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Improved double-folding α-nucleus potential by including nuclear medium effects
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The nuclear medium effect in α decay is introduced into the microscopic double-folding model to construct
an improved α-nucleus potential. Under the local density approximation, the α-cluster density distribution is
considered to vary with the surrounding matter density as a result of the medium effect. The density-dependence
of the α cluster is incorporated by the width parameter of the Gaussian function and constrained by the critical
features derived from previous microscopic studies. The influence of the medium effect to the geometry of the
α-nucleus potential is studied by comparing with the conventional double-folding potential. To examine the
improved potential, the α-decay half-lives and preformation factors of even-even spherical nuclei are calculated
and compared with experimental data. With the α-decay data being well explained, it is concluded that the
inclusion of the nuclear medium effect contributes to an improved double-folding α-nucleus potential, which
incorporates more details of the α-decay process.
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I. INTRODUCTION

Radioactive α decay has long been a powerful tool for
studies of nuclear structure. As a fundamental decay mode
of unstable nuclei, α decay is directly associated with some
of the most exciting subjects in contemporary nuclear physics,
such as synthesis and identification of superheavy nuclei [1,2],
cluster structure in heavy nuclei [3,4], and exotic properties
of drip-line nuclei [5–7]. Theoretical research on α decay is
of vital importance to understanding the connection between
experimental observables and various nuclear structural prop-
erties of our interest.

The cluster model, with an α-core configuration assumed
for the α emitter, has been proven very effective in explaining
the existing α-decay experimental data. The most crucial
ingredient in the cluster model is the adopted α-nucleus
interaction. Extensive calculations have been conducted by
using different α-nucleus potentials to give quantitative de-
scriptions of α-decay half-lives [8–16]. In these calculations,
the α-nucleus potentials are determined through either a
phenomenological or a microscopic procedure. The double-
folding model, which integrates the density distributions of
the α and daughter clusters with realistic nucleon-nucleon
(NN ) interactions, is a typical representative of the latter.
In the previous systematic calculations, the cluster model
using the microscopic double-folding potential successfully
reproduces the experimental half-lives within a factor of 2–3
[17,18]. Based on its reliability, the model is also exploited to
extract useful nuclear structural information, such as nuclear
deformation parameters [19,20], charge root mean square
(r.m.s.) radius [21,22], and α-preformation factors [23,24].
All these confirm that the microscopic double-folding model
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provides a reliable description for the effective α-nucleus
potential.

Despite the success of the cluster-model approaches men-
tioned above, there is still an appreciable deviation between the
absolute α-decay widths and the theoretical predictions. The
discrepancy is usually attributed to the uncertainty of the α-
preformation factor (Pα), which is associated with the weight
of α-cluster configuration in the initial state of parent nuclei.
Unfortunately, it is extremely complicated to microscopically
describe the α-formation process in heavy nuclei. Neither the
detailed correlations between the cluster nucleons are well
understood, nor would it be easy to interpret the preformation
mechanism with a microscopic many-body method. To date,
a fully microscopic description of α-decay process with self-
consistent α-preformation factors remains an open challenge
for nuclear physicists. Important progress has been made
for typical nuclei such as 212Po [4]. However, for most
cases, as an alternative method to obtain the information of
α-preformation factor, the Pα factors are extracted from the
deviation between theoretical and experimental decay widths,
which, however, depends highly on the α-nucleus interaction.
Therefore, a highly precise α-nucleus potential is required
when determining the magnitude and evolution of the exact
Pα factors.

Recently, Röpke et al. proposed a microscopic description
of the α-formation process and performed an exploratory
calculation for the nucleus 212Po [25]. The calculation was
then improved by Xu et al. [26], in which the Woods-Saxon
mean-field potential is replaced by a double-folding α-nucleus
potential with measured density distributions for the 208Pb
core. Within their description, the α cluster is formed at a
critical nuclear density, where the four nucleons of relevance
transform from a unbound shell-model state to a bound cluster
state. As the α cluster moves towards the nuclear surface
with decreasing baryon density, there exists a microscopic
process that the cluster simultaneously reduces its size until it
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finally becomes an α particle. Such an interesting phenomenon
is considered as a medium effect, which results from the
variation of Pauli blocking. In fact, the medium effect of α
cluster was already pointed out in a number of studies that
are focused on the clustering phenomenon in nuclear matter
[27–32]. However, there is little research on the medium
effect in α decay because clustering in nuclei is usually
difficult to be described. Although the medium effect only
manifests as a subtle change in the cluster size, one should
realize that the equivalent change of its density distribution
could probably affect the behavior of the resulting α-nucleus
potential in the double-folding model. Furthermore, it has been
well understood that the α-decay rate is extremely sensitive to
the α-nucleus potential, especially the surface region where
the medium effect is evident. Thus, in view of its possible
importance to a precise α-nucleus interaction, the nuclear
medium effect should be taken into account as to the variation
of α-cluster density distribution during the α decay process.

To be consistent with the microscopic description of α
clustering in nuclei, in the present work we originally introduce
this medium effect into the well-known double-folding model.
The typical Gaussian density distribution of the α cluster is
now considered to be dependent on its surrounding matter
density under local density approximation (LDA). A simple
formula for this density dependence is proposed, and the
resulting influence on the α-nucleus potential is carefully
investigated. Additionally, in order to evaluate the overall
impact of the medium effect, the α-decay half-lives as well as
the preformation factors are calculated with the improved α-
nucleus potential. Results are discussed in detail by comparing
with the latest experimental data.

The paper is organized as follows. In Sec. II, we briefly
outline the modification made to the α-decay double-folding
model due to the inclusion of the medium effect. In particular,
we will focus on the determination of the density-dependent
behavior of the α-cluster density distribution. In Sec. III,
correlations between the medium effect and double-folding
α-nucleus potential are analyzed. The results of the calculated
half-lives and preformation factors are presented and discussed
through comparisons with the experiment and those calculated
from the traditional double-folding potential. Major influence
due to the medium effect is addressed. A summary is given in
Sec. IV.

II. THEORETICAL DESCRIPTIONS

A. Inclusion of nuclear medium effect in α-decay
double-folding model

The double-folding model was originally proposed for
explaining the heavy-ion collision experiments [33] and later
applied to α decay and cluster radioactivity [12,13,34]. The
mathematical formalism of double-folding potential is derived
from the real part of nuclear optical potential, which doubly
folds the density distributions of two interactive clusters with
effective NN interactions.

VN,C(R) = λ

∫
dr1dr2ρ1(r1)ρ2(r1)υ(s). (1)

For the Coulomb potential, the effective NN interaction
υ(s = |R + r2 − r1|) is known analytically, while for the nu-
clear part it is usually chosen differently according to the case
in study. For α decay, the Michigan three-range Yukawa (M3Y)
interaction supplemented by a zero-range pseudopotential is
a frequent choice for generating the nuclear interaction of the
effective α-nucleus potential, which in systematic calculations
[17,18], is widely employed to reproducing the experimental
α-decay half-lives. In the present study, we use the M3Y-Reid
NN interaction, which has the following form:

υ(s,Eα)M3Y = 7999
exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s

+ J00(Eα)δ(s). (2)

Note that the zero-range pseudopotential (i.e., the last term in
Eq. (2) with J00(Eα) = −276(1 − 0.005Eα/Aα) MeVfm3) is
introduced to incorporate the single-nucleon exchange effect,
where Eα and Aα are the energy and the mass number of
the α cluster, respectively. In addition, to obtain the final
nuclear potential, the factor λ is necessary to renormalize
the strength of the effective NN interaction (λ = 1 for the
Coulomb potential), and it is not an adjustable parameter, but
is determined by the Bohr-Sommerfeld quantization condition
[17,18].

In the double-folding potential of Eq. (1), ρi=1,2 represent
the density distributions of the daughter and the α clusters.
As in previous studies [12,13,17–24], a two-parameter Fermi
function is adopted for the former, while the latter is described
by a Gaussian.

ρ1(r1) = ρ1,s

1 + exp
(

r1−Rd

a

) , (3)

ρ2(r2) = ρ2,s exp(−βr2
2). (4)

Here, both ρ1,s and ρ2,s are determined by normalizing the dis-
tributions to mass or charge number, with the radius parameter
Rd taken to be Rd = 1.07A1/3 fm and the diffuseness a fixed
at a = 0.54 fm.

From Eq. (4), it is easy to recognize the size of the α cluster
is controlled by the width parameter β. This parameter was
taken as a typical value (β = 0.7024 fm−2) that is determined
by reproducing the experimental r.m.s. charge radius of a free
α particle, i.e., the 4He nucleus [33,35]. To use a constant β
implies the α cluster remains as a compact entity of unchanged
density distribution throughout the entire process, even when
it appreciably overlaps with the daughter cluster. However,
due to the nuclear mean field and the Pauli blocking effect,
the α cluster inside nuclei is different from a free α particle
[25,26]. As suggested in Ref. [25], the α cluster has a larger
size inside the parent nucleus, and the medium effect manifests
itself by changing the size of the α cluster during the α-decay
process. Therefore, as an attempt to incorporate the nuclear
medium effect, it is reasonable to introduce the matter-density
dependence into the width parameter β. In other words, β
should be treated as a function of daughter’s density during
the α emission process, i.e., β = β[ρ1(R)]. Substituting it into
Eq. (4), we obtain the α-cluster density distribution that is
dependent on the center-of-mass (CM) position R of the α
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cluster.

ρ2(r2,R) = ρ2,s exp
[ − β(R)r2

2
]
. (5)

It should be noted that in Eq. (5) the LDA is employed
to simplify the density dependence of β. This means the
density distribution of the α cluster only depends on the matter
density at a certain position R, instead of a nonlocal density
distribution. To determine the dependence on the latter requires
the exact solution of the intrinsic cluster wave function in
inhomogeneous nuclear matter, which will largely increase
the complexity of the topic under study. Hence, in the present
study, we adopt the LDA as in Refs. [25,26] and treat the β
parameter as a function only dependent on the CM position R
of the α cluster.

Given that the daughter nucleus is treated as the nuclear
medium itself, from a many-body viewpoint, one might
consider the density distribution of the daughter nucleus should
also depend on the internuclear position R. This means that
ρ1(r1) in Eq. (1) should be replaced by ρ1(r1,R) due to
the interactions with the α cluster. However, because the
nucleons within the daughter nucleus are usually much more
than those within the α cluster, the effect on the daughter’s
density distribution from the latter should be minor so that
the dependence of ρ1 on R is expected to be weak. Besides,
features of this dependence have not been well understood, and
a fixed density distribution (independent on R) applied to the
nuclear medium was considered to be a good approximation
even in the many-body calculation of Refs. [25,26]. Hence,
the form of ρ1(r1) in Eq. (3) can be retained reasonably while
considering the medium effect, and it is more important to
focus on the determination of the density dependence of β,
because it is known as the prominent manifestation of the
nuclear medium effect.

With the medium effect incorporated into the α-cluster
density distribution, the calculation of the nuclear potential in
Eq. (1) can be further improved by using a density-dependent
NN interaction. It is obvious that the presence of medium
effect should not only affect the density of the α cluster
but also the interaction between nucleons of the α cluster
and the daughter nucleus. Therefore, instead of employing
the density-independent M3Y interaction in Eq. (2), to use a
density-dependent version of M3Y interaction would be more
consistent to the main goal of present study. In the double-
folding calculation of the improved α-nucleus potential, the
CDM3Y6 version of NN interaction of the following form is
employed:

t(Eα,s,ρ1,ρ2) = υ(s,Eα)M3Y f (ρ1,ρ2)g(Eα), (6)

with

f (ρ1,ρ2) = C[1 + αe−β(ρ1+ρ2) − γ (ρ1 + ρ2)], (7)

g(Eα) = 1 − 0.002Eα/Aα. (8)

The parameters C, α, β, γ of this interaction are determined
through reproducing the saturation properties of normal
nuclear matter within Hartree-Fock calculations, and their
values are given in Ref. [36]. Note that the CDM3Y6 NN
interaction was confirmed to be valid for describing both the
α-scattering experiments and the α-decay fine structure in

previous studies [37,38]. Therefore, it should be appropriate
for the double-folding model of the present study.

B. Determination of the density dependence for the α-cluster
density distribution

In principle, the α-cluster density distribution in
Eq. (5) should be obtained through solving the in-medium
Schrödinger equation of the four-nucleon cluster. This was
recently studied by Röpke et al. in Ref. [25], where explicit
four-nucleon correlations and Pauli blocking are treated in a
fully quantal formalism. By using a variational approach, they
found numerically that the width b of the Gaussian-type trail
wave function slowly decreases with increasing baryon density
of the surrounding matter. Furthermore, compared with the
value at zero-density limit, the width b is found to reduce by
20% at about 1/5 the saturation density ρ1,s , i.e., the so-called
Mott density ρMott where the α cluster is formed. The reduction
in b corresponds to an increase in the size of the α cluster
inside the parent nucleus. Besides, it is easy to recognize that
the square of parameter b in Ref. [25] is proportional to the
parameter β in Eq. (5). Despite the density dependence of b
is not analytically obtained so far, the above results still serve
as a critical constraint to the variation of β(ρ1) at the surface
region of low density.

Compared with the behavior of the α cluster at the nuclear
surface, the α clustering in the interior of the parent nucleus
is less well understood. According to previous research on
nucleon correlations, it is suggested that the nucleons form
an α cluster due to the strong α correlation established at the
nuclear surface [30–32]. In the interior region where pairing
takes the prominence, the nucleons appear as correlated pairs
in the nuclear mean field, with the α-cluster configuration
being substantially suppressed [27–29]. In Refs. [25,26], a
similar scheme was employed to the cluster system above the
Mott density ρMott, in which the four nucleons of the α cluster
are described by simple shell-model states and thus become
nonlocalized in the interior region. In the present work, both
the four-nucleon distribution at ρ1 � ρMott and the α-cluster
density distribution at ρ1 � ρMott are uniformly described by
Eq. (5) as an approximation. This can be justified because
the width parameter β will reduce with higher baryon density
as is mentioned above. As a consequence, the Gaussian-type
density distribution ρ2 will be smoothed out, implying a
situation that the four nucleons disperse within the parent
nucleus. Therefore, it is reasonable in physics that a continuous
β(ρ1) can be employed for the description of the medium effect
under investigation.

Through refining the results of previous studies [25–32],
we find the dependence of β on ρ1 has to satisfy the following
constraints:

(i) β should decrease smoothly with increasing baryon
density, i.e., β ′(ρ1) > 0.

(ii) β should remain a positive value at the saturation
density, i.e., β(ρ1 = ρ1,s) > 0.

(iii) At zero-density limit, β should equal to the exper-
imental value for the free α particle, i.e., β(0) =
0.7024 fm−2.
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(iv) At one-fifth of the saturation density, the
√

β reduces
by 20% compared with its zero-density value, i.e.,√

β( 1
5ρ1,s) = 4

5

√
β(0).

After a fair amount of trial, we propose a simple expression
of β(ρ1) that fulfills the above conditions,

β(ρ1) = 0.7024

1 + a1ρ1
, (9)

where the coefficient a1 is given by a1 = 45
16ρ1,s . As is known,

the nuclear saturation density is a very stable quantity, so
the coefficient a1 is almost a constant. It is emphasised that
Eq. (9) is a generalization of the constant β ansatz in the
conventional double-folding model, because the parameter β
exactly restores to the typical value 0.7024 for the free α
particle when the density ρ1 approaches to zero. On the other
hand, as the first attempt to incorporate the nuclear medium
effect, Eq. (9) embodies all the critical features suggested
in the previous researches, and thus adequately describes
the density dependence of the α-cluster density distribution
during the decay process. With the β(ρ1) determined, the
double folding can be calculated by using Eq. (5). In this way,
the nuclear medium effect is properly incorporated into the
conventional double-folding model to generate an improved
α-nucleus potential.

III. NUMERICAL RESULTS AND DISCUSSION

To obtain a pure manifestation of the nuclear medium
effect in α decay, it is important to avoid the intervention
of other structural properties such as deformation and angular
momentum transfer during the calculation. Hence, it is better to
start with the favored transitions of even-even spherical nuclei.
We select the spherical α emitters from the recently updated
deformation data (FRDM2012) [39], and take the decay ener-
gies from the latest atomic mass evaluation tables (AME2016)
[40]. For spherical nuclei, the penetration possibility P can
be evaluated in the semiclassical Wentzel-Kramers-Brillouin
(WKB) approximation of enough accuracy,

P = exp

[
− 2

∫ R3

R2

k(R)dR

]
, (10)

where the wave number k(R) is given by k(R) =√
2μ

h̄2 |V (R) − Qα|. In the total α-nucleus potential V (R), the
Langer-modified centrifugal potential is included in addition to
the double-folding nuclear and Coulomb potentials. Following
the two-potential approach by Gurvitz et al. [41], the α-decay
half-life is expressed as

T1/2 = ln 2

PαF h̄
4μ

P
, (11)

where Pα is the α-preformation factor and F is the normaliza-
tion factor, given by

F−1 =
∫ R2

R1

dR

k(R)
cos2

[ ∫ R

R1

k(x)dx − π

4

]
. (12)

It should be noted that the integrals of Eq. (10) and Eq. (12) are
specialized by the three classical turning points R1, R2, and R3.

FIG. 1. The variation of the α-cluster density distribution with
increasing overlap of the α and daughter clusters. The horizontal axis
R represents the center-of-mass position of the α cluster. The blue
dashed line and the black dot-dashed line are the density distributions
of the α and the daughter clusters, respectively. The red solid line
shows the variation of β(R).

The penetration probability P is associated with the surface
region of the α-nucleus potential, while the normalization
factor F is responsible for the interior. Therefore, the medium
effect on the α-nucleus potential can be estimated according
to the variation of these two quantities.

To show the medium effect described by Eq. (9), the density
distributions of the α and daughter clusters are plotted in Fig. 1.
One can find the α-cluster density distribution dynamically
changes as the overlap of the α and daughter clusters increases.
At the zero-density region where the two clusters are isolated,
ρ2 becomes exactly the density distribution of a free α particle,
reproducing the experimental r.m.s. charge radius as 1.67 fm.
At 1/5 the saturation density where R ≈ 7 fm, the width
parameter β reduces to 0.4495 fm−2, implying the r.m.s.
charge radius increases to 1.99 fm inside the nuclei. Then, the
density distribution becomes flattened while the α cluster is
approaching the core region of higher density, where clustering
usually appears as correlated pairs of nucleons and thus the
spatial distribution of the four nucleons are approximated by a
flat Gaussian function. Such an interesting process shows how
the α cluster is softened by the increasing medium density, and
it is consistent with the result given by many-body calculation
in Ref. [25]. It is worth mentioning that a similar phenomenon
was found recently in the analysis of the elastic p + 6,8He
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FIG. 2. The effect of the width parameter β on the peak density
ρ2,s of the α-cluster density distribution. The legend shows the
parameters (a1, a2) in the Eq. (13). Both β and ρ2,s smoothly decrease
with increasing matter density. The minimum values of β and ρ2,s are
reached at the saturation density which corresponds to the intercepts
with the right border. The results indicates that the variation of βmin

only slightly affects the α-cluster density distribution.

scattering, where the radius of the α cluster inside 6,8He nuclei
was also shown to be larger than that of the free α particle, due
to its interaction with the halo neutrons [42].

Although Eq. (9) gives reasonably the trend and the
critical features suggested in microscopic studies, it is easy
to recognize that the minimum of width parameter β reached
at the saturation density (i.e., βmin = β(ρ1,s)) is already
determined once a1 is fixed. One should be careful that the
value of βmin might also have a non-negligible influence on the
resulting α-nucleus potential. A simple way to examine this
speculation is to add a higher-order term to modify the value
of βmin,

β(ρ1) = 0.7024

1 + a1ρ1 + a2ρ
2
1

. (13)

Note that Eq. (13) should also satisfy all the constraints
for Eq. (9), so the chosen parameters a1 and a2 are not
independent to each other. Taking the nucleus 212Po as an
example, we adjust the parameters to approximately give an
identical interval between different βmin, so that the influence
to both the α-cluster density distribution (characterized by the
peak density ρ2,s) and the α-nucleus potential (characterized
by the quantities F and P ) can be clearly observed. As is shown
in Fig. 2, both β and ρ2,s decrease with higher matter density,
and the variation of βmin only slightly affects the value of ρ2,s at
the saturation density. As to the improved α-nucleus potential
(see Table I), the difference in the βmin causes a small variation
in both F and P , implying that the effect can be reasonably
ignored. However, if one compared the results with the case
of constant β, it is easy to find the penetration probability P
increases by about 55% due to the included medium effect.
Therefore, one might safely conclude that the variation of βmin

only has a minor effect on the α-nucleus potential, and it is

TABLE I. The effect of the different parameterized β(ρ1) on the
α-nucleus potential. The parameters (a1, a2) of Eq. (13) are listed
in the first two columns. The second and the third columns show
the properties of the α-cluster density distribution at the saturation
density: βmin (in fm−2) and ρ2,s (in fm−3). The last two columns are
the normalization factor F (in m−2) and the penetration probability
P , whose variation reflects the effect on the α-nucleus potential. Note
that row four shows the case of constant β where no medium effect
is considered.

a1 a2 βmin ρ2,s F P

15.46 0 0.1842 0.0568 5.97 × 1029 5.28 × 10−15

16.32 −23.59 0.2203 0.0743 6.55 × 1029 5.28 × 10−15

17.00 −42.28 0.2608 0.0957 6.68 × 1029 5.41 × 10−15

0 0 0.7024 0.4229 6.87 × 1029 3.42 × 10−15

sufficient to use Eq. (9) as a good approximation to the nuclear
medium effect.

To demonstrate the details of the nuclear medium effect,
the total α-nucleus potential as well as its components of
α + 208Pb system is plotted in Fig. 3. It can be found that
the medium effect gives rise to an obvious transformation in
the interior region of the nuclear potential while maintaining
its depth. As is known, the internal geometry of the α-
nuclear potential is critical to give correct energy levels,
whereas α decay is more sensitive to the surface region
where the Coulomb penetration happens [43]. In a recent
study, researchers attempted to combine the good surface
features described by the folded M3Y potential, and the
more successful internal geometry of the Woods-Saxon (WS)
potential (WS + WS3-type), to achieve a unified description
of the α-cluster structure in nuclei [44,45]. By fitting the
parameters of WS + WS3 potential to the surface part of

FIG. 3. The double-folding α-nucleus potential of the α + 208Pb
system for the α decay of 212Po. The Coulomb potential VC , the
nuclear potential VN , and the total potential V are distinguished by
different colors. The potentials with and without the medium effect
are, respectively, denoted by the solid and dashed lines. The interior
and the surface region of the α-nucleus potentials are separated by
the second turning point R2.
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TABLE II. α-decay half-lives of spherical even-even nuclei around the shell closures. The experimental half-lives are given in the fifth
column. The calculated half-lives T Cal1

1/2 (with the medium effect) and T Cal2
1/2 (without the medium effect) are shown in the sixth and the eighth

columns (in second), respectively. We have adopted Pα = 1 in the calculation so as to extract its empirical value from experimental data. The
seventh and the ninth columns show the extracted Pα corresponding to T Cal1

1/2 and T Cal2
1/2 .

α emitter Qα ρ1,s a1 T
Expt

1/2 T Cal1
1/2 P (1)

α T Cal2
1/2 P (2)

α

144Nd 1.903 0.178 15.778 7.227 × 1022 6.166 × 1022 0.853 9.453 × 1022 1.308
146Sm 2.529 0.178 15.765 2.146 × 1015 1.353 × 1015 0.630 2.033 × 1015 0.947
148Gd 3.271 0.179 15.753 2.237 × 109 8.509 × 108 0.380 1.316 × 109 0.588
150Dy 4.351 0.179 15.741 1.195 × 103 3.562 × 102 0.298 5.371 × 102 0.449
152Er 4.934 0.179 15.729 1.144 × 101 3.508 × 100 0.306 5.507 × 100 0.481
156Hf 6.029 0.179 15.706 2.371 × 10−2 6.113 × 10−3 0.258 9.324 × 10−3 0.393
158W 6.613 0.179 15.695 1.250 × 10−3 3.663 × 10−4 0.293 6.518 × 10−4 0.521
182Pb 7.066 0.181 15.579 5.612 × 10−2 1.709 × 10−2 0.304 2.647 × 10−2 0.472
184Pb 6.774 0.181 15.570 6.125 × 10−1 1.792 × 10−1 0.293 2.704 × 10−1 0.441
186Pb 6.470 0.181 15.562 1.205 × 101 2.456 × 100 0.204 3.795 × 100 0.315
188Pb 6.109 0.181 15.554 2.699 × 102 7.248 × 101 0.269 1.118 × 102 0.414
190Pb 5.698 0.181 15.546 1.775 × 104 5.193 × 103 0.293 8.142 × 103 0.459
192Pb 5.221 0.181 15.538 3.559 × 106 1.433 × 106 0.403 2.217 × 106 0.623
194Pb 4.738 0.181 15.530 8.795 × 109 1.033 × 109 0.118 1.630 × 109 0.185
196Po 6.658 0.181 15.522 5.673 × 100 1.537 × 100 0.271 2.366 × 100 0.417
198Po 6.310 0.181 15.515 1.853 × 102 3.727 × 101 0.201 6.348 × 101 0.343
200Po 5.985 0.181 15.507 6.222 × 103 9.931 × 102 0.160 1.527 × 103 0.246
202Po 5.701 0.181 15.500 1.394 × 105 2.038 × 104 0.146 3.101 × 104 0.222
204Po 5.485 0.182 15.493 1.891 × 106 2.434 × 105 0.129 3.716 × 105 0.197
206Po 5.327 0.182 15.486 1.395 × 107 1.597 × 106 0.115 2.499 × 106 0.179
208Po 5.215 0.182 15.479 9.145 × 107 6.441 × 106 0.070 9.915 × 106 0.108
210Po 5.408 0.182 15.472 1.196 × 107 5.150 × 105 0.043 7.881 × 105 0.066
212Po 8.954 0.182 15.466 2.947 × 10−7 5.442 × 10−8 0.185 7.293 × 10−8 0.247
214Po 7.834 0.182 15.459 1.637 × 10−4 4.812 × 10−5 0.294 7.362 × 10−5 0.450
216Po 6.906 0.182 15.453 1.450 × 10−1 5.442 × 10−2 0.375 8.394 × 10−2 0.579
206Rn 6.384 0.182 15.486 5.487 × 102 1.358 × 102 0.248 1.987 × 102 0.362
208Rn 6.261 0.182 15.479 2.356 × 103 4.009 × 102 0.170 6.189 × 102 0.263
210Rn 6.159 0.182 15.472 9.000 × 103 1.078 × 103 0.120 1.662 × 103 0.185
212Rn 6.385 0.182 15.466 1.434 × 103 1.020 × 102 0.071 1.580 × 102 0.110
214Rn 9.208 0.182 15.459 2.700 × 10−7 6.440 × 10−8 0.239 9.019 × 10−8 0.334
216Rn 8.197 0.182 15.453 4.500 × 10−5 2.408 × 10−5 0.535 3.692 × 10−5 0.820
210Ra 7.151 0.182 15.472 4.167 × 100 8.792 × 10−1 0.211 1.302 × 100 0.312
212Ra 7.032 0.182 15.466 1.529 × 101 2.251 × 100 0.147 3.358 × 100 0.220
214Ra 7.273 0.182 15.459 2.437 × 100 2.772 × 10−1 0.114 4.189 × 10−1 0.172
216Ra 9.526 0.182 15.453 1.820 × 10−7 5.015 × 10−8 0.276 7.728 × 10−8 0.425

folded M3Y potential, they obtained an improved α-nucleus
potential, which incorporates the advantages of both potentials.
Interestingly, we find a similar optimization of the α-nucleus
potential can also be achieved by including the medium effect.
As is shown in Fig. 3, with the medium effect included, the
shape of the interior nuclear potential automatically transforms
to a similar geometry as given by the WS + WS3 potential;
meanwhile, the surface region almost maintains the asymptotic
behavior of the double-folding potential. Such an accidental
finding appears to indicate that the absence of the nuclear
medium effect is probably responsible for the blemish in the
internal region of the conventional double-folding potential,
which is desired to be investigated in the future. In terms of the
result shown in Fig. 3, the transformation of the internal shape
due to the included medium effect is considered favorable for
a realistic double-folding α-nucleus potential.

For the surface region of relevance to α decay, the decline in
both Coulomb and nuclear potentials due to the medium effect
is subtle as shown in Fig. 3. However, such a minor variation
is found to cause a 30% ∼ 40% decrease in the theoretical
half-lives compared with the conventional calculation. In
Table II, we list the results of favored α transitions of spherical
even-even nuclei. T Cal1

1/2 represents the calculated half-lives
with the consideration of nuclear medium effect, while T Cal2

1/2 is

for the case of constant β. The experimental half-lives T
Expt

1/2 are
listed in the fifth column for reference. While calculating the
half-lives, the α-preformation factors is usually taken as a fixed
constant for a certain kind of nuclei in systematic calculations
[17,18]. Because the investigated nuclei are almost located
near either the proton or neutron shell closures, the variation
of α-preformation factors between the adjacent nuclei would
be more significant than in the open-shell region [24,46,47].
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FIG. 4. (a) Comparison of the calculated half-lives with experi-
mental data. (b) Variation of the α-preformation factors with mass
number. The medium effect mainly leads to a general decrease in the
magnitude of Pα factors, while a reasonable trend of the variation is
maintained.

Therefore, to adopt a fixed Pα for different α transitions as
in previous studies would be inappropriate here. To exclude
the interference of this uncertain quantity, we have employed
Pα = 1 in our calculation to extract the empirical Pα value
from the experimental half-lives. The extracted empirical
Pα corresponding to the above two cases are given as P (1)

α

and P (2)
α .

As expected, the daughter’s saturation density ρ1,s deter-
mined by the two-parameter Fermi distribution is very stable,
which leads to an almost constant parameter a1. This means
the medium effect of different nuclei can be well approximated
by an identical expression β(ρ1). Another feature in Table II
is that, as a consequence of the medium effect, the reduction
in the α-decay half-lives is systematical and substantially of
approximate magnitudes. This corresponds to a decrease of
the same order in the empirical Pα factors, which are extracted
from the experimental half-lives. As is known, the Pα factor,
which describes the preformation probability should always
be less than unity according to its definition. However, it
was found that the Pα given by the conventional double-
folding α-nucleus potential are sometimes overestimated, for
example, the P (2)

α = 1.308 of 144Nd is obviously inappropriate.
However, with the medium effect to be included, the obtained
P (1)

α strictly embodies this basic property, and the average
value 0.258 of P (1)

α is also strongly consistent with previous
analyses [4,46]. Hence, this in turn justifies that the nuclear
medium effect is essential to a precise description of the
realistic α-nucleus interaction.

In order to generally evaluate the reliability of the improved
α-nucleus potential, we demonstrate the variation of half-lives
and preformation factors with mass number in Fig. 4. Since the

exact Pα factors is not yet known, we take the average value
0.258 in the half-life calculation as a very rough estimation.
However, we find the results still agree fairly well with the
experimental data because a statistical analysis gives the
deviation within a factor of 1.6. As for the empirical Pα factors,
the results are connected according to different isotopic and
isotonic chains, so that the evolution of Pα can be easily
observed. As we can see, the medium effect mainly results
in a decrease in the magnitude of the empirical Pα factors,
whereas the trend is very similar to the conventional case. This
indicates the medium effect does not make big differences to
the trend of Pα variation, which is expectable because as a kind
of averaged effect, it only generally affects the strength of the
formation amplitude, while the trend is much more sensitive
to the detailed nuclear structure differences. Note that in the
present study the medium effect is approximated by a simple
density-dependent β(ρ1) where local density is the only factor
under consideration. To incorporate more structural details of
the investigated nucleus, the β function should be associated
with additional structural quantities and thus will become
more sophisticated. This may be investigated in the future. It
is worth mentioning that the Pα variation as an indicator of
nuclear structural evolution was systematically investigated
in previous studies [46,47]. As can be observed from the
Z = 84,86 isotopic chains in Fig. 4(b), critical features such
as the shell effect of Pα are reasonably reproduced, showing
the good reliability of both α-nucleus potentials.

IV. SUMMARY

We introduce the nuclear medium effect into the widely
used double-folding model to generate an improved α-nucleus
potential. The density distribution of the α cluster is now
considered to depend on its surrounding baryon density, as
a kind of medium effect resulting from the variation of Pauli
blocking. This density dependence is embedded into the width
parameter β of the Gaussian-type density distribution, so that
the α cluster smoothly reduces its size while moving outward
the daughter’s region. We extract the results from previous
microscopic studies to constrain the density dependence of β,
and a simple expression of β(ρ1) is proposed for the calculation
of double-folding α-nucleus potential. The influence of the
medium effect is investigated and discussed in details from the
perspective of α decay.

The inclusion of medium effect brings about an favorable
improvement in the conventional double-folding potential. For
the interior region, the geometry of the potential obviously
varies towards an preferable shape analogous to the Woods-
Saxon type. In the surface region, the medium effect slightly
reduces the potential, and at the same time maintains the
good asymptotic behavior of double-folding potential. As a
consequence to α decay, the half-lives of the investigated
spherical nuclei generally reduce by 30% ∼ 40% compared
with the conventional calculation. After the α-preformation
factor is considered, the experimental half-lives are well
reproduced by the improved α-nucleus potential. In addition,
through deducing the empirical α-preformation factors from
the improved potential, it is found that the medium effect
mainly affects the magnitude of the preformation probability,
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keeping the trend of Pα variation unchanged. With a general
decrease in the deduced Pα , the importance of the medium
effect is justified because the magnitude is more self-consistent
with the definition of α-preformation factor.

In conclusion, through introducing the nuclear medium
effect, we obtain an improved double-folding α-nucleus
potential, which explains well the experimental α-decay data.
More importantly, it is emphasized that the included medium
effect enables the potential to incorporate more details of
the α-decay process, especially the dynamic behavior of
the α cluster at the nuclear surface. However, one should
remember that the density dependence of the α-cluster density
distribution is approximated in a phenomenological way. To
go beyond the present study, it can be replaced by an exact
density distribution, for which the analytical solution of the
in-medium equation for the α intrinsic motion is required. On
the other hand, the density distribution of the daughter nucleus

in the present calculation is taken to be of the fixed Fermi shape
as a typical approximation. One can also consider the medium
effect on the daughter nucleus and thus its density distribution
should be treated dynamically, analogous to the case for the
α cluster. The possible importance of these factors to the α-
nucleus potential requires a further investigation in the future.
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