Eq. (10) changes with the
angle θo. The density has the maximum value at θo = π/2 and
the minimum at θo = 0. Thus, the cross sections calculated
with the deformed phase are larger (smaller) than the cross
sections with the spherical phase near θo = π/2 (θo = 0). The
deformation effects grow with β2.

According to our calculations, Fig. 9 shows the total cross
sections of stripping and diffraction dissociation. Both strip-
ping and diffraction cross sections increase with quadrupole
deformation. The total cross section of diffraction dissociation
amounts to 15%–19% of that of stripping.

In Fig. 10, we present the sum of stripping and diffraction
cross sections depending on β2 and E. The sum of cross
sections for the normalized deformed states [Eqs. (18) and
(19)] can be compared with the measured cross section feeding
the ground state of the residual core, σ gs

exp = 3.3(1.5) fm2 [33].
σstr+diff of �3/2− is comparable to σ

gs
exp while that of �1/2+ is

larger than the measured one unless β2 � 0.3.
We expect that once the spectroscopic factors are specified,

one can use the calculated cross sections and momentum

distributions to deduce the spin-parity state of 31Ne and to
determine the accurate values of β2 and E. In Ref. [33],
the experimental partial cross sections feeding the ground
core state and excited core states have been determined. The
neutron removal of the halo neutron from 31Ne is expected to
produce the core in its ground state. On the other hand, if the
core is produced in an excited state, the removed neutron is
likely to be one of the nonhalo neutrons from the core 30Ne.
Indeed, the cross section for populating excited core states
[σ inc

exp − σ
gs
exp = 90(7) − 33(15) mb] is similar to that of neutron

removal from 30Ne [62(2) mb at 228 MeV/nucleon] [34].
Our calculations in the above are for knockout reactions

of the halo neutron from 31Ne, populating the ground state
of the deformed core. For producing excited core states, we
can consider neutron removal from the core 30Ne. To compare
with inclusive (populating both ground and excited core states)
momentum distributions, we include spherical calculations for
neutron removal from 30Ne and add them to the ground-state
calculations (see Fig. 11). For excited states of the residue, the
neutron configurations of 2p3/2 and 1f7/2 are considered with
the spectroscopic factors of 0.34 and 0.80 [33], respectively,
in the case of the deformed state �3/2− . For the state �1/2+ ,
1d3/2 is considered with the spectroscopic factor 0.55 [33].

We mention that our approach has some limitations to
analyze the cross sections populating excited core states. The
cross sections of excited core states are independent of β2

and their (especially f and d configurations) dependencies on
E are relatively weaker than those of the ground core states.
In addition, the cross sections are not exclusively determined
by experimental measurements, and we can compare only the
sum of cross sections for both ground and excited core states
with data. As a result, the comparison of the inclusive cross
sections calculated in our method with experimental data is
somewhat subtle.

The comparisons of the ground-state cross section (Fig. 10)
and the inclusive cross section (Fig. 11) with experimental data
can be useful to investigate the possible ranges of β2 and E.
As discussed above, the dependencies of the inclusive cross
section on β2 and E are less clear though. For 0.3 � β2 � 0.5,
σ

gs
str+diff and σ inc

str+diff of �3/2− agree with experimental data if 0.3
MeV � |E| � 0.45 MeV. For β2 ≈ 0.2, the theoretical predic-
tions with 0.15 MeV � |E| � 0.3 MeV are comparable to the
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The solid lines are calculated with Eq. (9), and the dashed, dash-dotted, and dotted lines are calculated with Eq. (12).
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FIG. 12. The inclusive longitudinal momentum distribution for the deformed state �3/2− . In panel (a), the valence neutron contributions
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measured ones. On the other hand, σ gs
str+diff of �+

1/2 with strong
deformation is larger, but σ inc

str+diff with weak deformation and
strong binding is smaller than experimental data.

Figures 12 and 13 show the comparison of the inclusive
momentum distributions with experimental data. In Fig. 12(a),
the partial cross sections feeding the ground (3/2−) core state
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FIG. 13. Same as Fig. 12 but for the deformed state �1/2+ . The
valence neutron contributions from �1/2+ and 1d3/2 are shown as the
dashed and dashed-dotted lines, respectively.

and the excited (2p3/2 and 1f7/2) core states are shown as styled
lines. The solid line represents the sum of all the contributions
and is compared with the data. For β2 = 0.2, the inclusive
momentum distribution with E = −0.3 MeV agrees with the
experimental data. However, the momentum distribution with
larger (smaller) |E| is wider (narrower) than the measured
one. For 0.3 � β2 � 0.5, the momentum distributions are
comparable if 0.3 MeV � |E| � 0.45 MeV. The inclusive
longitudinal momentum distributions are not very sensitive
to deformation except near kz = 0. Especially, the results in
Figs. 12(b), 12(c), and 12(d) exhibit almost the same widths
for each E = −0.3 and −0.45 MeV. On the other hand, the
longitudinal momentum distributions of the deformed state
�1/2+ do not agree with the experimental data. Figure 13 shows
the momentum distribution with β2 = 0.4, but for stronger
deformation (which is suggested by Ref. [12]) the distributions
become narrower.

The calculated momentum distributions of the state �3/2−

have the full width at half maximum, approximately 82–
93 MeV/c, and they are narrower at low momentum and
broader at high momentum than the measured one. The width
of the measured momentum distribution is 77(18) MeV/c,
extracted from a Lorentzian fit [33]. In the contribution of the
ground state of the residue, we have not included interference
contributions, which might account for the difference between
our results and experimental data.
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For β2 = 0.5 and E = −0.15 MeV, the probabilities for
reactions through the channels p3/2, f5/2, and f7/2 in Fig. 3(a)
are close to those in Fig. 3(b) of Ref. [12]. The deformed state
�3/2− seems to have a good correspondence with the Nilsson
level [321 3/2].

IV. SUMMARY

Using the Glauber model for knockout reactions, we have
studied the one-neutron removal reaction from the deformed
projectile 31Ne incident on carbon targets at 230 MeV/nucleon.
We have generated single-particle wave functions with a
deformed Woods-Saxon potential to calculate longitudinal
momentum distributions using an orientation-dependent core-
target S matrix. The calculated longitudinal momentum
distributions and cross sections have been analyzed with a
quadrupole deformation parameter and an effective binding
energy of the valence neutron.

We observe that the cross section for the reaction increases
with the wave function rms radius of the deformed states
and has the inverse trend to the average l value. This trend
is meaningful based on the interpretation of the role of the
centrifugal barrier. The width of the momentum distribution
is also sensitive to the effective binding energy of the valence
neutron, as it determines the extension of the single particle
states.

Our major conclusions are as follows. The sum of stripping
and diffraction cross sections of the normalized state �3/2−

is comparable with the measured cross section feeding the
ground state of the residue. By including the neutron removal
from the core with the neutron configurations p and f , the
inclusive momentum distribution and the total cross section
for β2 ≈ 0.2 and 0.3 � β2 � 0.5 agree with experimental
data if |E| ≈ 0.3 MeV and 0.3 MeV � |E| � 0.45 MeV,
respectively. We mention that the inclusive longitudinal mo-

mentum distribution is not very sensitive to deformation at
least for β2 = 0.3–0.5. By including spherical calculations for
excited core states, the dependencies of the total cross sections
and the longitudinal momentum distributions on β2 and E
become weaker than those of the ground core states. In that
respect, our approach has some subtleties to analyze the total
inclusive cross sections. Our result, nevertheless, is consistent
with the analysis of Refs. [12] and [33] in which a small
neutron separation energy of Sn = 0.15+0.16

−0.10 MeV is obtained
(the measured one Sn = 0.29 ± 1.64 MeV [35] contains large
uncertainties). On the other hand, the cross sections of �1/2+

are larger and the widths of their corresponding momentum
distributions are narrower than experimental data unless the
core is weakly deformed (which disagrees with Ref. [12]).

Our results indicate that 31Ne has the spin-parity 3/2−.
With exclusive experimental measurements of cross sections
and momentum distributions for both ground and excited core
states, our method can be used further to study the spin-parity
state of deformed nuclei, and the effects of deformation and
binding energies, on nucleon removal reactions.
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APPENDIX: THE EIKONAL PHASE FOR QUADRUPOLE
DEFORMED CORE

In the second term of Eq. (11),

1

2π

∫
d2q ρt (q)fNN (q) e−i(b−ρ)·q = 1

2π

∫
dq qρt (q)fNN (q)

∫
dφq e−i|b−ρ|q cos φq ,

=
∫

dq qρt (q)fNN (q)J0(|b − ρ|q). (A1)

Using the Graf’s addition theorem [36],

J0(
√

x2 + y2 − 2xy cos φ) =
∑

n

Jn(x)Jn(y)einφ, (A2)

we have

1

2π

∫
d2qρt (q)fNN (q)e−i(b−ρ)·q =

∫
dqqρt (q)fNN (q)

∑
n

Jn(qb)Jn(qρ)einφ. (A3)

Then, for the quadrupole deformed core, the second term of Eq. (11) becomes

∑
m

R0β2D
2
m0(�̂)

∫
d3rY2m(r̂)

∂ρc

∂r

∣∣∣∣
β2=0

1

2πkNN

∫
d2qρt (q)fNN (q)e−i(b−ρ)·q

=
∑
m

1

kNN

R0β2D
2
m0(�̂)

∫
drr2

∫
dθ sin θ

∫
dφY2m(r̂)

∂ρc

∂r

∣∣∣∣
β2=0

∫
dqqρt (q)fNN (q)

∑
n

Jn(qb)Jn(qρ)einφ. (A4)
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By integrating over φ and θ , Eq. (A4) becomes

∑
m

√
(2 − m)!

(2 + m)!

√
5π

kNN

R0β2D
2
m0(�̂)

∫
drr2

∫
dθ sin θP m

2 (cos θ )
∂ρc

∂r

∣∣∣∣
β2=0

∫
dqqρt (q)fNN (q)J−m(qb)J−m(qr sin θ )

=
√

5π

kNN

R0β2D
2
00(�̂)

∫
dr

∂ρc

∂r

∣∣∣∣
β2=0

∫
dqJ0(qb)ρt (q)fNN (q)

1

q2r
[(3 − q2r2) sin(qr) − 3qr cos(qr)] +

√
15π

2

1

kNN

×R0β2
[
D2

20(�̂) + D2
−20(�̂)

] ∫
dr

∂ρc

∂r

∣∣∣∣
β2=0

∫
dqJ2(qb)ρt (q)fNN (q)

1

q2r
[(3 − q2r2) sin(qr) − 3qr cos(qr)]. (A5)
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