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Neutrino scattering in supernovae and the universal spin correlations of a unitary gas
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Core collapse supernova simulations can be sensitive to neutrino interactions near the neutrinosphere. This is
the surface of last scattering. We model the neutrinosphere region as a warm unitary gas of neutrons. A unitary gas
is a low density system of particles with large scattering lengths. We calculate modifications to neutrino scattering
cross sections because of the universal spin and density correlations of a unitary gas. These correlations can be
studied in laboratory cold atom experiments. We find significant reductions in cross sections, compared to free
space interactions, even at relatively low densities. These reductions could reduce the delay time from core
bounce to successful explosion in multidimensional supernova simulations.
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Neutrinos radiate 99% of the energy and play a crucial
role in core-collapse supernovae [1–3]. The scattering of
neutrinos and their transport of energy to the shock region
are sensitive to the physics of low-density nucleonic matter,
which is a complex problem due to the strong correla-
tions induced by nuclear forces. A recent three-dimensional
supernova simulation was sensitive to modest changes in
neutral-current neutrino-nucleon interactions and exploded
when strange-quark contributions were included [4]. However,
these strange-quark contributions were probably taken to be
unrealistically large [5]. In a recent paper [6], we found that
similar reductions in neutral-current interactions can arise, not
from strange-quark contributions but from correlations in low-
density nucleonic matter. Recent two-dimensional supernova
simulations find that these reductions of neutrino interactions,
from correlations, can impact supernova dynamics and may
reduce the delay time from core bounce to successful explo-
sion [7,8]; see also [9]. Note that the physics of neutrino-matter
interactions is a broad and active field, where many interesting
studies of neutrino-matter interactions have been performed
over the years; see for example [10–25]. Furthermore, we
have modeled both neutron and nuclear matter in a virial
approximation [26,27] and used this to calculate neutrino
interactions [6,28–30].

Neutrinos decouple from matter near the neutrinosphere.
Here the details of neutrino interactions can be particularly
important for supernova simulations. The neutrinosphere re-
gion is typically a warm, low density gas of neutron rich matter
at densities near 1012 g/cm3. At these low densities, around
1/100 of nuclear density, a typical distances between neutrons
is of order 8 fm. This distance is both smaller than the very large
neutron-neutron scattering length ann ≈ −19 fm and larger
than the neutron-neutron effective range r0 = 2.8 fm [31].
Note that the S-wave phase shift δ at low energies, or wave
number k, is expanded: k cot δ = −1/ann + 1

2 r0k
2 + O(k4).

A unitary gas is a system where the scattering length is
infinite, |ann| → ∞, and the effective range is near zero,
r0 → 0. Because of the large nn scattring length, and the low
density, matter near the neutrinosphere should approximate
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well a warm unitary gas. This is important because unitary
gasses are universal. Any system with large scattering length
and short effective range should behave in the same way.
Several unitary gases of cold atoms have been studied in the
laboratory.

In this paper, we model the neutrinosphere region as a
unitary gas. We believe this is a better approximation than
modeling the neutrinosphere as a free Fermi gas, as is often
done in core collapse supernova simulations. There are many
theoretical calculations of properties of a unitary gas. In
particular, we are interested in neutrino interactions with a
unitary gas. Neutrinos have large spin couplings (from the
axial current) to nucleons. Therefore, we are most interested
in the spin response of a unitary gas. This function describes
correlations between the spins of particles in the gas and
provides the linear response of the system to any weakly
interacting probe that couples to spin.

It is very important that one can study systems of cold
atoms, with large scattering lengths, in the laboratory. This
allows one to experimentally verify properties of unitary gases.
In contrast, it can be difficult to directly study a warm neutron
gas. We will discuss some present cold atom experiments
and suggest future cold atom experiments that could measure
properties directly relevant for the supernova neutrinosphere.

First we describe how neutrinos interact with a warm
unitary gas. We focus on neutrino neutral-current interactions.
These are an important opacity source for μ and τ neutrinos
in a supernova. We expect similar results for charged-current
reactions; however, we leave these to later work. Next we will
use a virial expansion to describe properties of a warm unitary
gas and how these modify neutrino interactions in the medium.
The virial expansion provides model-independent results for
neutrino interactions in the limit of low momentum transfer,
q → 0.

The free cross section for neutrino-neutron neutral-current
scattering is

dσ0

d�
= G2

F E2
ν

16π2

(
g2

a(3 − cos θ ) + 1 + cos θ
)
, (1)

where GF is the Fermi constant, Eν the neutrino energy, and
θ the scattering angle. The axial coupling constant is |ga| =
1.26. The cross section in Eq. (1) neglects corrections of order
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Eν/m, with m the nucleon mass. These corrections arise from
weak magnetism and other effects; for details see [32].

In the medium this cross section is modified by the density
(vector) SV and the spin (axial) SA response functions. The
response of the system to density fluctuations is described by
SV , while SA describes the response of the system to spin
fluctuations. The cross section per nucleon, in the medium, is
then given by

dσ

d�
= G2

F E2
ν

16π2

(
g2

a(3 − cos θ )SA + (1 + cos θ )SV

)
. (2)

Neutrinos interact very weakly with matter. Therefore,
the cross section for neutrino scattering follows from linear
response theory involving SA(q,ω) and SV (q,ω). In general,
these dynamical response functions depend on the momentum
transferred from the neutrino to the nucleons q and on the
energy transferred ω. Both SV (q,ω) and SA(q,ω) have been
measured for a unitary gas of cold 6Li atoms using Bragg
spectroscopy [33]. The spin response SA(q,ω) is observed
to be reduced compared to that of a free Fermi gas, while
SV (q,ω) shows an additional peak at lower ω that corresponds
to scattering from a correlated pair of atoms.

These measurements were done at a relatively low temper-
ature T ≈ 0.1εF , compared to the Fermi energy εF . At this
temperature the system is in a superfluid state. In contrast, su-
pernova matter is often much warmer. Near the neutrinosphere
T ≈ (2–3)εF . At these temperatures the unitary gas is in a
normal state. It would be very useful to have measurements of
SA(q,ω) and SV (q,ω) as in Ref. [33] but for larger temperatures
(and ideally for lower momentum transfers q; see below).

Often one does not need the full energy information in
SA(q,ω), but can instead deal with energy integrated static
quantities. In the rest of the paper we focus on SV (q) =∫

dωSV (q,ω) and SA(q) = ∫
dωSA(q,ω). In the limit q � kF ,

there are exact results for SV (q) and SA(q) valid for any tem-
perature. The static structure factor SV (q) for large q involves
the Fourier transform of the radial distribution function at short
distances. The Tan contact I (T/εF ) describes the probability
of finding two particles within range of the interactions and
determines both the universal radial distribution function at
short distances and the high momentum tail of the momentum
distribution. For large momentum transfers, SV (q � kF ) and
SA(q � kF ) are [34]

SV (q � kF ) = 1 + I (T/εF )

4

kF

q
, (3)

SA(q � kF ) = 1 − I (T/εF )

4

kF

q
. (4)

These equations can be directly used to determine the
interaction of high energy neutrinos with supernova matter.

However, most neutrinos in supernovae have relatively low
energies Eν ≈ 3T . These neutrinos scatter with q ≈ Eν � kF .
Therefore we are most interested, not in the q � kF limit,
but in the opposite long wavelength limit q → 0. In this
limit one can derive model independent results from the virial
expansion.

TABLE I. Virial coefficients bn for a unitary gas, while b0
n are

virial coefficients for a free Fermi gas. Finally b3,1 is the fourth-order
coefficient for three spin-up and one spin-down particles (see text).
The numbers in parentheses are the theoretical errors in the fourth-
order coefficients [35].

n bn b0
n b3,1 Ref.

2 0.53033 − 0.17678
3 − 0.29095 0.06415 [36]
4 0.047(18) − 0.03125 0.170(13) [35]

We start by reviewing the virial expansion for a unitary
gas of, possibly polarized, spin-1/2 fermions [35]. We will use
this to calculate SV (q → 0) and SA(q → 0). The pressure P
is expanded in powers of the fugacities of spin-up particles
z1 = exp(μ1/T ) with chemical potential μ1 and spin-down
particles z2 = exp(μ2/T ) with chemical potential μ2:

P = T

λ3

∑
n1,n2

bn1,n2z
n1
1 z

n2
2 . (5)

Here bn1,n2 is an n1 + n2 order virial coefficient for a system
with n1 spin-up and n2 spin-down particles. We will work to
fourth order: n1 + n2 � 4. Finally, T is the temperature and
λ = [2π/(mT )]1/2 is the thermal wavelength of particles of
mass m. The virial coefficients for a noninteracting spin-1/2
Fermi gas are b0

n = bn,0 = (−1)n+1/n5/2; see Table I. Note that
bn1,n2 = bn2,n1 and, for a unitary gas, there are no interactions
between like spin particles.

For an unpolarized gas, z1 = z2 = z, Eq. (5) reduces to

P = 2T

λ3

4∑
n=1

bnz
n (6)

with b1 = 1, b2 = b0
2 + b1,1/2, b3 = b0

3 + b2,1, and b4 = b0
4 +

b3,1 + b2,2/2. The values of these virial coefficients are
collected in Table I. Our conventions are to include the
noninteracting contributions b0

n in bn and we note that all of
our virial coefficients are for a uniform infinite system rather
than a harmonic trap. The density of the system n is

n = z

T

dP

dz
= 2

λ3
[z + 2z2b2 + 3z3b3 + 4z4b4]. (7)

For this density the Fermi momentum is kF = [(3π2)n]1/3 and
we define a Fermi energy εF = k2

F /(2m) so that the degree of
degeneracy is related to εF /T :

εF

T
=

(
9π

16

)1/3(
z + 2z2b2 + 3z3b3 + 4z4b4

)2/3
. (8)

For the unitary gas the virial coefficients are independent
of temperature so all properties are only functions of εF /T
instead of depending on n and T separately. Equation (8) can
be inverted to find z as a function of εF /T .
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FIG. 1. Fourth-order virial calculations of the vector response SV

(red heavy dashed line), axial response SA (heavy blue dashed-dotted
line), and total response Stot (heavy black line) versus Fermi energy
over temperature εF /T . The fugacity z = exp(μ/T ) is shown as
the heavy cyan dotted line. The dotted error bands show the effect
of statistical and systematic errors in theoretical calculations of the
fourth virial coefficient b4. Finally the thin red dashed line shows SV

calculated using an approximate virial expansion to tenth order [37].

The vector response SV , in the long wavelength limit, can
be calculated from the virial equation of state SV (q → 0) =
T/(∂P/∂n)T = z(∂n/∂z)/n:

SV (q → 0) = 1 + 4zb2 + 9z2b3 + 16z3b4

1 + 2zb2 + 3z2b3 + 4z3b4
. (9)

Figure 1 shows SV . This first increases with εF /T because
of density fluctuations and then decreases at higher densities
because of Pauli blocking. We emphasize that SV (and SA)
include corrections (contained in b0

n) from the Pauli blocking
of the scattered nucleon.

The axial or spin response SA, in the long wavelength limit,
can be calculated from the virial equation of state for a spin
polarized system (see for example [11]):

SA(q → 0) = 2z

n

∂

∂(z1 − z2)
(n1 − n2)

∣∣
z1=z2

. (10)

where ni = zi(dP/dzi)/T . Using Eq. (5) we get

SA(q → 0) = 1 + 4zb0
2 + z2

(
8b0

3 + b3
) + z3

(
16b0

4 + 4b3,1
)

1 + 2zb2 + 3z2b3 + 4z3b4
.

(11)

Two particles are correlated in the 1S0 state. This spin zero
state reduces the spin response so that SA < 1. This is shown
in Fig. 1.

To summarize, the neutrino cross section in the medium is
given by Eq. (2) with SV given by Eq. (9) and SA given by
Eq. (11). We define the total response Stot as the ratio of the
in-medium transport cross section to the free one:

Stot =
∫

d� dσ
d�

(1 − cos θ )∫
d� dσ0

d�
(1 − cos θ )

= 5g2
aSA + SV

5g2
a + 1

. (12)
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FIG. 2. Vector response SV (upper three curves) and axial
response SA (lower four curves) versus Fermi energy over temperature
εF /T . Unitary gas fourth-order virial results from Fig. 1 are solid
while second order virial results are dotted. Pure neutron gas results
at a temperature of 10 MeV, to second order in the virial expansion,
are dashed. Finally the dot-dashed curve shows the fit from Ref. [6]
for pure neutron matter. This reproduces virial results at low density
and RPA calculations [11] at high densities.

Thus Stot is a combination of SA and SV and is dominated by
SA because of the large 5g2

a coefficient.
We now discuss the convergence of our virial results and

their sensitivity to errors in the virial coefficients. We use
the path integral Monte Carlo (PIMC) results for the fourth-
order coefficients b4 and b3.,1 [35], rather than the somewhat
more accurate experimental value for b4 [38], because the
PIMC calculations also include a value for b3,1 that we need to
calculate SA. Figure 1 includes dotted error bands for SV , SA,
and Stot obtained by changing b4 and b3,1 by their theoretical
errors. We see that SA and Stot are relatively insensitive. In
contrast, SV does depend sensitively on b4 for εF /T > 1.1

Therefore, the convergence of SV , as a function of z, may be
poorer than the convergence of SA. This arises because SV

involves two derivatives of the pressure with respect to z. To
test the convergence of the virial expansion for SV we evaluate
it to tenth order using the approximate higher order virial
coefficients from Ref. [37]. This is shown in Fig. 1 and agrees
within errors with our calculation. Note that the convergence
of the virial expansion for the pressure is known to be very
good [37]. We conclude that the results in Fig. 1 should be
reliable.

We compare our unitary gas results to earlier virial
calculations for pure neutron matter. We start with the vector
response. Figure 2 shows that neutron matter virial calculations
from Ref. [6] are consistent with our unitary gas results for SV

only at low densities. This is because the neutron matter virial
calculations are only to second order. Indeed second-order

1Note the lower error band for SV in Fig. 1 may be unrealistic
because the experimental value of b4 is close to the value for the
upper error band [38].
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TABLE II. Expansion coefficients ax
i in fits of z, SV , SA, and Stot

as a function of εF /T ; see Eq. (13). This fit is valid for 0 < εF /

T < 1.5.

i z SV SA Stot

1.5 0.97362 1.1153 − 1.7008 − 1.3858
2 − 0.55516 − 1.1148 +1.3336 1.0597
3 0.13744 0.10751 − 0.11221 − 0.08763

virial results for the unitary gas are similar to the neutron
matter results, but somewhat larger; see Fig. 2. This is because
the second virial coefficient for a unitary gas, b2 ≈ 0.53, is
somewhat larger than for a neutron gas, bn ≈ 0.3. Note, b2

for a unitary gas is independent of temperature while bn for
a neutron gas depends very weakly on temperature and we
evaluate it at T = 10 MeV. We conclude from Fig. 2 that a
second-order virial calculation may overestimate SV except at
low densities.

We now discuss the axial response. Figure 2 shows
that second-order virial calculations do somewhat better
jobs of reproducing SA (than they do for SV ). Finally,
Ref. [6] provided a simple fit to SA that reproduces neutron
matter virial results up to a fugacity ≈0.5 and then fits
the model dependent random-phase approximation (RPA)
calculations of Burrows and Sawyer [11] at higher densi-
ties. This fit agrees remarkably well with our unitary gas
results. However, the present unitary gas calculations are
simpler, cleaner, and less model dependent. Furthermore they
can be experimentally verified with laboratory cold atom
experiments.

We now consider applying our unitary gas results to
astrophysical simulations. First, we fit the results in Fig. 1
for SV , SA, Stot with the simple functional form

Sx ≈ 1 + ax
1.5(εF /T )3/2 + ax

2 (εF /T )2 + ax
3 (εF /T )3, (13)

for x = V , A, and tot . This fit is valid for 0 < (εF /T ) <
1.5 and the coefficients ax

i are given in Table II. We also fit
the fugacity z ≈ az

1.5(εF /T )3/2 + az
2(εF /T )2 + az

3(εF /T )3 in
Table II.

We recommend applying our results to supernova or other
astrophysical simulations as follows. Neutrino-neutron neutral
current cross sections are given by Eq. (2) with SV and SA

given by Eq. (13) and Table II. Alternatively, one could simply
multiply the free-space neutrino-neutron interaction by Stot

from Eq. (12) and Table II. We have not explicitly considered
small admixtures of protons. A minimal assumption would
be to describe neutrino-proton neutral current scattering by
Eq. (2) with SV = 0, because the weak charge of a proton is
small, and SA = 1. We choose SA = 1, rather than the reduced
unitary gas value, because Ref. [6] finds the reduction in SA

to be somewhat smaller as Ye increases. In Eq. (13) a minimal

assumption for εF /T is

εF

T
= min

{
(3π2nn)2/3

2mT
,1.5

}
, (14)

where nn is the neutron density. Our virial results should be
valid for 0 < εF /T < 1.5. For larger values of εF /T we
suggest simply using our results evaluated at εF /T = 1.5
as a minimal assumption. For example, at a temperature of
15 MeV our results are good up to a density of 7 × 1013

g/cm3. Neutrino interactions at higher densities may not be
very important for supernova dynamics except at later times.
However, we will explore the unitary gas response at higher
densities in later work. Our procedure is based on only the
unitary gas response. However, it should give results similar to
the hybrid approach of Ref. [6] that matched model dependent
RPA results at high densities.

Future work would be very useful in three areas. First,
calculations of third (or fourth) order virial coefficients for
neutron and nuclear matter would be very helpful. Perhaps
this could be done by calculating the energies of three (or
four) nucleons in a harmonic trap and taking the limit as the
trap frequency goes to zero. Second, microscopic calculations
of the vector and axial responses should be done for both a
unitary gas and for neutron and nuclear matter. These should
reproduce our virial results at low densities and be directly
applicable at higher densities. One approach would be to use
quasipotentials, that reproduce NN scattering, in a random
phase approximation or in many-body perturbation theory. Fi-
nally, more experimental measurements of the dynamical spin
response of a unitary gas of cold atoms would be very useful.
These should be done at higher temperatures than pervious
measurements [33] and ideally at lower momentum transfers.

In conclusion, core collapse supernova simulations can be
sensitive to neutrino interactions near the neutrinosphere. In
this paper we model the neutrinosphere region as a warm
unitary gas of neutrons. Using the virial expansion to fourth
order we calculate modifications to neutrino scattering cross
sections because of spin correlations in the unitary gas. These
spin correlations are universal for any unitary gas and can
be studied in the laboratory with cold atom experiments. We
find significant reductions in cross sections, even at relatively
low densities. These reductions could reduce the delay time
from core bounce to successful explosion in multidimensional
supernova simulations.
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