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Two-photon exchange corrections to γ ∗N� form factors for Q2 � 4 (GeV/c)2
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We evaluate the corrections of the two-photon exchange (TPE) process on the γ ∗N� transition form
factors. The contributions of the TPE process to eN → e�(1232) → eNπ are calculated in a hadronic model
with the inclusion of only the elastic nucleon intermediate states, to estimate its effects on the multipoles
M

(3/2)
1+ , E

(3/2)
1+ , S

(3/2)
1+ at the � peak. We find that TPE effects on G∗

M are very small. G∗
E, and G∗

C are also little
affected at small Q2. For G∗

E , the TPE effects reach about 3–8% near Q2 ∼ 4 GeV2, depending on the model,
MAID or SAID, used to emulate the data. For G∗

C , the TPE effects decrease rapidly with increasing ε while
growing with increasing Q2 to reach ∼ 6–15% with Q2 ∼ 4 GeV2 at ε = 0.2. Sizeable TPE corrections to G∗

E

and G∗
C found here point to the need to include TPE effects in the multipole analysis in the region of high Q2

and small ε. The TPE corrections to REM and RSM obtained in our hadronic calculation are compared with those
obtained in a partonic calculation for moderate momentum transfer of 2 < Q2 < 4 GeV2.
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I. INTRODUCTION

The Jones-Scadron form factors—magnetic dipole G∗
M ,

electric quardrupole G∗
E , and Coulomb quardrupole G∗

C—
which describe the electromagnetic transition between the
first two lowest baryon states, the nucleon and the �(1232)
resonances, are of fundamental interest. They are proportional
to the three multipoles M

(3/2)
1+ , E

(3/2)
1+ , S

(3/2)
1+ at the resonance

peak [1], which are all purely imaginary. Namely, on the
resonance peak W = M�, one has

G∗
M = N Im M

(3/2)
1+ (Q2,W = M�),

G∗
E = −N Im E

(3/2)
1+ (Q2,W = M�),

G∗
C = −

(
2M�

q�

)
N Im S

(3/2)
1+ (Q2,W = M�), (1)

where N = 8
e
(πk�M���

3q�

Q+
Q−

)1/2( MN

MN +M�
), with e2/4π � 1/137,

Q± ≡ [(M� ± MN )2 + Q2]1/2, �� is the � width, and MN

and M� are the nucleon and � masses, respectively. q� and
k� denote the magnitudes of the virtual photon and pion
three-momenta in the � rest frame at the resonance position,
respectively.

At sufficiently large four-momentum transfer squared,
Q2, perturbative QCD (pQCD) predicts that only helicity-
conserving amplitudes contribute [2], leading to G∗

M , G∗
E , and

G∗
C scaling as Q−4, Q−4, and Q−6, respectively. It follows that

REM ≡ (
E

(3/2)
1+ /M

(3/2)
1+

)∣∣
W=M�

= −G∗
E/G∗

M → 1,

RSM ≡ (
S

(3/2)
1+ /M

(3/2)
1+

)∣∣
W=M�

= −(Q+Q−/4M2
�)(G∗

C/G∗
M ) → const. (2)

In the nonpertubative regime with low Q2, a symmetric
SU(6) quark model would allow the electromagnetic excitation
of the � to proceed only via M1 transition. However, the
tensor component of the one-gluon exchange interaction
between quarks would induce a D state in the �, which

leads to a deformed �, and the photon can excite a nucleon
through electric E2 and Coulomb C2 quardrupole transitions,
resulting in nonvanishing E

(3/2)
1+ and S

(3/2)
1+ multipoles.

Experiments give, near Q2 = 0, REM = −(2.5 ± 0.5)% [3], a
clear indication of � deformation. Below Q2 � 6 Gev2, REM

remains small and negative, while RSM continues to become
more negative with increasing Q2, indicating that the pQCD
limit is nowhere in sight. The intriguing difference in the
behaviors of the REM in the perturbative and nonperturbative
domains remains to be understood.

The multipoles are extracted from pion electroproduction
experiments based on the one-photon exchange (OPE)
approximation. The OPE approximation has been widely used
to analyze most of the electromagnetic nuclear reactions. The
validity of the OPE approximation has recently been under
heavy scrutiny [4–6]. It was prompted by the substantial
difference in the ratio of proton electric and magnetic form
factors extracted from ep elastic scattering via the Rosenbluth
technique [7,8] and polarization transfer measurements
[9–11], for Q2 < 6 GeV2. The two-photon exchange (TPE)
corrections as estimated by hadronic and partonic calculations
show that TPE effects can account for more than half of that
discrepancy.

It is hence important to determine how much TPE effects
would affect the extraction of multipoles from pion elec-
troproduction. Specifically we will be concerned with only
the multipoles related to the N� transition in this study;
namely, how the extraction of M

(3/2)
1+ , E

(3/2)
1+ , and S

(3/2)
1+ , or

equivalently the transition form factors, would be affected in
the presence of TPE. This question was addressed in [12],
where a partonic approach, with the use of N� generalized
parton distributions, was employed to estimate the TPE effects.
For 2 < Q2 < 4 GeV2 at ε = 0.2, they found that the TPE
corrections on REM and RSM are small, lying in the range
−(0.2–0.6)%. However, it is known that the partonic approach
is applicable only for Q2 large comparable to a typical hadronic
scale and becomes questionable for Q2, which in the current
case is less than ∼ 2–3 GeV2. In this lower Q2 region, the
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(a) (b)

FIG. 1. TPE box (a) and contact (b) diagrams for eN → e� →
eNπ . The cross-box diagram is not shown.

hadronic approach as developed in [13] would be more reliable,
which motivates this investigation.

II. TWO-PHOTON EXCHANGE CORRECTIONS TO
THE CROSS SECTION

In this work, we present results of a hadronic calculation
of the TPE corrections, as depicted in Fig. 1, where only the
elastic N intermediate states are considered, to the process
eN → eNπ on the � peak. The intermediate nucleons are
assumed to be on-mass-shell, which is justified in the study of
TPE effects in ep elastic scatterings within hadronic approach
in [13].

As in [14–16], we choose the Feynman gauge and neglect
electron mass me in the numerators to obtain the amplitude of
the box diagram in Fig. 1(a) as

M2γ,a = −i

∫
d4k

(2π )4
u(p3)�γee

μ S(e)(p1 − k)�γee
ν u(p1)

× −i

k2+iε

−i

(P�−PN )2+iε
u(p4)�πN�,α(q)S(�)

αβ (P�)

×�
μβ
γN→�(P�,P� − PN )S(N)(PN )�γNN,ν(k)u(p2),

(3)

where �
γee
μ = −ieγμ, and �

γNN
μ = ie〈P (p′)|J em

μ |P (p)〉 is the
proton electromagnetic current matrix element. �πN�,α(q) =
(fπN�/mπ )qαT † denotes the πN� transition vertex function
with f 2

πN�/4π = 0.36 and T † the isospin 1/2 → 3/2 tran-
sition operator. S(e,N,�) denote the propagators of electron,
proton, and �, respectively, as specified by the superscript.
The forms of the S(�) and the γN → � transition vertex
function �

μβ
γN→� can be found in [16]. The realistic form

factors are used for �
γNN
μ and �

μβ
γN→� as in [15,16]. Amplitude

for the cross-box diagram can be written down similarly.
A contact term M2γ,ct , as depicted in Fig. 1(b), is needed
because of the requirement of current conservation. Following
the prescription suggested in [17], we obtain

M2γ,ct = −i

∫
d4k

(2π )4
u(p3)�γee

μ S(e)(p1 − k)�γee
ν u(p1)

× −i

k2+iε

−i

(P�−PN )2+iε
u(p4)�πN�,α(q)S(�)

αβ (P�)

×�
μνβ
γ γN�(P�,p2,k,p4 − p2 − k)u(p2), (4)

with

�
μνβ
γ γN�(P�,p2,k,k)

= e

{
(2p2 + k)ν

F1(k)

(p2 + k)2 − M2
N

�
μβ
γN→�(P�,k)

+(2p2 + k)μ
F1(k)

(p� − k)2 − M2
N

�
νβ
γN→�(P�,k)

}
, (5)

where k = p4 − p2 − k, and F1 is the Dirac form factor of the
nucleon. The inclusion of the contact term of Eq. (4) makes
the full amplitude gauge invariant as discussed in [17]. We
have also checked numerically that the full amplitude does not
dependent on the gauge parameter. It is also essential to ensure
the sum to be free of IR divergence. The packages FEYNCALC

[18] and LOOPTOOLS [19] are used to carry out the analytical
and numerical calculations, respectively.

Within the OPE approximation, the fivefold eN → eNπ
differential cross section, with both unpolarized initial and
final states, can be expressed as d5σ 1γ /d�f dEf d�π ≡
�dσ 1γ /d�π , with � the virtual photon flux factor and

dσ 1γ

d�π

=
{
σ

1γ
0 +

√
2ε(1 + ε)σ 1γ

LT cos φ + εσ
1γ
T T cos 2φ

}
,

(6)

where σ
1γ
0 = σ

1γ
T + εσ

1γ
L and ε is the transverse polarization

of the virtual photon. The superscript 1γ is used to emphasize
that the quantities are defined within the OPE approximation
scheme, a convention to be followed hereafter. Ef ,�f denote
the energy and solid-angle of the scattered electron in the
laboratory frame, respectively, and φ is the tilt angle between
the electron scattering plane and the reaction plane, d�π is the
pion solid-angle differential measured in the center-of-mass
(c.m.) frame of the final pion and nucleon.

The OPE differential cross sections σ
1γ
T ,L,LT ,T T are all

functions of multipoles, which depend on W , Q2, and pion
polar angle θπ in the πN c.m. frame, but are ε independent. The
multipoles are determined in multipole analysis, e.g., MAID
[20] or SAID [21], by fitting the experimental data as

dσ ex

d�π

� dσ 1γ

d�π

= C
∣∣M1γ

(
X

1γ

1+ ,Z
1γ

l±
)∣∣2

, (7)

where dσ ex/d�π is measured experimentally. Here X
1γ

1+ =
(M (3/2),1γ

1+ , E
(3/2),1γ

1+ , S
(3/2),1γ

1+ ) denote the multipoles pertaining
to the � excitation channel of (3/2, 3/2), Z

1γ

l± represents all
other multipoles, and C is a kinematical factor.

With the TPE effects included, the analysis of the experi-
mental data should be performed by using

dσ ex

d�π

� dσ 1γ+2γ

d�π

= C
{∣∣M1γ

(
X

1γ+2γ

1+ ,Z
1γ+2γ

l±
)∣∣2

+2 Re
[M1γ ∗(X1γ+2γ

1+ ,Z
1γ+2γ

l±
)M2γ

]}
,

(8)

where the term |M2γ |2 has been neglected. (X1γ+2γ

1+ , Z
1γ+2γ

l± )
are the multipoles determined from the OPE plus TPE
approximation of Eq. (8), as referred to by the superscript
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1γ + 2γ , a notation to be followed hereafter. Obviously, they
must deviate from (X1γ

1+ , Z
1γ

l± ) of Eq. (7) based on the OPE.
Equation (6) still holds for dσ 1γ+2γ /d�π but the cross sections
σ

1γ+2γ
T ,L,LT ,T T would become ε dependent [1,12].

III. TWO-PHOTON EXCHANGE CORRECTIONS TO
THE MULTIPOLES

In principle, one should try to determine the multipoles
X

1γ+2γ

1+ and Z
1γ+2γ

l± in the presence of TPE by fitting the data
with Eq. (8). The obtained values of the multipoles would
represent the genuine multipoles as would be defined within
the OPE approximation scheme, with TPE effects removed,
from the data.

Extraction of X
1γ+2γ

1+ ’s and Z
1γ+2γ

l± ’s from data via Eq. (8)
is beyond the scope of the present study. To proceed, two
approximations will be made. First, we assume that only the
multipoles X

1γ+2γ

1+ will be much affected in the presence of
the TPE depicted in Fig. 1. This can be justified because the
final πN pair there arose only from the decay of � and would
be in the state with (J = 3/2, I = 3/2) only. The multipoles
Z

1γ+2γ

l± will then be taken to be unchanged and fixed, i.e.,

Z
1γ+2γ

l± = Z
1γ

l± , and Eq. (8) is reduced to depend only on the

three multipoles X
1γ+2γ

1+ . The Fermi-Watson theorem requires
that these three multipoles should all have the phase given by
the πN P33 phase shift, which is π/2 on the � peak. So the
three multipoles X

1γ+2γ

1+ will all become purely imaginary in
Eq. (8). Hereafter, X1+ will be taken to denote the imaginary
part of X

1γ+2γ

1+ for brevity.
Eq. (8) is then simplified to

dσ̄ ex

d�π

≡ dσ ex

d�π

− 2C Re[M1γ ∗(X1+ )M2γ ]

= C|M1γ (X1+ )|2, (9)

where a TPE-corrected cross section dσ̄ ex/d�π is introduced.
Dependence on Zl± ’s in M1γ in Eq. (9) is not shown for
simplicity since they remain fixed. We like to emphasize
here that the σ ex

T ,L,LT ,T T ’s are in principle ε dependent. Only
precisely determined dσ ex/d�π ’s and a complete theory for
M2γ would lead to ε-independent σ̄ ex

T ,L,LT ,T T ’s. dσ̄ ex/d�π is
only then expressible in the form of |M1γ |2.

To proceed, we approximate the data dσ ex/d�π with the
use of one of the existing eN → eNπ models, MAID [20]
or SAID [21], to be denoted as σ

MAID/SAID
T,L,LT ,T T . There is a

caveat here with such an approximation. All existing models,
like MAID and SAID, are based on the OPE approximation,
and the resulting cross sections σ

1γ
T ,L,LT ,T T and multipoles

would hence be ε independent. Approximating ε-dependent
σ ex

T ,L,LT ,T T ’s by ε-independent σ
MAID/SAID
T,L,LT ,T T ’s would give rise

to X1+ ’s determined from Eq. (9) to be ε dependent.
Once dσ ex/d�π is given, Eq. (9) then can be solved for

X
1γ

1+ ’s by iteration via

dσ̄ ex,i+1

d�π

≡ dσ ex

d�π

− 2C Re
[M1γ ∗(Xi

1+
)M2γ

]

= C
∣∣M1γ

(
Xi+1

1+
)∣∣2

. (10)

We start with values of multipoles given by MAID or SAID,
i.e., X0

1+ = X1+ (MAID/SAID) in the first iteration i = 0,
depending on which model is employed to approximate
dσ ex/d�π in Eq. (9). It should be noted that both the left-
and right-hand sides depend on θπ and φ.

Next, we have to determine the three multipoles Xi+1
1+ ’s

from Eq. (10) for fixed Q2 and ε at the i-th iteration. Upon first
glance, one could in principle write down three equations for
each of the σ0,LT ,T T ’s and solve for the three variables X1+ ’s.
These three equations are all quadratic equations in X1+ ’s. It
turns out that there are a few angles where no real solutions
exist for this coupled algebraic equations. The solutions show
rapid variations w.r.t. θπ in the neighbourhood of these angles.
The reason can be traced to the approximation we make to
replace dσ ex/d�π by (dσ ex/d�π )(MAID/SAID) in (10).

We hence turn to least-square method. As reported in
[22], results obtained with such minimization procedure show
strong sensitivity to the angle-independent weights attached to
each of the three cross sections σ0,LT ,T T ’s. We now understand
that this sensitivity arises from the problem described in the last
paragraph. Accordingly, we decide to follow the fitting method
adapted in MAID [20]. At the i-th iteraction, we minimize
χ2(Q2,ε) defined as

χ2
i (Q2,ε) ≡

∑
θπ ,φ

( Ni+1

δdσ ex(θπ ,φ)

)2

, (11)

with

Ni+1 = [
dσ̄ ex,i+1(θπ ,φ) = C

∣∣M1γ
(
Xi+1

1+
)∣∣2]

−
[
dσ ex

d�π

− 2C Re
[M1γ ∗(Xi

1+
)M2γ

]]
, (12)

where dσ ex/d�π = (dσ ex/d�π )(MAID/SAID). Xi
1+ ’s are

kept fixed while Xi+1
1+ ’s are varied in the minimization of χ2

i . In
Eq. (12) δdσ ex(θπ , φ) is the total error of dσ ex(θπ , φ), which
also depends on Q2 and ε. In our analysis, the experimental
errors at Q2 = 2.8 GeV2, ε = 0.56 and Q2 = 4 GeV2, ε = 0.5
provided in [23] are used. Either set of errors gives rise
to nearly identical results. We choose to use the ones at
Q2 = 2.8 GeV2, ε = 0.56 for all other values of Q2 and ε
considered.

IV. RESULTS AND DISCUSSIONS

We will show only the ratios X
1γ+2γ

1+ /X
1γ

1+ ≡
G∗,1γ+2γ /G∗,1γ between the TPE-corrected or the genuine
OPE values X

1γ+2γ

1+ (∝ G∗,1γ+2γ ) obtained here, and the
input OPE values X

1γ

1+ (∝G∗,1γ ) given by the models (MAID,
SAID) used to emulate the experimental data. They will
be labeled as MAID and SAID, respectively. Results for
M

3/2
1+ will not be shown as the TPE effects on it are found

to be very small with both models. We do not show results
above Q2 > 4 GeV2 as the validity of hadronic approach
adopted here might be questionable in the high-Q2 region.
The results obtained with MAID and SAID are presented for
0 < ε < 0.9 at Q2 = 0.127 and 2.8 GeV2 in Fig. 2 and for
0 < Q2 < 4 GeV2 with ε = 0.2 and 0.5 in Fig. 3. The results
with MAID are denoted by the solid and dotted (red) curves,

055210-3



HAI-QING ZHOU AND SHIN NAN YANG PHYSICAL REVIEW C 96, 055210 (2017)

FIG. 2. The TPE corrections to E
(3/2)
1+ and S

(3/2)
1+ vs ε at fixed

Q2. The labels MAID and SAID are used to indicate that the
results are obtained with using either MAID or SAID to emulate
the experimental cross sections, respectively, as explained in the text.
The solid and dotted curves (red) refer to the results with MAID, and
the dashed and dashed-dotted curves (blue) denote the results with
SAID.

while the results with SAID are denoted by the dashed and
dashed-dotted (blue) curves, respectively.

In Fig. 2, one sees that at small Q2 = 0.127 GeV2 the TPE
corrections to both E

3/2
1+ (G∗

E) and S
3/2
1+ (G∗

C) are less than 1%
and stay flat for all values of ε, irrespective of the model used.
As Q2 grows, TPE effects begin to increase and dependence on
the model used develops. For E

3/2
1+ (G∗

E), the TPE corrections
eventually reach about 3% and 8% at 4 GeV2 in the case of
MAID and SAID, respectively, as seen in Fig. 3(a), with mild
sensitivity with respect to ε. The TPE corrections to S

3/2
1+ (G∗

C)
at Q2 = 2.8 GeV2, as depicted in Fig. 2(b), show considerable
sensitivity not only to model but also ε, decreasing from around
7.5% and 15% near ε = 0, for SAID and MAID, respectively,
to only 2% as ε approaches 0.9. Figure 3(b) shows how TPE
corrections for S

3/2
1+ (G∗

C) grow with increasing Q2 to reach
about 15% and 6%, respectively, at ε = 0.2 and Q2 = 4 GeV2,
for MAID and SAID. Sizeable TPE corrections to E

3/2
1+ (G∗

E)
and S

3/2
1+ (G∗

C) found here point to the need to include TPE
effects in the multipole analysis of data in the region of high
Q2 and small ε.

FIG. 3. The TPE corrections to E
(3/2)
1+ and S

(3/2)
1+ vs Q2 at fixed ε.

The notation is the same as in Fig. 2.

FIG. 4. The TPE corrections to the extracted REM and RSM vs
Q2 at fixed ε. The notation for curves is the same as in Fig. 2. The
black triangles denote the results of the partonic calculation of [12].

It is straightforward to obtain the values for the TPE-
corrected ratios R

1γ+2γ
EM,SM from the results presented in Fig. 3.

The differences δREM,SM between R
1γ+2γ
EM,SM and the model

ratios R
1γ
EM,SM , i.e., δREM ≡ R

1γ+2γ
EM − R

1γ
EM and δRSM =

R
1γ+2γ
SM − R

1γ
SM , for 0 < Q2 < 4 GeV2 are shown in Fig. 4,

where the solid (red) and dashed (blue) curves refer to the
results obtained with MAID and SAID, respectively. We first
note that the TPE corrections δREM,SM are almost equal with
the two models except for δREM when Q2 > 2 GeV2. This
is in contrast to Figs. 2 and 3 where model dependence
grows rapidly with increasing Q2 after Q2 ∼ 1 GeV2. For
both ε = 0.2 and 0.5, δREM is negligible for small Q2 and
becomes more negative toward −0.1% and −0.2% when Q2

approaches Q2 = 4 GeV2, in the cases of MAID and SAID,
respectively. The TPE effect for δRSM is considerably larger
than for δREM . It also starts near zero for Q2 ∼ 0 but decreases
rapidly to reach ∼ − 1.4% and ∼ − 0.7%, for ε = 0.2 and
0.5, respectively. Magnitude-wise, they are comparable to the
current experimental errors [24].

The results of the partonic calculation of [12] for
δREM/SM ’s, denoted by black triangles, are included in Fig. 4
for comparison. The regions of validity of the hadronic and
partonic approaches are known to be different except for
possible overlap in the range 2 < Q2 < 4 GeV2. It is easily
seen that, in this region, our results for δREM at ε = 0.2
obtained with both models are considerably smaller. However,
for ε = 0.5, our results obtained with MAID almost coincide
with those of [12], while results obtained with SAID are
distinctly smaller than partonic results. In the case of δRSM ,
our values are substantially more negative than the partonic
results, for both ε = 0.2 and 0.5.
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The differences between our results and those of [12] for the
REM,SM ’s as shown in Fig. 4, can be dissected as follows. We
first point out that there are two more differences between the
two calculations besides the partonic vs hadronic approach.
First, only the � pole diagram is considered for M1γ in
[12], to evaluate the interference effects between OPE and
TPE. In other words, the background contribution to M1γ ,
which consists of Born terms and t-channel (ρ, ω) vector-
meson exchanges [25], are not included in the evaluation of
Re[M1γ ∗M2γ ] in Eq. (9). In fact, it was found in [26] that both
the background terms and the pion cloud effects contribute
significantly to M

(3/2)
1+ and E

(3/2)
1+ at Q2 = 0. In addition, the

truncated multipole expansion (TME) is employed in [12]
to estimate the values of R

1γ+2γ
EM,SM . It is known that the use

of the TME and the model fitting used here give rise to a
considerable difference in the extraction of R

1γ
EM,SM , a feature

seen in [27,28].

V. SUMMARY

To summarize, we investigate the effects of two-photon
exchange processes in eN → e�(1232) → eNπ in the low
Q2 region, in a hadronic approach. Only the elastic nucleon
intermediate states are included in the present study. We
focus on the � peak to estimate their effects on the γ ∗N�
transition form factors. We emulate the experimental pion
electroproduction data with two existing phenomenological
models, MAID and SAID. After subtracting out the inter-
ference of one-photon and two-photon exchanges from the
data, the reminder is used to extract the “genuine” one-photon
exchange multipoles M

(3/2)
1+ , E

(3/2)
1+ , S

(3/2)
1+ at W = M�. This

gives us the three γ ∗N� form factors, G∗
M , G∗

E , and G∗
C , for

0 < Q2 < 4 GeV2.
We find that TPE effects on G∗

M are very small. Both G∗
E and

G∗
C are also little affected at small Q2 < 0.5 GeV2. However,

the TPE effects on G∗
E and G∗

C grow with Q2, and sensitivity
appears with respect to ε and the data model used. For G∗

E ,
the TPE effects reach about 3% and 8% at Q2 ∼ 4 GeV2,
depending on whether MAID and SAID is used to emulate the
data, respectively, with mild dependence on ε. For G∗

C , the TPE
effects obtained with both MAID and SAID decrease rapidly
with increasing ε while grow with increasing Q2, and reach
∼ 15% and ∼ 6% as Q2 → 4 GeV2 at ε = 0.2, respectively,
for MAID and SAID. Sizeable TPE corrections to G∗

E and
G∗

C found here point to the need to include TPE effects in the
multipole analysis of data in the region of high Q2 and small ε.

Our extracted TPE corrections for δREM ≡ R
1γ+2γ
EM − R

1γ
EM

are very small at ε = 0.2 and 0.5, for both MAID and SAID
models, up to Q2 � 4.0 GeV2. This feature is similar to results
of the partonic calculation of [12], except our results are only
about one third of the magnitude given in [12] for ε = 0.2.
However, our TPE corrections for RSM , independently of the
models used, are considerably larger in magnitude than the
results of [12], reaching ∼ −1.4% and ∼ −0.7% for ε = 0.2
and 0.5, respectively.

Besides the hadronic vs partonic approach, the differences
between our results and those of [12] for δREM/SM ’s could be
attributed to two other simplifications used in [12]. First, in [12]
only the � pole contribution is included in the OPE amplitude
in the evaluation of the interference between OPE and TPE
amplitudes. In addition, TME is invoked in the extraction of
the ratios REM/SM .

As the TPE effects on G∗
E (∼E

(3/2)
1+ ) and G∗

C (∼S
(3/2)
1+ ) found

in this study are not small, more precise measurements on
ep → e�(1232) → epπ0 in the region 2 < Q2 < 4 GeV2 will
be very desirable. It is important to have data taken for the
same Q2 but at different values of ε. The ε dependence in
the resulting multipoles will be a clear signature of the TPE
effects.

We have considered only the elastic nucleon intermediate
states in the present study. Similar TPE effects arising from the
inclusion of higher resonances like � in the intermediate states
should be further pursued. TPE effects on the transition form
factors of other higher resonances will also be an interesting
question to explore.
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