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Shape evolution in Kr, Zr, and Sr isotopic chains in covariant density functional theory
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The relativistic-Hartree-Bogoliubov formalism using density-dependent zero and finite range NN interactions,
and separable pairing, is applied to the Kr isotopes (Z = 36) and N = 34–64 isotopes, neutron-rich Sr(Z = 38)
and Zr(Z = 40) nuclei with neutron numbers N = 48–70. A systematic search of triaxial ground state and
the phenomena of unusual structural change and the coexistence of shape for 70−100Kr, and at N = 58 in the
86−108Sr and 88−110Zr isotopes are done. A reasonable agreement is found with the available experimental data
and with the macro-microscopic finite range droplet model. The findings are also in good agreement with
the self-consistent Hartree-Fock-Bogoliubov calculations based on the interaction Gogny-D1S force, and with
relativistic calculations.
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I. INTRODUCTION

The availability of modern radioactive ion beam (RIB)
facilities has greatly reinvigorated theoretical as well as exper-
imental interest in investigating new and often exotic nuclear
structure phenomena of neutron-rich nuclei throughout the
chart of nuclei. Neutron-rich nuclei in the mass region A ≈ 100
of the nucleic chart are of special interest. These neutron-rich
nuclei are relevant for the r-process of stellar nucleosynthesis.
They show some evidence of unusual features in some of their
isotopic chains with an abrupt variation of particular nuclear
properties, such as the quadrupole deformation, and show the
corresponding phenomena of shape coexistence. Two distinct
quantum configurations of nucleons at the very low excitation
energy with very different intrinsic properties are interpreted
as the phenomena of shape coexistence.

In many neutron-rich isotopes, an extremely abrupt tran-
sition in shape and shape coexistence has been observed
experimentally [1–7]. Abrupt change of shape from spherical
to deformed shape and shape coexistence between spherical
and deformed configurations is best seen in the neutron-rich
nuclei with N ≈ 60. Neutron-rich Sr and Zr nuclei are the
best candidates to study such phenomena in this region with
N ≈ 58. These effects are attributed to the interplay between
the spherical gaps at Z = 38, 40, and N = 56, 58, and the
deformed subshell closures at Z = 38, 40, and N = 60, 62,
and 64. Observation of very low-lying 02

+ states is an another
unusual feature in this region along with the shape transition.
It is interpreted as an evidence for shape coexistence. In
recent studies of Sr and Zr nuclei, irregularities in the neutron
separation energy, charge radii, and the first 2+ excited state
energy, have provided evidence about unusual abrupt changes
in the nuclear structure at N = 60 [8–10]. An extensive review
upon the unified description of shape coexistence in this mass
region is presented in Ref. [11] and references therein.

Recently, as reported by research performed at the REX-
ISOLDE facility at CERN, the reduced transition probabilities
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and spectroscopic quadrupole moments manifested experi-
mental evidence for shape coexistence in neutron-rich stron-
tium (96,98Sr) isotopes at N = 60 [12]. Another observation
of collective structure in the closed-subshell nucleus 94Zr
manifested the shape coexistence in 94Zr. The role of subshells
for nuclear collectivity is suggested to be important in this case
[13]. On the basis of some indirect evidences in the analysis
of energy patterns from rotational band [11,14,15] and electric
monopole transition strength [2,16–18], the possibility of the
shape coexistence is suggested in the zirconium (94Zr and
100Zr) isotopes.

In order to understand the exotic features in this mass
region, recent as well as earlier experimental data are needed to
be fully described and compared. Therefore, different nuclear
structure models are aimed in their recent nuclear structure
studies at understanding the various unusual structural tran-
sitions and effects arising due to the competition between
the macroscopic and microscopic degrees of freedom. In
this regard, a realistic description of the structural evolution
and shape coexistence in Kr, Sr, and Zr isotopes has been
addressed earlier in many theoretical studies within the
different formalisms. Nomura et al. in their recent study [19]
showed the rapid structural change between N = 58 and 60
in 94−110Zr and 92−108Sr isotopes, within the SCMF-to-IBM
mapping procedure based on the Gogny-D1M EDF. In the
same framework Nomura et al. [20] studied the shape evolution
in Kr isotopes, and showed the prolate and oblate shape
transitions and shape coexistence on both sides of the isotopic
chains. The triple shape coexistence specific for the 0+ states
and the evolution of the shape coexistence and mixing in the
neutron-rich N = 58 Sr and Zr isotopes are studied within
the complex excited VAMPIR approach [21]. A realistic,
effective interaction based on the Bonn-A potential is used
in this approach. In the shell model (SM) framework [22], the
spherical-to-deformed shape transition in Zr(Z = 40) isotopes
with neutron numbers from N = 50 to N = 58 is studied
using a modest valence space with a 78Ni inert core. In
another recent work by Xinag et al. [23] within the covariant
density functional theory (DFT), the coexistence of prolate
and oblate shapes is observed in 98Sr and 100Zr. They also
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found a moderate shape transition in Kr isotopes. However, one
takes into consideration that treatment of pairing correlation
in Ref. [23] is done based on the BCS approximation. In this
study, the sharp kink observed in the charge radii at N = 60
is shown to be related to the abrupt change in nuclear shapes.
Numerous other theoretical studies aiming to understand the
structural evolution are done within different formalisms.
These include the relativistic mean-field (RMF) theory [24,25],
the generator coordinate method (GCM) [26], the interacting
boson model (IBM) approximation [27], the VAMPIRE model
[28,29], the macroscopic-microscopic method [26], the shell
model (SM) [30–36], the Hartree-Fock (HF) and Hartree-
Fock-Bogoliubov (HFB) methods [37,38], the Monte Carlo
shell model [39].

In the present study, we shall present the numerical results
of a systematic calculation in the search of triaxial ground
state properties and shape coexistence in the shape coexistence
in the neutron-rich Sr(Z = 38) and Zr(Z = 40) nuclei with
neutron numbers N = 54–70, and in the Kr (Z = 36) isotope
chain with N = 34–64. The present analysis is an attempt to
describe self-consistently the phenomena of unusual structural
change and the coexistence of shape in the 94−110Zr and
92−108Sr isotopes at N = 58, and for the Kr isotopes chain.
The systematic constrained triaxial calculation is done in
the self-consistent mean field model—the relativistic-Hartree-
Bogoliubov (RHB) with density-dependent zero and finite
range NN interactions. The model parameters used are the
density-dependent point-coupling DD-PC1 [40], and nonlin-
ear meson-exchange coupling NL3* [41]. They provide a
successful description of ground state properties [42–45] over
all the nuclear charts. Pairing correlations are considered in
the separable pairing model [46].

This articles is organized as follows. In Sec. II a general
overview of the RHB formalism is presented. Potential energy
surfaces for the three isotopic chains are discussed and
compared with the results from others in Sec. III. Bulk
properties for the ground state will be discussed in Sec. IV.
Summary and conclusions are in Sec. V.

II. THEORETICAL FRAMEWORK

For the present investigation, the self-consistent RHB with
density-dependent finite range meson-exchange model and a
density-dependent zero-range point-coupling model are used
[40,47–50]. These models provide a very successful and an
excellent description of different ground states and excited
state properties over the entire nucleic chart [42–45,47,51–56].
The present investigation uses the very successful, density-
dependent point-coupling DD-PC1 [40], and nonlinear meson-
nucleon coupling NL3* [41] parameters.

A. The meson-exchange model

The meson-exchange model is defined by the standard
Lagrangian density with medium dependence vertices [57]

L = ψ[γ (i∂ − gωω − gρ �ρ �τ − eA) − m − gσσ ]ψ

+ 1
2 (∂σ )2 − 1

2 m2
σ σ 2 − 1

4	μν	
μν + 1

2 m2
ωω2

− 1
4
�Rμν

�Rμν + 1
2 m2

ρ �ρ2 − 1
4 FμνFμν, (1)

where m is the bare nucleon mass and ψ denotes the Dirac
spinors. The masses mσ , mω, and mρ are those of the σ
meson, ω meson, and the ρ meson, with the corresponding
coupling constants for the mesons to the nucleons as gσ , gω, gρ ,
respectively, and e is the charge of the proton. These coupling
constants and unknown meson masses are the Lagrangian
equation (1) parameters. Here, 	μν , �Rμν , and Fμν are the
field tensors of the vector fields ω, ρ, and the photon.

This linear model has first been introduced by Walecka
[58,59], however, this simple model does not provide a
quantitative description of nuclear system [60,61] with in-
teraction terms that are only linear in the meson fields. For
a realistic description of complex nuclear system properties
one can either introduce a nonlinear self-coupling or a density
dependence in the coupling constants.

For the nonlinear self-coupling, one has to add the following
term to the Lagrangian:

U (σ ) = 1
2m2

σ σ 2 + 1
3g2σ

3 + 1
4g3σ

4 (2)

for scalar mesons this has turned out to be crucial [60]. This
model has been successfully used in a number of studies
[57,62–64]. We have used the recently proposed parameter
set NL3* [41], which is a modern version of the widely used
parameter set NL3 [63]. It improves the description of the
ground state properties of many nuclei over parameter set
NL3, and provides a simultaneously excellent description of
excited states with collective character in spherical as well as
in deformed nuclei.

In the case of the density dependent coupling constants one
defines the dependence as

gi(ρ) = gi(ρsat)fi(x), (3)

i can be any of the three mesons σ , ω, and ρ where the density
dependence is given by

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
. (4)

for σ and ω and by

fρ(x) = exp(−aρ(x − 1)). (5)

for the ρ meson. x is defined as the ratio between the baryonic
density ρ at a specific location and the baryonic density
at saturation ρsat in symmetric nuclear matter. The eight
parameters in Eq. (4) are not independent, but constrained
as follows: fi(1) = 1, f ′′

σ (1) = f ′′
ω (1), and f ′′

i (0) = 0. These
constraints reduce the number of independent parameters for
density dependence to three. This model is represented in the
present investigations by the parameter set DD-ME2 [47].

B. The point-coupling model

The effective Lagrangian density for the density-dependent
point-coupling model [40,65,66] that includes the isoscalar-
scalar, isoscalar-vector, and isovector-vector four-fermion
interactions is given by

L = ψ̄(iγ .∂ − m)ψ

− 1

2
αs(ρ̂)(ψ̄ψ)(ψ̄ψ) − 1

2
αV (ρ̂)(ψ̄γ μψ)(ψ̄γμψ)
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FIG. 1. Potential energy surfaces of the Kr isotopes from neutron number N = 34 to 64 in the (β,γ ) plane, obtained from a triaxial RHB
calculations with the DD-PC1 parameter set. The color scale shown at the right has the unit of MeV, and scaled such that the ground state has
a zero MeV energy.

− 1

2
αT V (ρ̂)(ψ̄ �τγ μψ)(ψ̄ �τγμψ)

− 1

2
δS(∂vψ̄ψ)(∂vψ̄ψ) − eψ̄γ · A

1 − τ3

2
ψ. (6)

It contains the free-nucleon Lagrangian, the point-coupling
interaction terms, and, in addition to these two, the model
includes the coupling of the proton to the electromagnetic field.
The derivative terms in Eq. (6) account for the leading effects
of finite-range interactions that are crucial for a quantitative
description of the nuclear properties. The functional form of
the point-couplings chosen is

αi(ρ) = ai + (bi + cix)e−dix, (i = S,V,T V ), (7)

where x = ρ/ρsat, and ρsat denotes the nucleon density at
saturation in symmetric nuclear matter. In the present work,
we have used the recently developed density-dependent point-
coupling interaction DD-PC1 [40].

In the present investigation, the triaxial RHB with separable
pairing model is used [46,67]. In the presence of pairing the
single-particle density matrix is generalized to two densities
[68]: the normal density ρ̂ and the pairing tensor k̂. The RHB

energy density functional is then given by

ERHB[ρ̂,k̂] = ERMF[ρ̂] + Epair[k̂], (8)

where ERMF[ρ̂] is given by

ERMF[ψ,ψ̄,σ,ωμ, �ρμ,Aμ] =
∫

d3rH (9)

and the Epair[k̂] is given by

Epair[k̂] = 1

4

∑
n1n

′
1

∑
n2n

′
2

k∗
n1n

′
1
〈n1n

′
1|V PP |n2n

′
2〉kn2n

′
2
. (10)

The index n refers to the original basis, and 〈n1n
′
1|V PP |n2n

′
2〉

are the matrix elements of the two-body pairing interaction.
The effective interaction in the pp channel, in r-space has the
form

V PP (r1,r2,r′
1,r

′
2) = −Gδ(R − R′)P (r)P (r′), (11)

where

R = 1√
2

(r1 + r2), r = 1√
2

(r1 − r2) (12)
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FIG. 2. Potential energy surfaces of the Kr isotopes from neutron number N = 34 to 64 in the (β,γ ) plane, obtained from a triaxial RHB
calculations with the DD-ME2 parameter set. The color scale shown at the right has the unit of MeV, and scaled such that the ground state has
a zero MeV energy.

being the center of mass and the relative coordinates, respec-
tively. The form factor P (r) is of the Gaussian shape

P (r) = 1

(4πa2)3/2
e−r2/2a2

. (13)

The two parameters G = 728 MeV fm3 and a = 0.644 fm of
this interaction are the same for protons and neutrons. It is
derived in Refs. [69–72] by a mapping of the 1S0 pairing gap
of infinite nuclear matter to that of the Gogny force D1S [73].

The constrained calculations are performed by imposing
constraints on both axial and triaxial mass quadrupole mo-
ments. The potential energy surface (PES) study as a function
of the quadrupole deformation parameter is performed by the
method of quadratic constraint [68]. The method of quadratic
constraints uses an unrestricted variation of the function

〈Ĥ 〉 +
∑

μ=0,2

C2μ(〈Q̂2μ〉 − q2μ)
2
, (14)

where 〈Ĥ 〉 is the total energy, 〈Q̂2μ〉 denotes the expectation
values of mass quadrupole operators,

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2, (15)

q2μ is the constrained value of the multipole moment, and C2μ

is the corresponding stiffness constant [68]. Moreover, the
quadratic constraint adds an extra force term

∑
μ=0,2 λμQ̂2μ

to the system, where

λμ = 2C2μ(〈Q̂2μ〉 − q2μ)
2

(16)

for a self-consistent solution. This term is necessary to force
the system to a point in deformation space different from a
stationary point. The augmented Lagrangian method [74] has
also been implemented in order to resolve the problem of
convergence of the self-consistent procedure which diverges
while increasing the value of stiffness constant C2μ used in the
procedure.

III. POTENTIAL ENERGY SURFACES

Potential energy surfaces (PES) have been calculated for
Kr isotopes from neutron number N = 34 to 64 and for
neutron rich Sr and Zr isotopes from neutron number N = 48
to 70 in the (β,γ ) plane. This is done systematically within
the constrained triaxial calculations mapping the quadrupole
deformation space defined by β2 and γ using DD-ME2, NL3*,
and DD-PC1 parametrizations. Contour plots have been made
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to investigate the location of a triaxial ground state, and the
possible shape coexistence. The location of the ground state in
the β-γ deformation space is indicated by the point (β0,γ 0).

A. Kr isotopes

Kr isotopes show a very rich structure and unusual shape
coexistence phenomena in the ground state. In DD-PC1 results,
Fig. 1, one can notice that at the low end of the isotopic chain,
Kr isotopes have an axial oblate shape for N = 34. However,
a very complex structure shows up for N = 36. In fact, four
different minima can be found with energy difference less
than 1 MeV. The global minimum is identical to the one
in N = 34 case, but its location in the deformation space
is shifted to larger β2 deformation. Two of the remaining
minima are triaxial, one of them has γ = 50, β2 = 0.2 and
the other has γ = 20, β2 = 0.55. The last minimum is prolate
and located at β2 = 0.4. It worth noting that there is a barrier
of around 4 MeV in the middle of the PES separating the
minima, two on each side of the barrier. As we move along
the chain the minima merge with each other and we have only
two minima for 74−78Kr isotopes, and then, between 80−88Kr,
only one minimum is found, and it is spherical except the
axial prolate shape for 82Kr. Starting from 90Kr (N = 54), the
ground state starts to depart from spherical shape, and become
deformed and soft in the γ direction. For 92Kr (N = 56),
the ground state is axially deformed and oblate. The ground
state remains oblate up to the end of the isotopic chain. Shape
coexistence manifests itself in the nuclei at either end of the
isotopic chain, i.e., in 72−78,90−100Kr, with 94Kr as the only
exception. The result is very similar to the one we obtain
with DD-ME2, Fig. 2, parametrizations with two variations.
These variations are seen in 84Kr where we obtain a prolate
axial ground state deformation instead of spherical ground
state.

Shape evolution in Kr isotopes has been studied within
the relativistic framework with BCS approximation for the
pairing interaction using PC-PK1 parametrization in Ref. [23]
which is a point coupling parametrization similar to the one
we use, DD-PC1. However, DD-PC1 works much better for
deformed nuclei, while PC-PK1 works better for spherical
nuclei [65]. This difference in the both parametrization and
pairing correlation leads to the difference in the bulk properties
as will be seen later in the discussion. However, the authors
of [23] studied only the neutron rich isotopes, 86−104Kr and
missed the interesting features in the neutron deficient side of
the chain shown in the PES of 72Kr. Our results fully agree
with the results presented in Ref. [23].

It was also studied within the interacting boson model
(IBM) derived from the Gogny energy density functional
[20]. The results with Gogny-D1M density functional and the
mapped IBM shows very similar results to our calculations.
However, they do not show the complex structure we have in
72Kr. In addition, our results show a higher barrier between
the minimum in 72,74Kr.

In Tables I and II the list of the absolute minimum and the
first excited minimum are listed for all the Kr isotopes under
study. It is clear that the difference in energy between the two
minima are less than 2.8 MeV.

TABLE I. Location of the two ground state minima indicated by
(β0,γ 0) for Kr isotopes using DD-PC1 parametrizations. The first
minimum is the deepest minimum.

Nucleus 1st minimum 2nd minimum �Ebin (MeV)

70Kr (0.3,60◦) – N/A
72Kr (0.35,60◦) (0.2,50◦) 1.1
74Kr (0.15,60◦) (0.5,0◦) 0.5
76Kr Spherical (0.2,60◦) 0.7
78Kr Spherical (0.2,60◦) 0.7
80Kr Spherical – N/A
82Kr (0.15,0◦) – N/A
84Kr Spherical – N/A
86Kr Spherical – N/A
88Kr Spherical – N/A
90Kr (0.20,0◦–60◦) – N/A
92Kr (0.25,60◦) (0.25,0◦) 0.19
94Kr (0.30,60◦) – N/A
96Kr (0.35,60◦) (0.45,0◦) 2.2
98Kr (0.30,60◦) (0.40,0◦) 1.7
100Kr (0.30,60◦) (0.40,0◦) 1.4

B. Sr and Zr isotopes

In Figs. 3 and 4, we can see a sudden transition in ground
state shape in the Sr chain, mainly as we move from 94Sr
(N = 56) to 96Sr (N = 58). At the beginning of the chain, for
86−90Sr, the ground state minimum is spherical and there is
no second minimum. However, moving along the chain, we
encounter a triaxial ground state for 92,94Sr according in the
DD-PC1 calculations, but almost axial (oblate) with NL3∗, but
both parametrizations do not predict a second minimum.

As we move along the chain and increase the neutron
number, an emerging hill starts to form and emerges from
near β2 = 0 and causes the existence of two new minima.

TABLE II. Location of the two ground state minima indicated by
(β0,γ 0) for Kr isotopes using DD-ME2 parametrizations. The first
minimum is the deepest minimum.

Nucleus 1st minimum 2nd minimum �Ebin (MeV)

70Kr (0.3,60◦) (0.25,0◦) 1.3
72Kr (0.35,60◦) (0.2,40◦) 1.5
74Kr (0.15,60◦) (0.35,60◦) 0.14
76Kr Spherical (0.2,60◦) 0.64
78Kr Spherical (0.2,60◦) 0.64
80Kr Spherical – N/A
82Kr (0.15,0◦) – N/A
84Kr (0.15,0◦) – N/A
86Kr Spherical – N/A
88Kr Spherical – N/A
90Kr (0.20,0◦–60◦) – N/A
92Kr (0.25,60◦) (0.25,0◦) 0.4
94Kr (0.30,60◦) (0.45,0◦) 2.7
96Kr (0.35,60◦) (0.45,0◦) 2.8
98Kr (0.30,60◦) (0.40,15◦) 2.2
100Kr (0.30,60◦) (0.45,5◦) 1.9
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FIG. 3. Potential energy surfaces of the Sr isotopes from neutron number N = 48 to 70 in the (β,γ ) plane, obtained from a triaxial RHB
calculations with the NL3* parameter set. The color scale shown at the right has the unit of MeV, and scaled such that the ground state has a
zero MeV energy.

Both of these minima are axial, but one of them is prolate and
the other is oblate. The exact location of these two minima
and the difference in energy is shown in Tables III and IV.
For the NL3∗, one can notice that from N = 56 up to N = 66,
the oblate minimum is deeper than the prolate minimum with
the energy difference less than 1.0 MeV. After that we can

see that the ground state minimum becomes spherical and the
difference in energy becomes more than 1.0 MeV and reaching
a maximum value of 2.7 MeV for 108Sr. Similar results are also
obtained using the DD-PC1 parameter set. However, the main
difference lies in the fact that DD-PC1 will always provide the
first minimum to have an oblate shape and that the difference

FIG. 4. Same as in Fig. 3 but with DD-PC1.
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TABLE III. Location of the two ground state minima indicated
by (β0,γ 0) for Sr isotopes using NL3* parametrizations. The first
minimum is the deepest minimum.

Nucleus 1st minimum 2nd minimum �Ebin (MeV)

86Sr (0.0,0◦) – N/A
88Sr (0.0,0◦) – N/A
90Sr (0.0,0◦) – N/A
92Sr (0.15,55◦) – N/A
94Sr (0.20,60◦) (0.4,0◦) 0.67
96Sr (0.50,0◦) (0.25,60◦) 0.098
98Sr (0.45,0◦) (0.35,60◦) 0
100Sr (0.45,0◦) (0.30,55◦) 0.134
102Sr (0.20,60◦) (0.45,0◦) 0.28
104Sr (0.15,60◦) (0.45,0◦) 0.60
106Sr (0.0,0◦) (0.45,0◦) 1.2
108Sr (0.0,0◦) (0.45,0◦) 2.7

in energy between the two minima is less than 1 MeV in all of
the cases specially for 106,108Sr. Nevertheless, one can claim
that the general trend of the results is independent from our
choice of parametrizations, it is still noticeable that the size
and height of the hill that developed for N = 58 are larger for
the DD-PC1 results as compared with the NL3* results.

Softness in the γ direction is clearer near the oblate
minimum in the NL3* calculations. The existence of two
ground state minima is present in Sr isotopes with neutron
numbers greater than 54 and manifests itself at N = 60. Our
results agree with the results presented in Ref. [10], where the
authors uses a self-consistent mean-field approximation based
on the D1S [77] interaction. In addition, our results are in
agreement with other studies performed with the relativistic
mean field approach [23] in predicting the shape evolution of
the ground state with the NL3∗. Our DD-PC1 results predict
a prolate minimum in most of the cases. However, as we
mentioned before the difference in energy between the prolate
and oblate minimum is very small.

For the Zr(Z = 40) isotopic chain, the PES are shown
in Figs. 5 and 6, the ground states for 88−92Zr are spherical
and there is no secondary minimum. However, for 94,96Zr the

TABLE IV. Location of the two ground state minima indicated
by (β0,γ 0) for Sr isotopes using DD-PC1 parametrizations. The first
minimum is the deepest minimum.

Nucleus 1st minimum 2nd minimum �Ebin (MeV)

86Sr (0.0,0◦) – N/A
88Sr (0.0,0◦) – N/A
90Sr (0.0,0◦) – N/A
92Sr (0.20,30◦) – N/A
94Sr (0.25,40◦) (0.45,0◦) 0.03
96Sr (0.50,0◦) (0.25,60◦) 0.94
98Sr (0.45,0◦) (0.30,60◦) 0.65
100Sr (0.45,0◦) (0.30,55◦) 0.86
102Sr (0.45,0◦) (0.25,50◦) 0.68
104Sr (0.45,0◦) (0.25,60◦) 0.24
106Sr (0.40,0◦) (0.25,60◦) 0.53
108Sr (0.45,0◦) (0.0,0◦) 0.40

TABLE V. Location of the two ground state minima indicated
by (β0,γ 0) for Zr isotopes using NL3* parametrizations. The first
minimum is the deepest minimum.

Nucleus 1st minimum 2nd minimum �Ebin (MeV)

88Zr (0.0,0◦) – N/A
90Zr (0.0,0◦) – N/A
92Zr (0.0,0◦) – N/A
94Zr (0.20,30◦) – N/A
96Zr (0.20,50◦) (0.45,0◦) 1.25
98Zr (0.20,60◦) (0.55,0◦) 0.09
100Zr (0.20,60◦) (0.45,0◦) 0.25
102Zr (0.20,60◦) (0.45,15◦) 0.54
104Zr (0.20,60◦) (0.45,10◦) 0.90
106Zr (0.20,60◦) (0.40,0◦) 1.0
108Zr (0.0,0◦) (0.20,60◦) 0.07
110Zr (0.0,0◦) (0.20,60◦) 1.0

ground state is triaxial in both parametrizations. However, after
that there is slight disagreement between the results from the
two parametrizations.

As can be seen from Tables V and VI, one can see that NL3∗
predict an oblate ground state for both 98,100Zr and a prolate
axial second minimum with an energy difference of less than
0.25 MeV. On the other hand DD-PC1 predicts the opposite,
i.e., the ground state is prolate while the second minimum is
oblate. Still the energy difference is considerably small and
less than 1 MeV. Similarly, one notices similar behavior for
102,108,110Zr, where the locations of the first and second minima
are flipped in both parametrizations. However, they agree for
104,106Zr.

This difference will not affect the binding energy and
binding energy per nucleon, but will differently affect the
neutron (proton) radius as will be shown later.

The major difference is that NL3∗ usually gives a higher
difference as compared with DD-PC1. One of the minima is
almost prolate and the other is almost oblate. It is interesting to
see the existence of softness in the γ direction. This softness
comes in the shape of a belt that covers all the values of γ .

TABLE VI. Location of the two ground state minima indicated
by (β0,γ 0) for Zr isotopes using DD-PC1 parametrizations. The first
minimum is the deepest minimum.

Nucleus 1st minimum 2nd minimum �Ebin (MeV)

88Zr (0.0,0◦) – N/A
90Zr (0.0,0◦) – N/A
92Zr (0.0,0◦) – N/A
94Zr (0.20,30◦) – N/A
96Zr (0.20,45◦) (0.45,0◦) 1.14
98Zr (0.55,0◦) (0.25,60◦) 0.87
100Zr (0.55,0◦) (0.25,60◦) 0.46
102Zr (0.40,15◦) (0.25,60◦) 0.29
104Zr (0.25,55◦) (0.4,10◦) 0.18
106Zr (0.20,60◦) (0.40,0◦) 0.57
108Zr (0.25,60◦) (0.40,0◦) 0.22
110Zr (0.20,60◦) (0.40,0◦) 0.54
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FIG. 5. Potential energy surfaces of the Zr isotopes from neutron number N = 48 to 70 in the (β,γ ) plane, obtained from a triaxial RHB
calculations with the NL3* parameter set. The color scale shown at the right has the unit of MeV, and scaled such that the ground state has a
zero MeV energy.

However, as the barrier starts to develop around β2 = 0.2 it
starts to split the belt into two separate regions and create two
distinct minima, a prolate and an oblate minimum. However,
the splitting is stronger in the case of the DD-PC1 as compared
with NL3*, and thus the existence of two shapes at ground state
are more pronounced in the DD-PC1 results. Our results in both

parametrizations agree with the results obtained in Ref. [23]
where at the beginning of the chain the ground state shape is
spherical then it becomes oblate and at the end of the chain it
becomes spherical again.

The difference in energy between the two minima is less
than 2 MeV in all of the cases and less than 1 MeV in the

FIG. 6. Same as in Fig. 5 but with DD-PC1.
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FIG. 7. Binding energy, binding energy per nucleon, and two
neutron separation energy for Kr isotopes are shown in (a)–(c),
respectively. The results are shown using DD-PC1 and DD-ME2 as a
function of neutron number. Comparison with FRDM [75] results,
and HFB calculations based on the D1S Gogny force [77], and
experimental data [78] are shown.

majority of them. Although, similar to the Sr isotopes results,
the general trend of the evolution of the PES is independent of
the type of parametrization.

There are two interesting results that deserve a special
discussion. 108,110Zr. The NL3* results show two minima, one
of them is spherical and the other is oblate, and the difference in
energy is 0.07 and 1.0 MeV, respectively. The DD-PC1 results
are quite different. What really makes these two nuclei very
interesting is the existence of a third minimum. The NL3∗

results indicate that this minimum is axially deformed and

A
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FIG. 8. neutron radius (Rn) and proton radius (Rp).

located at β2 = 0.45 and it is prolate. Since there are some
differences between both parametrizations in the ordering of
the first and second minima, we can expect a slight difference
in the location of the their minima in DD-PC1. The third
minimum is for 108Zr triaxial and located at β2 = 0.35 and
γ = 30, and it is 0.93 MeV higher than the first minimum.
For 110Zr the first minimum is oblate and the second one is
prolate, and not spherical. However, one can see an emerging
minimum starts to develop at spherical shape for 110Zr with an
energy difference around 0.7 MeV and forms a third minimum.
Thus, it is our belief that our result is independent from the
choice of the parameter set, and that our finding is in complete
agreement with the results of Ref. [10].

IV. PHYSICAL PROPERTIES

One can relate the shape evolution seen in the previous
section with the change in the value of several physical
properties of the ground state of these nuclei, namely, the
binding energy (BE), proton radii (Rp) and neutron radii (Rn),
two neutron separation energies (S2n), and root mean square
charge radii (Rc) with δ〈r2

c 〉50,N = 〈r2
c 〉N − 〈r2

c 〉50.
The charge radius (Rc) is defined as

Rc =
√

R2
p + 0.64, (17)

where the 0.64 is a correction due to the finite size of the proton.
A smooth transition in the ground state deformation will be
seen as a smooth evolution of these properties. And a sudden
change in the ground state deformation will be reflected as a
sharp jump in these properties.

A. Kr isotopes

Our numerical results for the binding energy, binding
energy per nucleon, and the two neutron separation energy
(S2n) for Kr isotopes are shown in Fig. 7. Our results show very
good agreement with experimental results and the results from
FRDM and HFB based on D1S Gogny force. One exception
can be found in the S2n results at N = 52, where our results
show a sharp change. This is in agreement with the PES for
Kr isotopes, specifically the transition between 88Kr and 90Kr
corresponds to the change from spherical shape to a triaxial
ground state with softness in the γ direction.
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There is a good agreement in Fig. 8(a) for Rn values
between our results and HFB results based on the Gogny-D1S.
However, Rp [Fig. 8(b)], Rc [Fig. 9(a)], and [Fig. 9(b)]
δ〈r2

c 〉50,N = 〈r2
c 〉N − 〈r2

c 〉50 show a deviation from the HFB
results. This is due to the fact that we predict a spherical
shape for most of these nuclei, while they predict an oblate
result. If we compare our results with the relativistic mean
field calculations shown in Figure 6 in Ref. [23], then we will
have a very good agreement with the values of the physical
observable at the ground state minimum. It was mentioned in
the previous section that our PES agrees with theirs.

There are no sudden changes in the ground state defor-
mation along the Kr isotopic chain. This is well reflected in
the behavior of the physical properties, which is smoothly
changing with neutron number.

B. Sr and Zr isotopes

Theses results obtained in the previous sections are different
from the ones obtained for Mo and Ru isotopes in Ref. [51]. It
was shown that the shape transition along the isotopic chains
was smooth, and that was reflected in the smooth evolution of

FIG. 10. Binding energy per nucleon for Sr isotopes (a) and for
Zr isotopes (b) using both NL3∗ and DD-PC1 as a function of neutron
number. Comparison with FRDM [75] results, RMF model with NL3
functional [76], and HFB calculations based on the D1S Gogny force
[77], and experimental data [78] are shown.

FIG. 11. Similar to Fig. 10 but for total binding energy.

the ground state properties. Thus, in the case of the Sr and Zr
isotope chain, where there is a sudden transition in the ground
state shape near the N = 60 shell gap one would expect a
sharp change in the value of several physical properties of the
ground state.

It is useful for our discussion to see the connection between
figures of the PES and the tables of the location of the ground
state minimum and the evolution of the physical observables
at the ground state.

To begin with we notice that there is a perfect agreement
between our calculations using both NL3∗ and DD-PC1, and
FRDM [75] and RMFT [76], which uses BCS approximation
for pairing correlation, and HFB based on D1S Gogny force,
for binding energy, the binding energy per nucleon and two
neutron separation energy, shown in Figs. 10, 11, and 12
respectively. It is worth noticing that the N = 50 shell gap
is well pronounced and is directly related to the change of
the slope of the two neutron separation energy S2n shown in
Fig. 12.

However, this agreement does not last, and we start to have
fluctuations in the other quantities. For Sr isotopes the neutron
and proton radius are shown in panels (a) and (b) of Fig. 13.
One can notice that the sudden transition from spherical shape
in the ground state to deformed shape in Sr isotopes is reflected
in a sharp change in both neutron radius (Rn) and proton
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FIG. 12. Similar to Fig. 10 but for two-neutrons separation energy
(S2n).
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FIG. 13. Neutron radius (Rn) and proton radius Rp for Sr isotopes
and for Zr isotopes using both NL3∗ and DD-PC1 as a function of
neutron number. Comparison with RMF model with NL3 functional
[76], and HFB calculations based on the D1S Gogny force [77] are
shown.

radius (Rp) at N = 56. NL3∗ predicts smaller values of Rp

as compared with the one obtained using DD-PC1 and other
models. The main difference is coming from the fact that
for N � 64 NL3∗ predicts a different location of the ground
state minimum (i.e., different shape), but since the energy
difference between the first and second minimum is very small
this difference is not reflected in the behavior of the binding
energy and related quantities. We notice that there is a decrease
in both Rp and Rc in the NL3∗ calculations, this is due to
the fact that it predicts either an oblate axial or a spherical
ground state while DD-PC1 predicts a prolate axial ground
state deformation.

We can also compare the charge radius of Sr isotopes with
the results shown in Figure 5(b) in Ref. [82], which can be
found to agree with our results with DD-PC1. Both of them
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FIG. 14. Charge radius Rc for Sr isotopes and for Zr isotopes
using both NL3∗ and DD-PC1 as a function of neutron number.
Comparison with RMF model with NL3 functional [76], and HFB
calculations based on the D1S Gogny force [77] and experimental
data [79] are shown.
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numbers. Experimental data are taken from [79–81].

find the ground state to be prolate along the end of the isotopic
chain. The values obtained with NL3∗ agrees with the oblate
results shown in Fig. 5(b) in Ref. [82].

Similarly, one can see that for Zr isotopes the deviation is
restricted to only two nuclei, with N = 58 and 60. These two
nuclei have different ground states in both parametrizations. It
is also interesting to see that there is a decrease in Rp values
of Zr isotopes using DD-PC1, for N = 60–66. This can be
related to the fact that the value of β2 deformation for the
ground state decreases along these nuclei. If one uses the Rp

values at the same deformation as in NL3∗ then we will get
very similar results. The rest of the chain isotopes follow the
same trend as the other models. The charge radius Rc, shown
in Fig. 14, and δ〈r2

c 〉50,N , shown in Fig. 15, behave in a similar
fashion to Rp and show the same type of deviation.

Although there is some deviation between our calculations
and the results obtained in experiments and other models in
some of the nuclei, due to the different prediction of the ground
state minimum, it is still safe to say that our results show, in
general, the same trend as other models and agrees with them.

V. CONCLUSION

We have used the relativistic-Hartree-Bogoliubov (RHB)
formalism with separable pairing to perform a systematic
calculation along three isotopic chains, Kr, Sr, and Zr, to
investigate the triaxial ground state, the phenomena of unusual
structural change, and the coexistence of shape. Our results
indicated that shape transition is smooth for the Kr isotopes.
On the other side the shape evolution in Zr and Sr isotopes
is not smooth, but rather sudden. This is well reflected in
the behavior of physical observables such as the proton and
neutron radii as well as the two neutron separation energies.
72Kr and 108,110Zr show a complicated PES structure, four and
three minima, respectively. One can see the existence of three
minima, while all other nuclei show only two.

Our overall results show independence from the choice of
parametrizations, and in good agreement with results obtained
from different models. It agrees with the results obtained in
FRDM [75], RMFmodel with NL3 functional [23,76], and
HFB calculations based on the D1S Gogny force [77].

064303-11



H. ABUSARA AND SHAKEB AHMAD PHYSICAL REVIEW C 96, 064303 (2017)

[1] E. Cheifetz et al., Phys. Rev. Lett. 25, 38 (1970).
[2] H. Mach et al., Phys. Lett. B 230, 21 (1989).
[3] A. N. Andreyev et al., Nature (London) 405, 430 (2000).
[4] J. D. Cole et al., Phys. Rev. Lett. 37, 1185 (1976).
[5] E. Bouchez et al., Phys. Rev. Lett. 90, 082502 (2003).
[6] N. Bree et al., Phys. Rev. Lett. 112, 162701 (2014).
[7] E. Clément et al., Phys. Rev. C 75, 054313 (2007).
[8] S. Naimi et al., Phys. Rev. Lett. 105, 032502 (2010).
[9] M. Albers et al., Phys. Rev. Lett. 108, 062701 (2012).

[10] R. Rodríguez-Guzmán, P. Sarriguren, L. M. Robledo, and S.
Perez-Martin, Phys. Lett. B 691, 202 (2010).

[11] K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).
[12] E. Clément et al., Phys. Rev. Lett. 116, 022701 (2016).
[13] A. Chakraborty et al., Phys. Rev. Lett. 110, 022504 (2013).
[14] C. Y. Wu, H. Hua, D. Cline, A. B. Hayes, R. Teng, R. M. Clark,

P. Fallon, A. Goergen, A. O. Macchiavelli, and K. Vetter, Phys.
Rev. C 70, 064312 (2004).

[15] J. L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and P. van
Duppen, Phys. Rep. 215, 101 (1992).

[16] J. L. Wood, E. F. Zganjar, C. De Coster, and K. Heyde, Nucl.
Phys. A 651, 323 (1999).

[17] C. Y. Wu, H. Hua, and D. Cline, Phys. Rev. C 68, 034322 (2003).
[18] G. Lhersonneau et al., Phys. Rev. C 49, 1379 (1994).
[19] K. Nomura, R. Rodríguez-Guzmán, and L. M. Robledo, Phys.

Rev. C 94, 044314 (2016).
[20] K. Nomura, R. Rodríguez-Guzmán, Y. M. Humadi, L. M.

Robledo, and H. Abusara, Phys. Rev. C 96, 034310 (2017).
[21] A. Petrovici, Phys. Rev. C 85, 034337 (2012).
[22] K. Sieja, F. Nowacki, K. Langanke, and G. Martínez-Pinedo,

Phys. Rev. C 79, 064310 (2009).
[23] J. Xiang, Z. P. Li, Z. X. Li, J. M. Yao, and J. Meng, Nucl. Phys.

A 873, 1 (2012).
[24] G. Lalazissis and M. M. Sharma, Nucl. Phys. A 586, 201 (1995).
[25] H. Zhang, S. Im, J. Li, W. Zuo, Z. Ma, B. Chen, and W. Scheid,

Eur. Phys. J. A 30, 519 (2006).
[26] J. Skalski, S. Mizutory, and W. Nazarewicz, Nucl. Phys. A 617,

282 (1997).
[27] J. E. García-Ramos et al., Eur. Phys. J. A 26, 221 (2005).
[28] A. Petrovici, K. W. Schmid, and A. Faessler, J. Phys.: Conf. Ser.

312, 092051 (2011).
[29] A. Petrovici, K. W. Schmid, and A. Faessler, Prog. Part. Nucl.

Phys. 66, 287 (2011).
[30] P. G. Reinhard, D. J. Dean, W. Nazarewicz, J. Dobaczewski, J. A.

Maruhn, and M. R. Strayer, Phys. Rev. C 60, 014316 (1999).
[31] A. Holt, T. Engeland, M. Hjorth-Jensen, and E. Osnes, Phys.

Rev. C 61, 064318 (2000).
[32] Y.-X. Liu et al., Nucl. Phys. A 858, 11 (2011).
[33] P. Federman and S. Pittel, Phys. Rev. C 20, 820 (1979).
[34] A. Kumar and M. R. Gunye, Phys. Rev. C 32, 2116 (1985).
[35] T. Rzaca-Urban, K. Sieja, W. Urban, F. Nowacki, J. L. Durell,

A. G. Smith, and I. Ahmad, Phys. Rev. C 79, 024319 (2009).
[36] S. Michiaki and A. Akito, Nucl. Phys. A 515, 77 (1990).
[37] A. Baran and W. Höhenberger, Phys. Rev. C 52, 2242 (1995).
[38] H. Mei, J. Xiang, J. M. Yao, Z. P. Li, and J. Meng, Phys. Rev. C

85, 034321 (2012).
[39] C. Özen and D. J. Dean, Phys. Rev. C 73, 014302 (2006).
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