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Background: The nuclear spectral function is a fundamental quantity that describes the mean-field and short-
range correlation dynamics of nucleons embedded in the nuclear medium; its knowledge is a prerequisite for
the interpretation of various electroweak scattering processes off nuclear targets aimed at providing fundamental
information on strong and weak interactions. Whereas in the case of the three-nucleon and, partly, the four-nucleon
systems, the spectral function can be calculated ab initio within a nonrelativistic many-body Schroedinger
approach, in the case of complex nuclei only models of the correlated, high-momentum part of the spectral
function are available so far.
Purpose: The purpose of this paper is to present a new approach such that the spectral function for a specific
nucleus can be obtained from a reliable many-body calculation based upon realistic nucleon-nucleon interactions,
thus avoiding approximations leading to adjustable parameters.
Methods: The expectation value of the nuclear many-body Hamiltonian, containing realistic nucleon-nucleon
interaction of the Argonne family, is evaluated variationally by a normalization-conserving linked-cluster
expansion and the resulting many-body correlated wave functions are used to calculate the one-nucleon and
the two-nucleon momentum distributions; by analyzing the high-momentum behavior of the latter, the spectral
function can be expressed in terms of a transparent convolution formula involving the relative and center-of-mass
(c.m.) momentum distributions in specific regions of removal energy E and momentum k.
Results: It is found that as a consequence of the factorization of the many-body wave functions at short
internucleon separations, the high-momentum behavior of the two-nucleon momentum distributions in A =
3,4,12,16,40 nuclei factorizes, at proper values of the relative and c.m. momenta, into the c.m. and relative
momentum distributions, with the latter exhibiting a universal A-independent character. By exploiting the
factorization property, it is found that the correlated part of the spectral function can be expressed in terms
of a convolution formula depending upon the many-body relative and c.m. momentum distributions of a nucleon
pair.
Conclusions: The obtained convolution spectral function of the three-nucleon systems, featuring both two-and
three-nucleon short-range correlations, perfectly agrees in a wide range of momentum and removal energy
with the ab initio spectral function, whereas in the case of complex nuclei the integral of the obtained spectral
functions (the momentum sum rule) reproduces with high accuracy the high-momentum part of the one-nucleon
momentum distribution, obtained independently from the Fourier transform of the nondiagonal one-body density
matrix. Thus, the convolution spectral function we have obtained appears to indeed be a realistic microscopic,
parameter-free quantity governed by the features of the underlying two-nucleon interactions.
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I. INTRODUCTION: NUCLEON SPECTRAL FUNCTION

The hole spectral function (SF) of nucleon N1, P
N1
A (k1,E)

is an important quantity playing a relevant role in the inter-
pretation of various types of scattering processes off nuclei, in
particular the electroweak ones; as is well known, it represents
the joint probability that when nucleon N1 (usually called the
active nucleon) with momentum k1 is removed instantaneously
from the ground state of the nucleus A, the nucleus (A − 1)
(usually called the spectator nucleus) is left in the excited state
E∗

A−1 = E − Emin, where E is the nucleon removal energy
and Emin = MA−1 + mN − MA = |EA| − |EA−1|, with EA

and EA−1 being the (negative) ground-state energy of nuclei
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A and A − 1, respectively. The SF, which takes into account
the fact that nucleons in nuclei have not only a momentum
distribution, but also a distribution in energy, is trivially related
to a well-defined many-body quantity, namely the two-points
Green’s function (see, e.g., Ref. [1]). In what follows the
well-known representation of the SF of nucleon N1 = (proton
or neutron) will be used, namely,

P
N1
A (k1,E) = 1

2J + 1

∑
M,σ1

〈
�JM

A

∣∣a†
k1σ1

δ

× (E − (ĤA − EA))ak1σ1

∣∣�JM
A

〉
(1)

= 1

2J + 1

∑
M,σ1

∑∫
f

∣∣〈�f
A−1

∣∣ak1σ1

∣∣�A
JM

〉∣∣2
δ

× (
E − (

E
f
A−1 − EA

))
(2)
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= 1

2J + 1
(2π )−3

×
∑
M,σ1

∑∫
f

∣∣∣∣ ∫ dr1e
ik1·r1 G

Mσ1
f (r1)

∣∣∣∣2

× δ
(
E − (

E
f
A−1 − EA

))
, (3)

where a
†
k1σ1

(ak1σ1 ) is the creation (annihilation) operator of a
nucleon with momentum k1 and spin σ1, ĤA is the intrinsic
Hamiltonian of A interacting nucleons, and the quantity

G
Mσ1
f (r1) = 〈

χ1/2
σ1

,�
f
A−1({x}A−1)

∣∣�JM
A (r1,{x}A−1)

〉
, (4)

which has been obtained by using the completeness
relation for the eigenstates of the nucleus (A − 1),
(
∑

f |�f
A−1〉〈�f

A−1| = 1), is the overlap integral between the
ground-state wave function of nucleus A, �JM

A , and the
wave functions of the discrete and all possible continuum

eigenfunctions, �
f
A−1 (with eigenvalue E

f
A−1 = EA−1 +

E
f ∗
A−1), of nucleus (A − 1); eventually, {x} denotes the set of

spin-isospin and radial coordinates. The angle-integrated SF
is normalized according to

4 π

∫
P

N1
A (k1,E) k2

1 d k1dE = Z(N ), (5)

where Z(N ) denotes the number of proton (neutron) in the
nucleus. The integral over the removal energy of the SF (the
momentum sum rule) provides the one-nucleon momentum
distribution

n
N1
A (k1) =

∫
P

N1
A (k1,E) d E, (6)

which is linked to the two-nucleon momentum distribution
n

N1N2
A (k1,k2), a quantity to be used in what follows, by the

relation (N1 �= N2)

n
N1
A (k1) = 1

A − 1

[∫
n

N1N2
A (k1,k2) d k2 + 2

∫
n

N1N1
A (k1,k2) d k2

]
. (7)

The one- and two-nucleon momentum distributions are defined as follows:

n
N1
A (k1) = 1

(2π )3

∫
dr1 dr′

1 ei k1·(r1−r′
1) ρ

N1
A (r1; r′

1), (8)

and

n
N1N2
A (k1,k2) = 1

(2π )6

∫
dr1 dr2 dr′

1 dr′
2 ei k1·(r1−r′

1) ei k2·(r2−r′
2) ρ

N1N2
A (r1,r2; r′

1,r
′
2), (9)

with the one- and two-nucleon nondiagonal density matrices, ρ
N1
A (r1; r′

1) and ρ
N1N2
A (r1,r2; r′

1,r
′
2), being

ρ
N1
A (r1; r′

1) =
∫

ψJM ∗
A (r1,r2,r3 . . . ,rA) P̂N1 (1)ψJM

A (r′
1,r2,r3, . . . ,rA) δ

(
A∑

i=1

ri

)
A∏

i=2

dri , (10)

ρ
N1N2
A (r1,r2; r′

1,r
′
2) =

∫
ψJM ∗

A (r1,r2,r3 . . . ,rA) P̂N1 (1)P̂N2 (2)ψJM
A (r′

1,r
′
2,r3, . . . ,rA) δ

(
A∑

i=1

ri

)
A∏

i=3

dri , (11)

where P̂N (i) is a projection operator on particle N . Unless differently stated, the following normalizations will be used in the
rest of the paper ∫

n
N1
A (k1)dk1 = Z|N1=p = N |N1=n, (12)∫

n
N1N2
A (k1,k2)dk1 dk2 = Z(Z − 1)

2

∣∣∣∣
N1=N2=p

= N (N − 1)

2

∣∣∣∣
N1=N2=n

= ZN |N1=p,N2=n, (13)

with ∑
N1N2

∫
n

N1N2
A (k1,k2)dk1 dk2 =

∑
N1N2

∫
ρ

N1N2
A (r1,r2)dr1 dr2 = A(A − 1)

2
. (14)

It can be seen that the SF and the one- and two-nucleon mo-
mentum distributions have to satisfy simultaneously Eqs. (6)
and (7). However, whereas the calculation of the momentum
distributions requires only the knowledge of the ground-
state wave functions, the calculation of the SF requires the
knowledge of both the ground-state wave function of nucleus A

and the entire spectrum of wave functions of the nucleus A − 1.
It is for this reason that the SF has been calculated exactly
(ab initio) only in the case of the three-nucleon systems (see
Refs. [2,3]), and partly four-nucleon system [4], whereas in the
case of complex nuclei only models can be produced. It should
be stressed here that one of the basic requirements for the
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validity of these models of the SF is the following: when they
are integrated in the momentum sum rule [Eq. (6)], they have to
provide the momentum distribution calculated independently
by Eq. (8). If short-range correlations (SRCs) are taken into
account the angle-integrated nucleon SF is usually represented
in the following form [5] (|k1| ≡ k1 ≡ k)1

P
N1
A (k,E) = P

N1
MF(k,E) + P

N1
SRC(k,E), (15)

with P
N1
MF, describing the mean-field (MF) structure of the

nucleus, given by

P
N1
MF(k,E) = 1

4π

∑
α<αF

Aαnα(k) δ(E − |εα|), (16)

where Aα denotes the number of particles in a pure shell-
model state below the Fermi sea characterized by a momentum
distributions nα(k) dominated by low-momentum components
(k � 1 − 1.5 fm−1) and spectroscopic factors such that

Nα =
∫ ∞

0
nSM

α (k) k2 d k < 1. (17)

In momentum configuration, the first term in Eq. (15) describes
the low-momentum, partially occupied ground-state shell-
model components below the Fermi level, whereas the second
term describes high-momentum components created by SRC,
whose main effect is to deplete the states below the Fermi
level, creating occupied states above it. As already pointed
out, the correlated part of the SF cannot be calculated exactly
for A > 4; as a result, for complex nuclei essentially two
models of the correlated SF have been developed so far. Both
of them have the general structure of Eq. (15) and treat the
uncorrelated part in the same way, but different models are
used for the correlated part P

N1
SRC(k,E): in the first model

[6] the calculated high-momentum components in nuclear
matter [7] are used for finite nuclei via the local density
approximation (LDA), whereas in the second model [8] the
high-momentum components in the nuclear ground state arise
from a universal property of the ground-state wave function,
namely its factorization into short-range and long-range parts
in configuration space, arising whenever a pair of nucleons is
located in the region of NN interaction dominated by SRC; in
this case the SF is expressed in terms of quantities peculiar
for the given nucleus, namely the center-of-mass (c.m.) and
relative momentum distributions of a correlated nucleon pair.
The first model has been intensively and successfully used
in the description of electroweak processes, in particular in
neutrino scattering off nuclei (see, e.g., Ref. [9]), whereas the
second one was employed (see, e.g., Ref. [10]) in the analysis
of recent experimental data on SRC [11], in the interpretation
of deep inelastic scattering [12] and in the extraction of the
nucleon structure functions from DIS off nuclei [13]. The
aim of the present paper is to illustrate an approach, which
extends the model of Ref. [8] leading to an improved realistic
microscopic convolution model of the SF of complex nuclei.

1Different but equivalent notations are used by different authors,
e.g., P N1 (k,E) = P

N1
0 (k,E) + P

N1
1 (k,E), P N1 (k,E) = P N1

gr (k,E) +
P N1

ex (k,E), and others.

II. FACTORIZATION OF THE MANY-BODY NUCLEAR
WAVE FUNCTIONS AT SHORT RELATIVE DISTANCES

AND THE CORRELATED MOMENTUM DISTRIBUTIONS

A. Factorization: The fundamental property of the nuclear
wave function at short internucleon ranges

The assumption of wave function factorization at short
internucleon ranges is a concept that has been frequently
used in the past as a physically sound approximation of the
unknown nuclear wave function, mainly to explain certain
classes of medium-energy experiments (see, e.g., Ref. [14]),
without providing, however, any evidence of its quantitative
validity, due to the lack, at that time, of realistic solutions
of the nuclear many-body problem. These, however, became
recently available and the validity of the factorization property
could be checked. As a matter of fact, in the case of ab initio
wave functions of few-nucleon systems [15] the factorization
property of the wave functions has been demonstrated to hold,
and the same was shown to occur in the case of nuclear
matter [16], treated within the Brueckner-Bethe-Goldstone
(BBG) theory [17]; moreover, the general validity of the
factorization property has also been demonstrated in several
recent papers [18]. The first approach to employ factorization
in order to obtain the SF appeared in Ref. [8]; there indeed it
has been assumed that at short internucleon relative distances
rij = ri − ri , much shorter than the center-of-mass coordinate
Rij = [ri + ri]/2 the nuclear wave function

�JM
A ({r}A) = Â

⎧⎨⎩ ∑
n,m,fA−2

am,n,fA−2 [[�n(xij ,rij ) ⊕ χm(rij )]

⊕�fA−2 ({x}A−2,{r}A−2)]

⎫⎬⎭, (18)

can be written as follows (see also Ref. [18])2

lim
rij 
Rij

�JM
A ({r}A) � Â

⎧⎨⎩χc.m.(rij )
∑

n,fA−2

an,fA−2 [�n(xij ,rij )

⊕�fA−2 ({x}A−2,{r}A−2)]

⎫⎬⎭. (19)

In Eqs. (18) and (19): (i) {r}A and {r}A−2 denote the set of
radial coordinates of nuclei A and A − 2, respectively; (ii) rij

and Rij are the relative and c.m. coordinate of the nucleon
pair ij , described, respectively, by a short-range relative wave
function �n and the c.m. wave function χc.m.; (iii) {x}A−2

and xij denote the set of spin-isospin coordinates of the
nucleus (A − 2) and the pair (ij ). Placing Eq. (19) in the

2In Ref. [8] it has been assumed that the c.m. of the pair moves
in 0s state implying that factorization occurs only when the c.m
momentum is very small (Kc.m. � 1 fm−1) with the high momenta
being due only to the correlated pairs; as we shall see in what follows
factorization can occur also when Kc.m. is not necessary very low,
provided |krel| � |Kc.m.|.
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definition of the two-nucleon momentum distribution [Eq. (9)]
and changing variables from k1, k2 to krel = (k1 − k2)/2
and Kc.m. = k1 + k2, the following expression of the two-
nucleon momentum distributions is obtained in the region of
factorization [19]

n
N1N2
A (k1,k2) = n

N1N2
A (k1,k2,θ12) = n

N1N2
A (krel,Kc.m.,θ )

� nN1N2
c.m. (Kcm) n

N1N2
rel (krel), (20)

which is the basic result underlying the short-range structure
of nuclei, namely, at high values of krel � Kc.m. (rrel 

Rc.m.) the momentum distribution of two correlated nucleons
factorizes into the relative and c.m. momentum distributions,
i.e., no longer depends upon angle θ between krel and Kc.m..
In other words, when SRCs are at work, the relative and c.m.
motions are decoupled. A systematic analysis of factorization
for nuclei with A = 3,4,12,16,40 has been presented in
Ref. [19] and the results of this paper allowed one to pick
up the region of variation of the relative and c.m. momentum
distributions where factorization takes place. This is a relevant
achievement, for it allows us to obtain the SF in this region
free of any adjustable parameter. Indeed the exact relation
between one- and two-nucleon momentum distributions given
by Eq. (7) can be expressed, in the factorization region, in terms
of the following convolution formula (krel = [k1 − k2]/2 =
k1 − Kc.m./2)

n
N1
A (k1) �

[∫
n

N1N2
rel

(∣∣∣∣k1 − Kc.m.

2

∣∣∣∣)nN1N2
c.m. (Kc.m.) d Kc.m.

+ 2
∫

n
N1N1
rel

(∣∣∣∣k1 − Kc.m.

2

∣∣∣∣)nN1N1
c.m. (Kc.m.) d Kc.m.

]
× d Kc.m. ≡ n

N1
SRC(k1). (21)

This represents the correlated momentum distributions, which
will be used in Sec. IV to obtain the correlated SF. Before that
we will discuss in the next section the situation concerning
the feasibility of reliable many-body calculations based upon
realistic models of the NN interaction, providing parameter-
free ground-state wave functions, which are necessary to
produce the c.m. and relative momentum distributions.

III. MANY-BODY CALCULATIONS OF THE
ONE-NUCLEON AND TWO-NUCLEON

MOMENTUM DISTRIBUTIONS

A. Realistic many-body approach to the ground state of nuclei

During the last few years the calculation of the ground-state
property of few-nucleon systems and light nuclei (binding
energy and radii, charge density, and momentum distributions)
has reached a high degree of sophistication so that quantities
such as Eqs. (8) and (9) can be calculated with ground-state
wave functions �JM

A ({x}), which are realistic solutions of the
nonrelativistic Schrödinger equation⎡⎣∑

i

p̂2
i

2 mN

+
∑
i<j

v̂2(xi ,xj ) +
∑

i<j<k

v̂3(xi ,xj ,xk)

⎤⎦�
f
A ({x}A)

= E
f
A �

f
A ({x}A). (22)

Here {x}A ≡ {x1,x2,x3, . . . , xA} denotes the set of A gen-
eralized coordinates (the spatial coordinates satisfying the
condition

∑A
i=1 ri = 0), f stands for the complete set of

quantum numbers of state f and, eventually, v̂2 and v̂3 are
realistic models of two-nucleon (2N) and three-nucleon (3N)
interactions. In what follows we will be mainly interested
in the ground-state wave function �

f =0
A ≡ �0. Once the

interactions are fixed, Eq. (22) should be solved ab initio,
i.e., exactly, which is possible only the case of few-nucleon
systems with A = 3,4; for A > 4 ab initio solutions cannot
yet be found, and only approximate solutions, mostly based
on the variational principle, are available. Equation (22) has
been solved within various many-body approaches using 2N
interactions, which explain two-nucleon bound and scattering
data and, considering, also 3N interactions, which are intro-
duced to explain the properties of the 3N bound states. In
these calculations advanced forms of the NN interaction are
provided by the so-called Argonne family, in which case they
have the following general form [20]:

v(xi ,xj ) =
nmax∑
n=1

v(n)(rij )O(n)
ij , (23)

where xk ≡ {rk,sk,tk} denotes the set of nucleon radial, spin,
and isospin coordinates, O

(n)
ij is a proper operator depending

upon the orbital, spin and isospin momenta, and nmax = 18; in
the case of purely central interaction one has O

(n=1)
ij = 1 and

O
(n>1)
ij = 0, whereas in the realistic case the most important

operators are as follows:

Ô
(1)
ij ≡ Ôc

ij = 1 Ô
(2)
ij ≡ Ôσ

ij = σ i · σ j

Ô
(3)
ij ≡ Ôτ

ij = τ i · τ j Ô
(4)
ij ≡ Ôσ τ

ij = (σ i · σ j ) (τ i · τ j )

Ô
(5)
ij ≡ Ôt

ij = Ŝij Ô
(6)
ij ≡ Ôt τ

ij = Ŝij (τ i · τ j ), (24)

where Ŝij is the tensor operator. Using such an NN potential,
supplemented by 3N forces, ab initio solutions of the three-
body [21] and four-body [22] nuclei, have been obtained. As
for A > 4 nuclei realistic ground-state wave functions are
available from variational calculations, i.e., from the mini-
mization of the expectation value of realistic nonrelativistic
Hamiltonians, namely,

〈Ĥ 〉 = 〈�0|Ĥ |�0〉
〈�0|�0〉 ≡ EV

A � E0
A, (25)

assuming the following correlated wave function as the
variational one

�0({x}A) = F̂ ({x}A)�0({x}A), (26)

where �0({x}A) is a mean-field wave function and

F̂ ({x}A) = ŜA

∏
i<j

[
nmax∑
n=1

f (n)(rij ) Ô
(n)
ij

]
(27)

is a symmetrized (by the operator ŜA) product of operators Ô
(n)
ij

(the same that appear in the two-nucleon interaction [Eq. (23)])
and f (n) is a correlation, which reflects the features of the
two-nucleon interaction and cures its possible singularities,
e.g., if only central hard core interactions are considered, the
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well-known Jastrow form is obtained [23]

F̂J ({x}A) =
∏
i<j

fC(rij ), (28)

where fC(rij ) = 0 when rij � rc, if the two-nucleon potential
exhibits a hard core of radius rc. For complex nuclei with
A� 12, Eq. (25) has been evaluated exactly within the
Variational Monte Carlo (VMC) approach [24], based upon the
numerical evaluation of the multidimensional integrals; by this
way the VMC ground-state energy and wave functions have
been obtained and the momentum distributions were accord-
ingly calculated. For A > 12 the increasing dimension of the
required integrals related to the noncentral part of the potential,
forbids till now the exact evaluation Eq. (25), so that some
approximations are still necessary. In the Cluster Variational
Monte Carlo (CVMC) [25] the contributions arising from
the central part of the interaction are evaluated exactly with
Jastrow-like wave functions, whereas the contributions arising
from the noncentral part of the interaction were considered
only for a limited number (five) of correlated nucleons; the
CVMC has been recently applied to the description of 16O and
40Ca nuclei [26]. Thus due to the heavy numerical computation
efforts required by the increasing number of nucleons, also
CVMC is still difficult to perform and various alternative
methods have been so far developed, based, in close analogy
with the theory of quantum fluids [27], upon the evaluation of
the expected leading contributions of Eq. (25). In particular,
the following approaches should be mentioned: (i) the fermion
hypernetted chain method (FHNC), where a certain class
of contribution (the nodal diagrams), are summed to all
orders (see Refs. [28,29]) and (ii) various cluster expansion
approaches [30,31] in which the expectation value of a given
operator is rearranged in a series, whose zeroth-order term is
the mean-field contribution and the nth order term provides the
contribution from n correlated nucleons. In this connection
let us stress, as it is well known and also recently recalled
[26], that the procedure of considering lowest-order terms
in the numerator and in the denominator of the expectation
value of a certain operator and then taking their ratio, should
not be pursued due to the presence, both in the numerator
and the denominator, of unlinked terms, which produce the
divergence of the ratio with increasing number of particles. In
our approach, we have followed the normalization-conserving
linked cluster expansion (NCLCE) developed in Ref. [31],
applied in the case of central interactions in Ref. [32] and
generalized in Ref. [33] to the case of realistic interactions and
applied to the calculations of the properties of 16O and 40Ca.
The main feature of NCLCE can be illustrated in the simple
case of the calculation of the expectation value of a generic
operator Ô and a Jastrow-like wave function, i.e., in the case of

〈Ô〉 = 〈�|Ô|�〉
〈�|�〉 = 〈ψMF|

∏
f (rij )Ô

∏
f (rij )|ψMF〉

〈ψMF|
∏

f (rij )2|ψMF〉 . (29)

By writing

f (rij )2 = 1 + η(rij ) (30)

and expanding the resulting denominator in Eq. (29), [1 +
x]−1 = 1 − x + x2 − · · · , it can be shown that the unlinked

terms in the numerator exactly cancel out the ones arising from
the denominator and a convergent series expansion containing
only linked terms is obtained in the following form:

〈Ô〉 = 〈ψMF|Ô|ψMF〉 + 〈Ô〉1 + 〈Ô〉2 + · · · + 〈Ô〉n + · · · ,

(31)

where the subscripts denote the number of ηij appearing in
the given term, 〈ψMF|Ô|ψMF〉 represents the MF uncorrelated
contribution and the other terms represent the contribution
from all linked and topologically distinct Ivon-Mayer
diagrams [34], describing clusters of correlated nucleons.3

For example the first-order term is explicitly written as [33]

〈Ô〉1 = 〈ψMF|
∑
i<j

(f (rij )Ôf (rij ) − Ô)|ψMF〉

− 〈ψMF|Ô|ψMF〉〈ψMF|
∑
i<j

(f (rij )2 − 1)|ψMF〉. (32)

If the correlation function has the form like Eq. (27), the
above expression is extended to the following form:

〈Ô〉1 = 〈ψMF|
∑
i<j

(f̂ (ij )Ôf̂ (ij ) − Ô)|ψMF〉

− 〈ψMF|Ô|ψMF〉〈ψMF|
∑
i<j

(f̂ (ij )f̂ (ij ) − 1)|ψMF〉,

(33)

where

f̂ (ij ) ≡
nmax∑
n=1

f (n)(rij )Ô(n)
ij . (34)

The merit of this approach is the full cancellation of
unlinked clusters contribution, which is a prerequisite for
any convergent cluster expansion. The explicit expressions
of the one- and two-nucleon nondiagonal density matrices at
the first order, which include clusters of up to four particles,
are given in the Appendix. They are the basic quantities that
are necessary to obtain the one-nucleon and two-nucleon
momentum distributions.

Once the cluster expansion has been chosen the problem re-
mains of the choice of the variational parameters, which char-
acterize both the wave function and the correlation functions.
Indeed these have to be chosen as the ones, which minimize the
expectation value of the Hamiltonian [Eq. (25)]. As far as the
correlation functions are concerned, it is a common practice
(see, e.g., Ref. [29]) to obtain their shape by the minimization
of the Hamiltonian at lowest order, obtaining by this way Euler-
Lagrange equations, which fix the shape of the correlation
functions f (n)(r), according to the following conditions:

f (p=1)(r) = fc(r) → 1 at r � d (35)

f (p>1)(r) → 0 as r → ∞, (36)

3Note, in order to avoid confusion, that the first term of Eq. (31) is
a pure independent-particle contribution, whereas in the definition of
the SF [Eq. (15)] the mean-field part P

N1
MF(k,E) is renormalized by

the spectroscopic factor of the single particle orbits.
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TABLE I. A comparison of the results of three realistic many-body calculations for the ground-state energy and r.m.s. radius of A = 16
obtained by the minimization of Eq. (25): Cluster variational Monte Carlo (CVMC) [26], normalization conserving linked cluster expansion
(NCLCE) [33]. The three methods are variational ones and use Woods-Saxon single-particle wave functions and similar 2N interactions, with
and without 3N UIX interaction. Energies in MeV and radii in fm.

Mean Field Approach Potential (E/A) (E/A)exp 〈r2〉1/2 (〈r2〉1/2)exp

WS NCLCE AV8′ −4.4 −7.98 2.64 2.69
WS CVMC AV18 −5.5 −7.98 2.54 2.69
WS CVMC AV18+UIX −5.15 −7.98 2.74 2.69

where d, the healing distance, representing the distance
beyond which the two-body correlated wave function
ψ(12) heals to the uncorrelated one φ(12), becomes the
general variational parameter of the expansion together
with the mean-field parameters. To sum up, there are at the
moment realistic many-body wave functions, solutions of
Eq. (22), which can be used to calculate realistic momentum
distributions and model SF, without recurring to parameterized
wave functions not corresponding to the minimization of
the ground-state energy, or model wave functions containing
adjustable parameters. At the same time, it turns out, as it will
be shown in what follows, that the approach described above,
namely a parameter-free NCLCE can provide, with much less
numerical efforts, results for the ground-state properties of
light and medium weight nuclei in reasonable agreement with
VMC [24] and CVMC results [26]. In Sec. III B, following

Ref. [19], we will compare the results of our approach with the
results of various many-body calculations of the ground-state
energy and the one- and two-nucleon momentum distributions,
whereas in Sec. IV, following the procedure of Ref. [35], we
will present the results for the SF of complex nuclei.

B. Comparison of our results with the results of VMC and
CVMC many-body approaches

1. Binding energies, two-nucleon correlation functions and
one-nucleon momentum distribution

In Table I and Figs. 1–4 we compare the results of
our NCLCE calculations with the results of other methods,
particularly the VMC [24] and CVMC [26] ones obtained with
similar NN interactions, omitting and including 3N forces. In
Table I the values of the ground-state energy and r.m.s radii
are compared, whereas Fig. 1 shows the two-body densities

FIG. 1. (Top) The two-body density ρ(2)
n (r = |r1 − r2|) obtained in the variational NCLCE calculation of Ref. [33] performed with the

first six components of the Argonne V 8′ NN interaction [Eq. (24)] corresponding to the values of the ground-state energy and radius listed in
Table I. (Bottom) The same as in the top panel but in the case of the calculation of Ref. [26] performed with the AV18 NN interaction plus
UIX 3N interaction.
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FIG. 2. The proton (np = nn) one-nucleon momentum distribu-
tion of 4He and 16O obtained in Ref. [26] within the cluster variational
Monte Carlo (CVMC) and in Ref. [33] within the NCLCE at the
lowest order.

associated to the six correlation functions corresponding to
the operators given in Eq. (24). An acceptable similarity of our
results with the most advanced CVMC approach can be seen.
In Fig. 2 we compare the one-nucleon momentum distribution
of 16O and 40Ca we have obtained in Ref. [33] with recent
CVMC results [26] and a remarkable agreement is evident.4 In
Fig. 3 we also show the results of several different approaches
to the momentum distributions of 16O. Since, as usual, the
momentum distributions are given on a log plot, in Fig. 4 we
show the quantity

�n(k) = 100
nx(k) − nCVMC(k)

nVCVM(k)
(37)

measuring the percent deviation of the theoretical momentum
distribution of 16O shown in Fig. 3, with respect to the CVMC
results of Ref. [26], taken as the reference momentum distribu-
tions. From this plot it can again be seen that our one-nucleon
momentum distributions are sufficiently realistic ones.

4In previous and present calculations we did not include the 3N
interaction in Eq. (22), since we considered that the effects of the
known 3N forces, conceived in order to provide the missing binding in
3He, obtained when only 2N forces are considered, should not produce
large effects on the high-momentum content of the momentum
distribution, as indeed was demonstrated by recent CVMC in 16O
and 40Ca (see Figs. 11–13 of Ref. [26]).

FIG. 3. The momentum distributions of 16O calculated with
different many-body approaches and similar realistic NN interactions:
the cluster variational Monte Carlo (CVMC) results of Ref. [26]
(full line); the normalization conserving linked cluster expansion
(NCLCE) Ref. [33] (triangles); the fermion hypernetted chain method
(FHNC) of Ref. [29] with V8′ interaction (squares); the two-nucleon
correlation model (CS) of Ref. [8] (asterisks). The full dots represent
the momentum distributions obtained by integrating the SF obtained
within the nuclear matter local density approximation (LDA) [6,9].

2. Two-nucleon momentum distributions

In this section we will compare the two-nucleon momentum
distributions calculated within the VMC approach [24] with
the momentum distributions obtained within our NCLCE
approach [19]. The two-nucleon momentum distribution is
function of three variables, namely, the relative momentum
|krel| ≡ krel, the c.m. momentum |Kc.m.| ≡ Kc.m., and the angle
θ between them,

n
N1N2
A (krel,Kc.m.) = n

N1N2
A (krel,Kc.m.,θ )

= 1

(2π )6

∫
dr dR dr′ dR′ ei Kc.m.·(R−R′)

× ei krel·(r−r′) ρ
(2)
N1N2

(r,R; r′,R′). (38)

FIG. 4. The quantity 100 � n(k)
nVMCV [Eq. (37)], i.e., the percent devi-

ation of the microscopic calculations of the momentum distributions
of 16O shown in Fig. 3 taking the CVMC results of Ref. [26] as the
reference results. LDA, Refs. [6,9]; CS, Ref. [8]; FHNC, Ref. [29];
NCLCE, Ref. [33].
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FIG. 5. The proton-neutron center-of-mass (c.m.) momentum
distributions [Eq. (39)] in 4He, 12C, and 40Ca calculated within
microscopic many-body approaches. NCLCE, Ref. [19]; VMC,
Ref. [24]; CS, Ref. [8].

Here we will consider two different momentum distributions
namely: the c.m. momentum distribution

n
N1N2
A (Kc.m.) =

∫
n

N1N2
A (krel,Kc.m.)d krel

≡ nN1N2
c.m. (Kc.m.) , (39)

shown in Fig. 5, and the relative momentum distribution

n
N1N2
A (krel) =

∫
n

N1N2
A (krel,Kc.m.) d Kc.m. , (40)

shown in Fig 6. It can be seen that an overall satisfactory
agreement does indeed occur between the VMC and the
NCLCE approaches. The general θ -dependent two-nucleon

FIG. 6. The pn and pp relative momentum distributions
[Eq. (40)] in 4He and 12C calculated by the NCLCE (lines) [19]
and the VMC (symbols) [24].

momentum distribution [Eq. (38)] has already been presented
in Ref. [19]. In this paper a new plot of this quantity will be
given in the next section.

3. Summary

An overall agreement of the results of calculations per-
formed with VMC and NCLCE approaches has been found
as far as the one-nucleon and two-nucleon relative and c.m
momentum distributions of few-nucleon systems and medium-
weight nuclei are concerned. Such an agreement makes us con-
fident that the full momentum distributions calculated at differ-
ent values of Kc.m., krel, and θ , the quantities that are necessary
for the production of the nuclear SF, are genuine and realistic
many-body quantities free of any adjustable parameter.

IV. WAVE FUNCTION FACTORIZATION AND THE
MANY-BODY CONVOLUTION FORMULA OF THE

CORRELATED SPECTRAL FUNCTION

A. Universal factorized behavior of the two-nucleon
momentum distribution

In Sec. II we have demonstrated that if the two-nucleon
momentum distribution factorizes, the convolution formula
of the SRC momentum distributions is obtained. By plotting
the two-nucleon momentum distributions vs |krel| at different
fixed values of the c.m momentum |Kc.m.| and of the angle θ
between the two momenta, it has indeed been shown [19] that
at sufficiently high values of the relative momentum, such that
|krel| � |Kc.m.|, the two-nucleon momentum distributions in-
deed factorize. In order to more quantitatively identify the fac-
torization regions, in Fig. 7 we show a three-dimensional (3D)
plot of the two-nucleon momentum distribution pertaining to
4He at θ = 0o and θ = 90o (similar results are available for
other nuclei). The factorization regions, i.e., the region where
the result at both angles coincide, can clearly be seen. A further
important feature of factorization, which was overlooked in
Ref. [19], but stressed in Ref. [35], is also visible: factorization
is not only valid in the region of low c.m. momenta but also
in the region of high c.m. momenta. In this respect it should
be stressed that the minimum value of the relative momentum
at which factorization starts to occur is a function of the value
of the c.m. momentum Kc.m., namely factorization is valid
when

krel � k−
rel(Kc.m.), (41)

with [35]

k−
rel(Kc.m.) � a + b φ(Kc.m.), (42)

where a � 1 fm−1 and the function φ(Kc.m.) is such that
φ(0) � 0.5 Since the value of k−

rel depends upon the value of

5This condition is somewhat softer than that used for 3He in
Ref. [35]. Indeed we carefully reanalyzed the factorization condition
[Eq. (42)] and found that k−

rel = 1.0 + 0.5Kc.m. is the most accurate
one within the linear-Kc.m. dependence. Thus in the rest of the paper
we use this factorization condition also in the case of the 3He SF.
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FIG. 7. The pn and pp two-nucleon momentum distributions
in 4He, npn(krel,Kc.m.,θ ), obtained in Ref. [19] in correspondence
with several values of Kc.m. and two values of the angle θ

between Kc.m. and krel. The region of krel where the value of
npn(krel,Kc.m.,θ ) is independent of the angle determines the region of
factorization of the momentum distributions, i.e., npn(krel,Kc.m.,θ ) →
n

pn
rel (krel)npn

c.m.(Kc.m.). It can be seen that the region of factorization
starts at values of krel = k−

rel, which increases with increasing values
of Kc.m., i.e., k−

rel = k−
rel(Kc.m.). Because of the dependence of k−

rel upon
Kc.m., a constraint on the region of integration over Kc.m. arises from
Eq. (43).

Kc.m., Eq. (42) generates in Eq. (21) a constraint on the region
of integration over Kc.m., in that only those values of Kc.m.

satisfying Eq. (42) have to be considered. For a fixed value of
k1 the relation between k1 and Kc.m., given by

krel =
∣∣∣∣k1 − Kc.m.

2

∣∣∣∣ � k−
rel(Kc.m.), (43)

represents the equation, which establishes a constraint on the
region of integration over Kc.m.; this region becomes narrower
than the region that is obtained if the constraint given by
Eq. (43) is disregarded. It is worth stressing that except for
Ref. [35], Eq. (43) and the resulting constraint were not
considered in the past.

The independence of the two-nucleon momentum distribu-
tion [Eq. (38)] upon the angle θ is direct proof that factorization
does occur for both pn and pp SRC pairs, which means
that

n
N1N2
A (k1,k2) = n

N1N2
A (krel,Kc.m.,θ )

� n
N1N2
rel (krel) nN1N2

c.m. (Kc.m.). (44)

FIG. 8. The pn and pp two-nucleon momentum distributions
npN (krel,Kc.m.,θ = 0) for 4He (symbols) compared with the results of
Eq. (44) (lines), where for pn and pp Eqs. (45) and (48), respectively,
have been used.

Moreover, in the case of pn pairs one finds [19]

n
pn
A (krel,Kc.m.) � C

pn
A nD(krel) npn

c.m.(Kc.m.), (45)

where nD is the deuteron momentum distribution and C
pn
A

is a constant depending upon the atomic weight and which,
together with the integrals of nD(krel) and n

pn
c.m.(Kc.m.) in the

proper SRC region, counts the number of SRC pn pairs in
the given nucleus. Since the quantities n

pn
A (krel,Kc.m.), nD(krel)

and n
pn
c.m.(Kc.m.) are genuine many-body quantities, so is the

value of C
pn
A given by

C
pn
A = n

pn
A (krel,Kc.m.)

nD(krel) n
pn
c.m.(Kc.m.)

. (46)

The explicit values of C
pn
A calculated within the NCLCE are

given in Table I of Ref. [19a], where they are compared with the
corresponding quantities obtained using the VMC momentum
distributions from the Argonne group [24]. Factorization,
which has recently been confirmed also in Ref. [18], stays
now on solid grounds, and so is the relation between the one-
nucleon and two-nucleon momentum distributions given by
Eq. (21). Whereas the pn two-nucleon momentum distribution
in the factorization region can be expressed in terms of the
deuteron momentum distribution, the pp distribution cannot
be related to a known free pp function; nonetheless they also
show a regularity, which is exhibited for 4He and 40Ca in Figs. 8
and 9. These figures demonstrate that the krel dependence of
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FIG. 9. The same as in Fig. 8 but for 40Ca.

the pp distribution at various values of Kc.m. is governed
in the factorization region by a common function of krel, with
the amplitude determined by the value of Kc.m.. Thus if one

defines the quantity

ñ
pp
rel (krel) = n

pp
rel (krel,Kc.m. = 0)

nc.m.(Kc.m. = 0)
, (47)

one finds that in the factorization region the pp momentum
distribution assumes the following form:

n
pp
A (krel,Kc.m.) � ñ

pp
rel (krel)nc.m.(Kc.m.), (48)

which exhibits, as clearly appears from Figs. 8 and 9, a very
good agreement with the exact calculations, with ñ

pp
rel governed

qualitatively by a constant C
pp
A times the pp relative momen-

tum distributions in 4He. Note that to a good approximation
ñ

pp
rel (krel) can be written as follows ñ

pp
rel (krel) � C

pp
A n4(krel),

where n4(krel) is the momentum distribution of 4He.
We have now at our disposal all microscopic many-body

quantities to evaluate the one-nucleon SF, namely Eqs. (39),
(45), and (48). Having at our disposal the SF we can calculate
back the momentum distributions that, as previously stressed,
has to coincide with the momentum distribution calculated
directly with Eq. (8).

B. Spectral function of A = 3, 4, 12, 16, 40

On the basis of what has been presented in the previous
sections, the total one-nucleon SF can be written in the
following form:

P
N1
A (k,E) = P

N1
MF(k,E) + P

N1
SRC(k,E) ≡ Pconv(k,E), (49)

where the mean-field contribution P
N1
MF(k,E) is given by

Eq. (16) and

P
N1
SRC(k1,E) =

∫
n

N1N2
rel

(∣∣∣∣k1 − Kc.m.

2

∣∣∣∣) nN1N2
c.m. (Kc.m.)d Kc.m.δ

(
E − E

N1
thr − A − 2

2mN (A − 1)

[
k1 − (A − 1)Kc.m.

A − 2

]2 )
+ 2

∫
n

N1N1
rel

(∣∣∣∣k1 − Kc.m.

2

∣∣∣∣) nN1N1
c.m. (Kc.m.)d Kc.m.δ

(
E − E

N1
thr − A − 2

2mN (A − 1)

[
k1 − (A − 1)Kc.m.

A − 2

]2)
(50)

with N1 �= N2. Let us remind that P
N1
MF(k,E) arises from

the mean field, namely independent particle motion, whereas
P

N1
SRC(k1,E) arises from the factorization of the nuclear wave

function as in Eq. (19), assumed to hold (see also Refs. [8,18])
when rij 
 R (or krel � Kc.m.), the assumption that leads, in
turns, to the factorization of the two-nucleon momentum and
to Eq. (50).

Equation (50) is the convolution formula of the correlated
part of the SF. It represents the SF in the so-called plane-
wave approximation (PWA), which describes the process in
which a correlated nucleon removed from a correlated pair
leaves the nucleus without interacting with nucleus A − 1,
whose excitation energy E∗ is the relative energy of the system
formed by the nucleus (A − 2) and the recoiling nucleon of
the initially correlated pair. It has been shown in Ref. [35], on
the example of the ab initio 3N SF [3], that in a wide range
of high values of momentum and removal energy typical of
SRCs, the PWA SF is practically indistinguishable from the

results of the plane-wave impulse approximation (PWIA) SF
in which the exact continuum two-nucleon wave function of
the correlated pair is taken into account.

Let us now summarize the main features of the correlated
SF:

(i) The correlated SF (50) depends upon two basic
ground-state properties of nuclei, namely the c.m.
and relative pn and pp momentum distributions, two
quantities that have been calculated within advanced
and rigorous many-body theories (VMC, NCLCE) so
that Eq. (50) is a genuine realistic many-body quantity
free of any adjustable parameter.

(ii) The only model dependence of (50) resides in the
argument of the energy-conserving δ function; such
an approximation is justified by the high values of the
removal energies characterizing the SRC SF.
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FIG. 10. The ab initio proton and neutron SF of 3He from Ref. [3]
(red dots) compared with the convolution SF [Eq. (50), full line]
obtained taking into account the constraint [Eq. (43)] on the value of
k−

rel, which guaranties that the convolution formula includes indeed
only the factorization region.

(iii) It should be stressed that Eq. (50) was essentially
first obtained in Ref. [8] but applied there with
phenomenological effective two-nucleon relative and
c.m. momentum distributions. We should also point
out that recently a model SF has been obtained within
a relativistic kinematics approach [36], leading to the
result of Ref. [8] in the nonrelativistic limit.

In Fig. 10 we show the proton and neutron SF of 3He,
calculated by Eq. (50), compared with the ab initio SF of
Ref. [3]; the SF of 4He, 12C, 16O, and 40Ca, are shown
in Fig. 11 where the separate contributions of pp and pn
SRC are illustrated; the comparison with the convolution
model of Ref. [8] is presented in Fig. 12. In all of these
figure k = 3.5 fm−1. The k and E dependencies of the SF
of Eq. (49) in the case of 12C are shown in a 3D plot in
Fig. 13. There the contributions from the s and p shells
correspond to Woods-Saxon single-particle wave functions
with spectroscopic factor equal to 0.9. Let us comments the
main features of these results. Concerning the three-nucleon
system (see also Ref. [35]), it is very gratifying to observe a
remarkable agreement of our convolution formula with the ab
initio results in a wide range of removal energy, particularly in
light of the absence of any adjustable parameter in Eq. (50).
As for complex nuclei, the small contribution of pp SRC with
respect to pn SRC, in agreement with experimental evidences
[11], should be stressed; concerning the differences between
the present approach and the approach of Ref. [8], where the

FIG. 11. The SF of 4He, 12C, 16O, and 40Ca calculated with the
convolution SF [Eq. (50)]. The dashed and dot-dashed lines represent,
respectively, the pn and the pp SRC contributions.

convolution formula for the SF has been first applied, the
following remarks are in order:

(i) Both approaches have the same origin and structure,
which is the convolution formula resulting from
wave function factorization, with the main difference
between the two approaches being related to the
relative and c.m. momentum distributions used in the
convolution formula; indeed in Ref. [8], due to the

FIG. 12. The convolution spectral of 12C [Eq. (50)] and 16O (full
line) compared with the effective convolution formula from Ref. [8]
(dashed line).
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FIG. 13. A three-dimensional (3D) figure of the total SF
[Eq. (49)] of 12C illustrating the mean-field and SRC contributions:
P

N1
MF(k,E) (shown in red) is located in the region of removal energy

E � 50 MeV where the contribution from the � = 1 and � = 0 shells
can be identified, whereas P

N1
SRC(k,E) (shown in blue) completely

exhausts the removal energy region with E � 50 MeV. The two
contributions from the s and p shells correspond to Woods-Saxon
single-particle wave functions with spectroscopic factors equal to
0.9.

lack of realistic many-body calculations for complex
nuclei, effective momentum distributions for pp and
pn have been used, moreover, at that time the region
of factorization, which ensures the validity of the
convolution formula, was unknown.

(ii) The differences between pp and pn momentum
distributions, which is a prerequisite for extending
the convolution approach to nonisoscalar asymmetric
nuclei, have not been considered in Ref. [8], for the
reasons given above.

(iii) In Ref. [8] only the soft part of the c.m. momentum
distribution has been considered and the constraint on
the values of Kc.m. was disregarded.

In spite of these differences the two approaches seem
to agree within about a 20% accuracy. In particular, for
the integrated quantities, such as the normalization of the
correlated spectral function, the present results practically
agree with the results of Ref. [8] and Table I of Ref. [33b],
yielding a probability of 20% in case of isoscalar nuclei with
A > 4.

As previously pointed out, any model for the SRC SF, when
integrated over the removal energy in the momentum sum
rule [Eq. (6)], has to provide the high-momentum part of the
one-nucleon momentum distribution obtained by the Fourier
transform of the nondiagonal one-nucleon density matrix
produced by the ground-state many-body wave functions. This
is indeed the case of the convolution formula, as demonstrated
in Fig. 14. Finally, in Fig. 15, the convergence of the
momentum sum rule is shown: it can be seen that in order to
correctly obtain the magnitude of the momentum distribution
at k � 4 fm−1 the SF has to be integrated up to very high
values of the removal energy (E � 400 MeV).

FIG. 14. The SRC momentum sum rule nSRC(k) ≡ n1(k) =∫ ∞
0 P (k,E∗)dE∗ in 4He and 16O. The full line represents the total

momentum distribution obtained in Ref. [33] with the dashed and
dot-dashed curves corresponding to the mean-field and SRC con-
tributions, respectively. The full dots represent the SRC momentum
distribution obtained by integrating the SRC convolution SF. It can
be seen that the momentum sum rule is exactly satisfied by the
convolution formula.

V. SUMMARY AND CONCLUSION

The main aspects and results of the present paper can be
listed as follows:

(i) The NCLCE was used to minimize the nuclear Hamil-
tonian of light nuclei containing a realistic model of the
nucleon-nucleon interaction and a comparison of the
resulting binding energies, radii, one- and two-nucleon
momentum distributions, with particular emphasis on
the high-momentum components generated by SRC,
have been calculated and shown to be in satisfactory
agreement with the results of up-to-date approaches,
such as the VMC and CVMC ones.

(ii) We argued that the basis of any treatment of SRC is
wave function factorization at short range and, accord-
ingly, by a detailed analysis of the dependence of the
two-nucleon momentum distribution n

N1N2
A (krel,Kc.m.)

upon the relative, krel, and c.m., Kc.m., momenta of
proton-neutron and proton-proton pairs embedded in
the medium, we have demonstrated that in the region
of momenta governed by the short-range behavior of
the NN interaction (|krel| � 1 fm−1, |krel| � |Kc.m.|)
the two-nucleon momentum distributions factorize
and the region of factorization of the nuclear wave
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FIG. 15. The convergence of the momentum sum rule nSRC(k) ≡
n1(k) = ∫ E+

0 P (k,E∗) d E∗. The partial momentum sum rule corre-
sponding to increasing value of E+. It can be seen that in order to
obtain the correct momentum distributions (full line) in the region
k � 4 fm−1 it is necessary to integrate the SF up to E+ � 400 MeV.
Full, dashed, and dot-dashed curves as in Fig. 14.

function in momentum space has been clearly identi-
fied.

(iii) Exploiting the factorization property of
n

N1N2
A (krel,Kc.m.) we have developed an advanced

microscopic many-body, parameter-free approach
to the SF, which is expressed in terms of ab
initio A-dependent microscopic relative and c.m.
momentum distributions, reflecting the underlying
NN interaction; by this way, the specific features
of a given nucleus are taken into account without
recurring to any approximation.

(iv) In the case of the three-nucleon system, we found that
the convolution formula fully agrees with the results
of the ab initio SF in a wide interval of momenta and
removal energy.

(v) In the case of complex nuclei the correctness of the
convolution SF has been checked by means of the
momentum sum rule, finding that the integral of the
SF up to E � 400 MeV fully agrees up to k � 5 fm−1

with the exact one-nucleon momentum distribution,
calculated independently in terms of the ground-state
wave functions.

To summarize, we would like to stress that by exploiting the
universal factorization property exhibited by the short-range
behavior of the nuclear wave function for finite nuclei, we

have generated a microscopic and parameter-free SF based
upon a convolution of ab initio relative and c.m. two-nucleon
momentum distributions for a given nucleus. The convolution
SF rigorously satisfies the conditions for its validity, in that it
takes into account only those nucleon configurations compat-
ible with the requirement of wave function factorization. Our
convolution approach for the three-nucleon systems provides
results in full agreement with proton and neutron SF, whereas
in complex nuclei, for which ab initio SF cannot yet be
obtained, it fully satisfies the momentum sum rule. These
results, coupled with the many-body microscopic nature of
our approach and the absence of any adjustable parameter,
makes the convolution SF a serious candidate for the investi-
gation of nuclear effects in various processes, particularly in
electroweak scattering off nuclear targets. Needless to say that
these processes besides a realistic SF, also require the inclusion
of all types of final-state interactions, which are at work when
the active (struck) nucleon leaves the nucleus.

APPENDIX: ONE- AND TWO-NUCLEON NONDIAGONAL
DENSITY MATRICES WITH THE NCLCE

1. One-nucleon nondiagonal density matrix

The one-nucleon nondiagonal density matrix at first order
of the NCLCE includes three terms, namely,

ρ(r1,r′
1) = ρMF(r1,r′

1) + ρ2b(r1,r′
1) + ρ3b(r1,r′

1). (A1)

The suffixes (MF), (2b), and (3b) denote mean-field, two-
body, and three-body cluster term, respectively. Each term of
Eq. (A1) is expressed by using the density distributions in
mean field given by

ρ0(ri) =
∑
n,l,m

|ϕnlm(ri)|2,

ρ0(ri ,rj ) =
∑
n,l,m

ϕ∗
nlm(ri)ϕnlm(rj ), (A2)

where we take the following mean-field wave function

ψMF = 1√
A!

det
[
φαi

(xj )
]
,

φα(xi) = ϕnlm(ri)χ (i)ζ (i), (A3)

with χ (i) and ζ (i) being the spin and isospin wave function,
respectively. The explicit form of each term with the use of
above quantities [Eq. (A2)] is shown in what follows.

a. MF term

ρSM(r1,r′
1) = 4ρ0(r1,r′

1). (A4)

b. Two-body term

ρ2b(r1,r′
1) = 1

A

∫
dr2(〈12|Ô2b|12〉STρ0(r1,r′

1)ρ0(r2)

−〈12|Ô2b|21〉STρ0(r1,r2)ρ0(r2,r′
1)), (A5)

064317-13



CLAUDIO CIOFI DEGLI ATTI AND HIKO MORITA PHYSICAL REVIEW C 96, 064317 (2017)

where the following definitions for the matrix elements in the spin-isospin space are introduced:

〈ij |Ô2b|kl〉ST ≡ 〈χ (i)χ (j )ζ (i)ζ (j ) |Ô2b|χ (k)χ (l)ζ (k)ζ (l)〉,
Ô2b ≡ f̂ (12)f̂ (1′2) − 1. (A6)

c. Three-body term

ρ3b(r1,r′
1) = 1

A

∫
dr2dr3ρ0(r1,r2)(〈123|Ô3b|231〉STρ0(r2,r3)ρ0(r3,r′

1) − 〈123|Ô3b|213〉STρ0(r2,r′
1)ρ0(r3)), (A7)

Ô3b ≡ f̂ (23)f̂ (23) − 1. (A8)

2. Two-nucleon nondiagonal density matrix

The two-nucleon nondiagonal density matrix at first order of the NCLCE includes four terms, as follows:

ρpN (r1,r2,r′
1,r

′
2) = ρ

pN
MF (r1,r2,r′

1,r
′
2) + ρ

pN
2b (r1,r2,r′

1,r
′
2) + ρ

pN
3b (r1,r2,r′

1,r
′
2) + ρ

pN
4b (r1,r2,r′

1,r
′
2). (A9)

The explicit forms of each term in Eq. (A9) are summarized in what follows.

a. MF term

ρ
pn
MF(r1,r2,r′

1,r
′
2) = 1

A(A − 1)
8ρ0(r1,r′

1)ρ0(r2,r′
2), (A10)

ρ
pp
MF(r1,r2,r′

1,r
′
2) = 2

A(A − 1)
[2ρ0(r1,r′

1)ρ0(r2,r′
2) − ρ0(r1,r′

2)ρ0(r2,r′
1)]. (A11)

b. Two-body term

ρ
pN
2b (r1,r2,r′

1,r
′
2) = 1

A(A − 1)
(〈12|Ô2b|12〉STρ0(r1,r′

1)ρ0(r2,r′
2) − 〈12|Ô2b|21〉STρ0(r1,r2)ρ0(r2,r′

1)), (A12)

Ô2b ≡ (f̂ (12)f̂ (1′2′) − 1)P̂ pN (12), (A13)

where P̂ pN (ij ) is a projection operator on the pN pair.

c. Three-body term

ρ
pN
3b (r1,r2,r′

1,r
′
2) = 2

A(A − 1)

∫
dr3FpN

3b (r1,r2,r′
1,r

′
2,r3), (A14)

FpN
3b = 〈123|Ô3b|123〉STρ0(r1,r1′ )ρ0(r2,r2′ )ρ0(r3) + 〈123|Ô3b|231〉STρ0(r1,r2′ )ρ0(r2,r3)ρ0(r3,r1′ )

+〈123|Ô3b|312〉STρ0(r1,r3)ρ0(r2,r1′ )ρ0(r3,r2′ ) − 〈123|Ô3b|132〉STρ0(r1,r1′ )ρ0(r2,r3)ρ0(r3,r2′ )

−〈123|Ô3b|213〉STρ0(r1,r2′ )ρ0(r2,r1′ )ρ0(r3) − 〈123|Ô3b|321〉STρ0(r1,r3)ρ0(r2,r2′ )ρ0(r3,r1′ ), (A15)

Ô3b ≡ (f̂ (13)f̂ (1′3) − 1)P̂ pN (12). (A16)

d. Four-body term

ρ
pN
4b (r1,r2,r′

1,r
′
2) = 1

2A(A − 1)

∫
dr3dr4FpN

4b (r1,r2,r′
1,r

′
2,r3,r4), (A17)

FpN
4b = 〈1234|Ô4b|2314〉ST(ρ0(r1,r′

2)ρ0(r2,r3)ρ0(r3,r′
1)ρ0(r4) + ρ0(r1,r2′ )ρ0(r2,r4)ρ0(r3)ρ0(r4,r1′ )

+ ρ0(r1,r3)ρ0(r2,r1′ )ρ0(r3,r2′ )ρ0(r4) + ρ0(r1,r4)ρ0(r2,r1′ )ρ0(r3)ρ0(r4,r2′ ))

+〈1234|Ô4b|1342〉ST(ρ0(r1,r′
1)ρ0(r2,r3)ρ0(r3,r4)ρ0(r4,r′

2) + ρ0(r1,r′
1)ρ0(r2,r4)ρ0(r3,r′

2)ρ0(r4,r3)

+ ρ0(r1,r3)ρ0(r2,r′
2)ρ0(r3,r4)ρ0(r4,r′

1) + ρ0(r1,r4)ρ0(r2,r′
2)ρ0(r3,r′

1)ρ0(r4,r3))

+〈1234|Ô4b|3412〉ST(ρ0(r1,r3)ρ0(r2,r4)ρ0(r3,r′
1)ρ0(r4,r′

2) + ρ0(r1,r4)ρ0(r2,r3)ρ0(r3,r′
2)ρ0(r4,r′

1))

−〈1234|Ô4b|1324〉ST(ρ0(r1,r′
1)ρ0(r2,r3)ρ0(r3,r′

2)ρ0(r4) + ρ0(r1,r′
1)ρ0(r2,r4)ρ0(r3)ρ0(r4,r′

2)

+ρ0(r1,r3)ρ0(r2,r′
2)ρ0(r3,r′

1)ρ0(r4) + ρ0(r1,r4)ρ0(r2,r′
2)ρ0(r3)ρ0(r4,r′

1))
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−〈1234|Ô4b|2341〉ST(ρ0(r1,r′
2)ρ0(r2,r3)ρ0(r3,r4)ρ0(r4,r′

1) + ρ0(r1,r′
2)ρ0(r2,r4)ρ0(r3,r′

1)ρ0(r4,r3)

+ρ0(r1,r3)ρ0(r2,r′
1)ρ0(r3,r4)ρ0(r4,r′

2) + ρ0(r1,r4)ρ0(r2,r′
1)ρ0(r3,r′

2)ρ0(r4,r3))

−〈1234|Ô4b|3421〉ST(ρ0(r1,r3)ρ0(r2,r4)ρ0(r3,r′
2)ρ0(r4,r′

1) + ρ0(r1,r4)ρ0(r2,r3)ρ0(r3,r′
1)ρ0(r4,r′

2)),

(A18)

Ô4b ≡ (f̂ (34)f̂ (34) − 1)P̂ pN (12). (A19)
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