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Density dependences of the mass and self-energies of �c in nuclear matter are studied in the parity projected
QCD sum rule. Effects of nuclear matter are taken into account through the quark and gluon condensates. It is
found that the four-quark condensates give dominant contributions. As the density dependences of the four-quark
condensates are not known well, we examine two hypotheses. One is based on the factorization hypothesis
(F-type) and the other is derived from the perturbative chiral quark model (QM-type). The F-type strongly
depends on density, while the QM-type gives a weaker dependence. It is found that, for the F-type dependence,
the energy of �c increases as the density of nuclear matter grows, that is, �c feels repulsion. On the other hand,
the QM-type predicts a weak attraction (∼20 MeV at the normal nuclear density) for �c in nuclear matter. We
carry out a similar analysis of the � hyperon and find that the F-type density dependence is too strong to explain
the observed binding energy of � in nuclei. Thus we conclude that the weak density dependence of the four-quark
condensate is more realistic. The scalar and vector self-energies of �c for the QM-type dependence are found to
be much smaller than those of the light baryons.
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I. INTRODUCTION

Heavy hadrons attract much interest because they have
new properties that are not seen in light hadrons. One of the
interesting features of the heavy hadron physics is that the
dynamics of light-quark part can be separated from the heavy
quark due to the heavy quark spin symmetry [1]. The spin
of heavy quark and that of the rest of the hadron become
independent in the heavy quark mass limit. Therefore, one
naively expects that the dynamics of light quarks in a heavy
hadron can be analyzed more effectively. For instance, the
heavy baryon consisting of a heavy quark and two light quarks
can be used in a study of light di-quarks. Investigation of the
heavy baryon in nuclear matter may help us to understand the
relation between the partial restoration of chiral symmetry and
the light di-quark.

The in-medium modification of the heavy baryon in nuclear
matter is also interesting from the viewpoint of the heavy
baryon-nucleon interaction. The N-N and Y-N interactions
have been studied both theoretically and experimentally and
understood fairly well. On the other hand, the properties of
the interaction between the charmed (or bottomed) baryon
and the nucleon are still an open issue. The existence of �c

nuclei was discussed about 40 years ago [2] and subsequently
studied in Refs. [3–10]. Recently, the �c-N interaction was
reinvestigated by using elaborated models [11,12] and by
lattice QCD simulation [13].

In this study, we investigate the in-medium properties of
the �c baryon from QCD sum rule. We additionally study
the properties of the � hyperon and �b and compare their
properties. The QCD sum rule analysis was developed by
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Shifman et al. [14,15] and applied to the baryonic channel by
Ioffe [16]. After that, the method was applied to the analyses
in nuclear matter [17]. The �Q baryon (Q denotes the heavy
quark in general) was first investigated by Shuryak [18] in
the heavy quark mass limit. Since then, the sum rule was
continuously improved [19,20] and the 1/mQ corrections [21]
and αs corrections [22] were taken into account. QCD sum
rules with finite heavy quark mass were also constructed in
Ref. [23] and extended to the inclusion of the first-order αs

corrections [24–26] and parity projection [27]. Recently, the
analyses are applied to the study of �c in nuclear matter
[28,29]. However, their results are not consistent with each
other. The result of Ref. [28] indicates that the energy of the
�c baryon increases and thus �c feels a net repulsive potential.
On the other hand, the result of Ref. [29] shows that there is
large attractive interaction. For both cases, the αs corrections,
which are pointed out as large contributions [24–26], are not
included and parity projection is not done. We carry out a
new analysis of the parity projected �c, �, and �b QCD sum
rules including the αs corrections in nuclear matter with the
Gaussian kernel. Advantages of using the Gaussian sum rule
were discussed in Refs. [30–32].

The paper is organized as follows. In Sec. II, we introduce
the �c correlation function and construct the parity-projected
in-medium QCD sum rules. The results of the analyses are
summarized in Sec. III, where the density dependence of
the energy (the pole position of the �c propagator), the
effective mass and the vector self-energy are presented. Next,
we investigate effects of the density dependence of the four-
quark condensate to the results in Sec. IV. We apply our analy-
ses to � in nuclear matter to discuss the validity of the estima-
tion of the in-medium modification of the four-quark conden-
sate. The in-medium modification of �b is also studied in the
same section. Summary and conclusions are given in Sec. V.
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II. �c CORRELATION FUNCTION

We consider the two-point correlation function of �c in
nuclear matter:

�T (q) = i

∫
eiqxd4x〈�0(ρ,uμ)|T [J�c

(x)J�c
(0)]|�0(ρ,uμ)〉,

(1)

where �0(ρ,uμ) is the ground state of nuclear matter,
which is characterized by its velocity uμ and the nu-
cleon density ρ. J�c

is an interpolating operator, which
has the same quantum numbers of the �c ground state.
Without derivative, there are three independent interpolating
operators [18]:

J 1
�c

(x) = εabc[uT a(x)Cdb(x)]γ5c
c(x),

J 2
�c

(x) = εabc[uT a(x)Cγ5d
b(x)]cc(x),

J 3
�c

(x) = εabc[uT a(x)Cγ5γμdb(x)]γ μcc(x). (2)

Here, a, b, and c are color indices, C = iγ0γ2 stands for the
charge conjugation matrix and the spinor indices are omitted
for simplicity. Each interpolating operator has a different
type of di-quark, namely the J 1

�c
(x), J 2

�c
(x), and J 3

�c
(x)

contain the component of the pseudoscalar, the scalar, and the
vector di-quarks, respectively. Based on the feature that the
scalar di-quark εabc(qT aCγ5q

b) is the most attractive channel
[33–37], one naturally expects that the J 2

�c
strongly couples to

the �c ground state. In fact, previous QCD sum rule studies
of �c used the J 2

�c
and the analyses of the mass in the

vacuum were successful [27,28,38]. A lattice QCD simulation
[39] discusses the coupling between interpolating operators
and hadron states and shows that the J 2

�c
couples to the �c

ground state. Therefore, we employ J 2
�c

as the �c interpolating
operator. In the following, we denote J 2

�c
as J�c

for simplicity.
With the help of the Lorentz covariance, parity invariance, and
time-reversal invariance of the nuclear matter ground state, the
correlation function of Eq. (1) can be decomposed into three
scalar functions [40]:

�T (q) = /q�T
1 (q0,|�q|) + �T

2 (q0,|�q|) + /u�T
3 (q0,|�q|). (3)

The variables of each scalar function, �T
i (i = 1,2,3), are

(q2,q · u), but we write them as (q0,|�q|) because we later take
the rest frame of nuclear matter.

Generally, a baryon interpolating operator couples both
to positive parity states and negative parity states because
the positive parity interpolating operator J+(x) is related to
the negative parity interpolating operator: J+(x) = γ5J

−(x)
[41]. The extra γ5 only changes the sign of �T

2 in Eq. (3).
The method of the parity projection was proposed by Jido
et al. [42] and Kondo et al. [43] and was successful in
investigating the mass of the nucleon ground state and its
negative parity excited state in vacuum. The parity projected
QCD sum rule has been improved to include the αs cor-
rections [44] and was applied to the analyses in nuclear
matter [45].

The parity projected QCD sum rule can be constructed from
the “forward-time” correlation function1 [42,44,45]:

�m(q0,|�q|) = i

∫
d4xeiqxθ (x0)

×〈�0(ρ,uμ)|T [η(x)η(0)]|�0(ρ,uμ)〉
= /q�m1(q0,|�q|) + �m2(q0,|�q|) + /u�m3(q0,|�q|).

(4)

The essential difference from the time-ordered correlation
function is the insertion of the Heaviside step function θ (x0)
before carrying out the Fourier transform. This correlator
contains contributions only from the states, which propagate
forward in time. Operating the parity projection operator
P± = γ0±1

2 to �m(q0,|�q|) and taking the trace over the spinor
index, the parity projected correlation functions can be derived:

�+
m(q0,|�q|)≡q0�m1(q0,|�q|) + �m2(q0,|�q|) + u0�m3(q0,|�q|)

�−
m(q0,|�q|)≡q0�m1(q0,|�q|) − �m2(q0,|�q|) + u0�m3(q0,|�q|).

(5)

Note that the parity projection can be carried out in accordance
with that in vacuum because it is based on the invariance of the
ground state of nuclear matter under the parity transformation.

The QCD sum rule can be derived from the analyticity
of the correlation function. The correlation functions �±

mOPE,
which are calculated by the operator product expansion (OPE)
in deep Euclidean region (q2 → −∞) can be expressed by
the hadronic spectral function ρ±

m by the use of the dispersion
relation: ∫ ∞

−∞
Im[�±

mOPE(q0,|�q|)]W (q0)dq0

= π

∫ ∞

0
ρ±

m (q0,|�q|)W (q0)dq0. (6)

Here, we have introduced a weighting function W (q0),
which is real at real q0 and analytic in the upper half of the
imaginary plane of q0. The details of the derivation of Eq. (6)
are explained in Ref. [44]. Using the above equation, we
investigate the spectral function and the in-medium properties
of �c. The specific forms of �±

mOPE and ρ±
m will be discussed

in the following sections.

A. OPE of the �c correlation function

We first calculate the dimension 7 and 8 terms in the time-
ordered correlation function and then construct the OPE of the
“forward-time” correlation function including the first-order
αs corrections in nuclear matter taken from the previous studies
of Refs. [26,28]:

�mOPE(q0,|�q|) = i

∫
eiqxdxθ (x0)〈�0|T

{
J�c

(x)J�c
(0)

}|�0〉
= /q�m1OPE(q0,|�q|) + �m2OPE(q0,|�q|)

+ /u�m3OPE(q0,|�q|). (7)

1Note that in Ref. [42], this correlator was called the “old-fashioned”
correlator.
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Explicit expressions of ρmiOPE ≡ 1
π

Im[�miOPE] (i = 1,2,3) are given as

q0ρm1OPE(q0,|�q|)|�q=0 = q0ρ
pert
m1OPE(q0) + q0ρ

cond
m1OPE(q0), (8)

q0ρ
pert
m1OPE(q0) = q5

0

128π4

{
ρ0

m1OPE

(
m2

c

q2
0

)(
1 + αs

π
ln

μ2

m2
c

)
+ αs

π
ρ1

m1OPE

(
m2

c

q2
0

)}
θ (q0 − mc), (9)

ρ0
m1OPE(z) = 1

4
− 2z + 2z3 − 1

4
z4 − 3z2 ln z, (10)

ρ1
m1OPE(z) = 71

48
− 565

36
z − 7

8
z2 + 625

36
z3 − 109

48
z4 −

(
49

36
− 116

9
z + 116

9
z3 − 49

36
z4

)
ln(1 − z)

+
(

1

4
− 17

3
z − 11z2 + 113

9
z3 − 49

36
z4

)
ln z + 2

3
(1 − 8z + 8z3 − z4)

(
Li2(z) + 1

2
ln(1 − z) ln z

)

− 1

3
z2(54 + 8z − z2)

(
Li2(z) − ζ (2) + 1

2
ln2 z

)
− 12z2

(
Li3(z) − ζ (3) − 1

3
Li2(z) ln(z)

)
, (11)

q0ρ
cond
m1OPE(q0) = − m2

c

768π2

〈
αsGG

π

〉
m

∫ 1

m2
c

q2
0

dα
(1 − α)2

α2
δ

(
q0 − mc√

α

)
+ q0

128π2

〈
αsGG

π

〉
m

∫ 1

m2
c

q2
0

dααθ (q0 − mc)

− q0
〈q†iD0q〉m

6π2

∫ 1

m2
c

q2
0

α(1 − α)dαθ (q0 − mc) + 〈q†iD0q〉m
6π2

∫ 1

0
dαα(1 − α)

3

2
q2

0δ

(
q0 − mc√

α

)

+ 〈q̄q〉2
m + 〈q†q〉2

m

12
δ(q0 − mc) + 1

24
〈qgσGq〉m〈qq〉m

(
1

8

(
δ

′′
(q0 − mc) − 7

mc

δ
′
(q0 − mc)

+ 6

m2
c

δ(q0 − mc)

))
− q0

[
q0〈q†q〉m

4π2

∫ 1

m2
c

q2
0

dαα(1 − α)θ (q0 − mc) + 1

8π2

(
〈q†iD0iD0q〉m

+ 1

12
〈q†gsσGq〉m

) ∫ 1

0
α(1 − α)

(
δ

(
q0 − mc√

α

)
− αq3

0

m2
c

δ
′
(

q0 − mc√
α

))
dα

− 1

96π2
〈q†gsσGq〉m

∫ 1

0
α(1 − α)

(
9δ

(
q0 − mc√

α

)
+ αq3

0

m2
c

δ
′
(

q0 − mc√
α

))
dα

+ 〈q†gsσGq〉m
32π2

∫ 1

0
αδ

(
q0 − mc√

α

)
dα

]
(12)

and

ρm2OPE(q0,|�q|)|�q=0 = ρ
pert
m2OPE(q0) + ρcond

m2OPE(q0), (13)

ρ
pert
m2OPE(q0) = mcq

4
0

128π4

{
ρ0

m2OPE

(
m2

c

q2
0

)(
1 + αs

π
ln

μ2

m2
c

)
+ αs

π
ρ1

m2OPE

(
m2

c

q2
0

)}
θ (q0 − mc), (14)

ρ0
m2OPE(z) = 1 + 9z − 9z2 − z3 + 6z(1 + z) ln z, (15)

ρ1
m2OPE(z) = 9 + 665

9
z − 665

9
z2 − 9z3 −

(
58

9
+ 42z − 42z2 − 58

9
z3

)
ln(1 − z)

+
(

2 + 154

3
z − 22

3
z2 − 58

9
z3

)
ln z + 8

3
(1 + 9z − 9z2 − z3)

(
Li2(z) + 1

2
ln(1 − z) ln z

)

+ z

(
24 + 36z + 4

3
z2

)(
Li2(z) − ζ (2) + 1

2
ln2 z

)
+ 24z(1 + z)

(
Li3(z) − ζ (3) − 1

3
Li2(z) ln z

)
, (16)

ρcond
m2OPE(q0) = − mc

768π2

〈
αsGG

π

〉
m

∫ 1

m2
c

q2
0

dα
(1 − α)2

α

mc√
α

δ

(
q0 − mc√

α

)

+ mc

192π2

〈
αsGG

π

〉
m

∫ 1

m2
c

q2
0

dα
(1 − α)3

α2
θ (q0 − mc) + mc

128π2

〈
αsGG

π

〉
m

∫ 1

m2
c

q2
0

dαθ (q0 − mc)
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+ mc〈q†iD0q〉m
4π2

∫ 1

0
(1 − α)q0δ

(
q0 − mc√

α

)
dα + 〈q̄q〉2

m + 〈q†q〉2
m

12
δ(q0 − mc)

+ 1

24
〈qgσGq〉m〈qq〉m

(
1

8

(
δ

′′
(q0 − mc) − 3

mc

δ
′
(q0 − mc) + 3

m2
c

δ(q0 − mc)

))

− q0

[
mc

〈q†q〉m
4π2

∫ 1

m2
c

q2
0

(1 − α)dαθ (q0 − mc) + 1

4π2

(
〈q†iD0iD0q〉m + 1

12
〈q†gsσGq〉m

)

×
∫ 1

0
2(1 − α)

(
αq2

0

4mc

(√
α

mc

δ

(
q0 − mc√

α

)
+ δ

′
(

q0 − mc√
α

)))
dα

− 〈q†gsσGq〉m
96π2

∫ 1

0

(
7
√

αδ

(
q0 − mc√

α

)
+ αq2

0

mc

δ
′
(

q0 − mc√
α

))
dα

+ 〈q†gsσGq〉m
32π2

∫ 1

0

√
αδ

(
q0 − mc√

α

)
dα

]
(17)

and

ρm3OPE(q0,|�q|)|�q=0 = −〈q†q〉m
8π2

∫ 1

m2
c

q2
0

α(1 − α)

(
q2

0 − m2
c

α

)
dαθ (q0 − mc)

− 5

8π2

(
〈q†iD0iD0q〉m + 1

12
〈q†gsσGq〉m

)∫ 1

0
α(1 − α)q0δ

(
q0 − mc√

α

)
dα

+ 〈q†gsσGq〉m
96π2

∫ 1

0
α(1 − α)q0δ

(
q0 − mc√

α

)
dα − 〈q†gsσGq〉m

32π2

∫ 1

m2
c

q2
0

αdαθ (q0 − mc)

+ q0
2〈q†iD0q〉m

3π2

∫ 1

m2
c

q2
0

α(1 − α)dαθ (q0 − mc), (18)

where Lis(z) is polylogarithm and ζ (s) is Riemann’s zeta function. The matrix elements 〈O〉m stand for the expectation values of
the operators O in nuclear matter. We have used the factorization hypothesis for the four-quark and quark-gluon mixed operators
in these equations and will discuss its validity in Sec. IV. The dimension 7 condensate 〈αsGG

π
〉m〈qq〉m term does not appear

because its Wilson coefficient is equal to zero. The Wilson coefficients of 〈q†q〉m, 〈q†iD0q〉m, 〈q†iD0iD0q〉m, 〈q†gsσGq〉m terms
are different from those in the literature [28]. However, our results are consistent with the OPE of � [46] in the limit m2

c → 0.
Note that, in the case of �, extra contributions of 〈ss〉m condensate appear and the Wilson coefficients of the gluon condensate
are modified.

The values of the parameters in OPE are summarized below. In the linear density approximation, which is valid at sufficiently
low density [17,47], the expectation values of the condensates in nuclear matter 〈O〉m are given as

〈qq〉m = 〈qq〉0 + ρ〈qq〉N = 〈qq〉0 + ρ
σN

2mq

〈ss〉m = 〈ss〉0 + ρ〈ss〉N 〈q†q〉m = ρ
3

2〈
αs

π
G2

〉
m

=
〈
αs

π
G2

〉
0

+ ρ

〈
αs

π
G2

〉
N

〈q†iD0q〉m = ρ〈q†iD0q〉N = ρ
3

8
MNA

q
2

〈qiD0q〉m = mq〈q†q〉m � 0 〈q†gσ · Gq〉m = ρ〈q†gσ · Gq〉N

〈q†iD0iD0q〉m + 1

12
〈q†gσ · Gq〉m =

(
〈q†iD0iD0q〉N + 1

12
〈q†gσ · Gq〉N

)
ρ = ρ

1

4
M2

NA
q
3, (19)

where 〈O〉0 and 〈O〉N are, respectively, the vacuum and
nucleon expectation values of the operator O, and 〈q · · · q〉
and 〈q† · · · q〉 denotes the average over the up and down
quarks, 1

2 (〈u · · · u〉 + 〈d · · · d〉) and 1
2 (〈u† · · · u〉 + 〈d† · · · d〉),

respectively. The quantities A
q
2 and A

q
3 can be expressed as

moments of the parton distribution functions [40]. For the
quark condensate 〈qq〉, higher-order density terms have been
calculated by chiral perturbation theory [48,49]. However,
their contributions are small up to the normal nuclear mater
density and thus we do not take them into account in this study.
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TABLE I. Values of parameters appearing in Eq. (19).

Parameters Values

〈qq〉0 −(0.246 ± 0.002 GeV)3 [50]
mq 4.725 MeV [51]
σN 45 MeV
〈q†q〉m ρ 3

2

〈 αs

π
G2〉0 0.012 ± 0.0036 GeV4 [52]

〈 αs

π
G2〉N −0.65 ± 0.15 GeV [53]

A
q
2 0.62 ± 0.06 [54]

A
q
3 0.15 ± 0.02 [54]

〈q†gσ · Gq〉N −0.33 GeV2 [53]

mc 1.67 ± 0.07 GeV [51]
αs 0.5

The numerical values of the parameters appearing in Eq. (19)
are given in Table I.

B. Phenomenological side of the �c correlation function

The correlation function at the physical energy region
(q2 > 0) can be described by the hadronic degrees of freedom.
In this study, we use the so-called “pole + continuum” ansatz
for the correlator in such energy region. The pole stands
for the contributions of the ground state and is assumed to
be proportional to the single �c baryon propagator G(q) in
vacuum,

G(q) = /q + M�c(
q2 − M2

�c
+ iε

) . (20)

Then the pole contribution in the spectral function ρT(q) ≡
1
π

Im[�T(q)] is

− 1

π
Im

[
|λ2| /q + M�c(

q2 − M2
�c

+ iε
)
]

= |λ2|(/q + M�c

)
δ
(
q2 − M2

�c

)
. (21)

Here, |λ2| is the residue and gives the coupling strength
between the ground state and the employed interpolating
operator. Taking into account the contributions of the lowest-
lying negative parity state �−

c , the phenomenological side of
the spectral function in the “pole + continuum” ansatz can be
expressed as

ρT (q) = |λ2
+|(/q + M�c

)
δ
(
q2 − M2

�c

)
+ |λ2

−|(/q − M�−
c

)
δ
(
q2 − M2

�−
c

)

+ 1

π
Im[�OPE(q)]θ

(
q2 − q2

th

)
. (22)

For the continuum states, the quark hadron duality is assumed.
In nuclear matter, the �c propagator can be described as

G(q0,|�q|) = Z′(q0,|�q|)
/q − M − �(q0,|�q|) + iε

, (23)

where �(q0,|�q|) is the self-energy and Z
′
(q0,|�q|) denotes the

renormalization factor of the wave function. As in Eq. (4), the
self-energy can be decomposed as

�(q0,|�q|) = �s ′
(q0,|�q|) + �v′

(q0,|�q|)/u + �q ′
(q0,|�q|)/q.

(24)

Renormalizing the �q ′
(q0,|�q|) contributions to the Z

′
(q0,|�q|),

�v′
(q0,|�q|) and effective mass M∗

�c
, the in-medium �c baryon

propagator G(q0,|�q|) is expressed as

G(q0,|�q|) = Z(q0,|�q|) /q − /u�v + M∗
�c(

q0 − E�c
+ iε

)(
q0 + E�c

− iε
) ,

(25)

where

E�c
= �v +

√
M∗2

�c
+ �q2, E�c

= −�v +
√

M∗2
�c

+ �q2.

(26)

The contribution of the positive energy state in G(q0,|�q|) is

Z(q0,|�q|) 1

2
√

M∗2
�c

+ �q2

γ0E�c
− /u�v + M∗

�c(
q0 − E�c

+ iε
) . (27)

After taking the rest frame of nuclear matter, the forward-time
spectral function in nuclear matter can be described as

ρ(q0,|�q|=0) = |λ2
+|

2M∗
�c

(
γ0E�c

− /u�v + M∗
�c

)
δ
(
q0 − E�c

)

+ |λ2
−|

2M∗
�−

c

(
γ0E�−

c
− /u�v− M∗

�−
c

)
δ
(
q0−E�−

c

)

+ 1

π
Im[�OPE(q0,|�q| = 0)]θ (q0 − qth). (28)

C. Equation of �c QCD sum rule with parity projection

As we have introduced in Eq. (6), the OPE description of
Eq. (7) and the phenomenological description of Eq. (28) can
be connected with the help of the analyticity of the correlation
function in q0 plane. For specifying the kernel W (q0), we use
the Gaussian sum rule and its equation is given as

G±
mOPE(τ ) = G±

SPF(τ ), (29)

where

G±
SPF(τ ) =

∫ ∞

0
ρ±(q0)

1√
4πτ

exp

(
−

(
q2

0 − m2
c

)2

4τ

)
dq0

(30)

and

G±
mOPE(τ ) ≡ Gm1OPE(τ ) ± Gm2OPE(τ ) + Gm3OPE(τ ) (31)

with

Gm1OPE(τ ) =
∫ ∞

0
q0ρm1OPE(q0,|�q|)

× 1√
4πτ

exp

(
−

(
q2

0 − m2
c

)2

4τ

)
dq0
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Gm2OPE(τ ) =
∫ ∞

0
ρm2OPE(q0,|�q|)

× 1√
4πτ

exp

(
−

(
q2

0 − m2
c

)2

4τ

)
dq0

Gm3OPE(τ ) =
∫ ∞

0
ρm3OPE(q0,|�q|)

× 1√
4πτ

exp

(
−

(
q2

0 − m2
c

)2

4τ

)
dq0. (32)

Here ρ±(q0) is the hadronic spectral function and ± stands for
the parity of the hadronic states,

ρ±(q0) = |λ±|2δ(q0 − E�±
c

)

+ 1

π
Im[�±

mOPE(q0)]θ (q0 − q±
th). (33)

Generally, the kernel of the Gaussian sum rule is
1√
4πτ

exp (− (q2
0 −s)2

4τ
) and contains two parameters, τ and s.

We set the value of s to m2
c , and as a result, the exponential

suppression starts from mc. This is the different point from

the case of the Borel sum rule where the kernel, exp (− q2
0

M2 ), is
used. One naively expects that the Gaussian sum rule strongly
reflects on the behavior of the spectral function above mc more
than the Borel sum rule. This is one advantage of using the
Gaussian sum rule.

We extract the values of parameters in ρ±(q0) from Eq. (29)
by minimizing χ2, defined as

χ2 = 1

nset × nτ

nset∑
j=1

nτ∑
i=1

[
G

j
mOPE(τi) − G

j
SPF(τi)

]2

σ j (τi)2
, (34)

where the errors of GmOPE, σ (τi), are evaluated based on the
method proposed in Ref. [55]:

σ j (τi)
2 = 1

nset − 1

nset∑
j=1

[
G

j
mOPE(τi) − GmOPE(τi)

]2
, (35)

with

GmOPE(τi) = 1

nset

nset∑
j=1

G
j
mOPE(τi). (36)

Here nτ and nset are the numbers of the point τ in the analyzed
τ region and of the condensate sets, which are randomly
generated with errors, respectively.

The parameter region of τ is chosen as follows. The lowest
value of τ is determined by the convergence of the OPE
while the highest value of τ is constrained to satisfy the
pole dominance condition. These conditions will justify the
truncation of the OPE. Specifically, we use the well-established
criterion that the ratio of the highest dimensional term to
the whole GmOPE is less than 0.1 and the ratio of the pole
contribution to the whole GmSPF is more than 0.5. The
region 1.25 < τ [GeV4] < 3.5 satisfies the above conditions
in vacuum. We use the same parameter region for the analyses
in nuclear matter.

-1

 0

 1

 2

 3

 1  2  3

G O
PE

(τ
) [

10
-5

G
eV

6 ]

τ[GeV4]

+ parity
− parity

FIG. 1. The positive and negative parity OPE, G±
mOPE(τ ), in

vacuum.

III. RESULTS OF �c

A. Behavior of OPE

We first discuss the behaviors of G±
mOPE(τ ) in vacuum,

shown in Fig. 1. We find that the OPE of the positive parity
correlation function is much larger than that of the negative
parity state. In the hadronic degrees of freedom, this means that
the interpolating operator J�c

couples mainly to the positive
parity ground states, and that the structure of �c is similar
to the structure of the interpolating operator. This result is
consistent with the quark model picture where the angular
momentum between the quarks are all S-wave. On the other
hand, the present interpolating operator hardly couples to the
negative parity states.

G+
mOPE(τ ) in vacuum and at normal nuclear matter

density are shown in Fig. 2. The LO-perturbative, the

-1

 0

 1

 2

 3

 1  2  3

G m
O

PE
(τ

) [
10

-5
G

eV
6 ]

τ[GeV4]

(a) In vacuum

 1  2  3
τ[GeV4]

(b) ρ=ρN
+ parity
LO-pert.

NLO-pert.
Four-quark

<q †q>

FIG. 2. The density dependences of the positive parity OPE
G+

mOPE(τ ). The LO-perturbative, the NLO-perturbative, the four-
quark, and the vector quark condensate 〈q†q〉 terms are shown. Here,
ρN means normal nuclear matter density.
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TABLE II. The qth dependence of the result.

qth (GeV) 2.6 2.7 2.715 2.8 2.9 3.0 3.1

E�c (GeV) 2.218 2.275 2.285 2.320 2.370 2.397 2.419

|λ|2(10−4 GeV6) 1.20 1.55 1.62 1.97 2.40 2.77 3.08

χ 2 1.002 1.007 1.009 1.020 1.046 1.078 1.116

NLO-perturbative, the four-quark, and the vector quark con-
densate 〈q†q〉 terms whose contributions are large, are also
shown in the same figure. We find that the αs correction on
the perturbative terms are as large as twice of the leading-
order term. As for higher-order αs corrections, the large αs

corrections in the perturbative term affect the behavior of
continuum states. In conventional QCD sum rule analyses,
the continuum states are separated from the lowest-lying
state by the threshold parameter. Therefore, adjusting the
value of the threshold parameter is expected to compensate
for the effects from higher-order αs corrections. Among the
nonperturbative contributions, the four-quark condensate is
dominant in vacuum. Figure 2 shows that the in-medium
modification of the four-quark condensate and 〈q†q〉m is
the main origin of the density dependence of G+

mOPE(τ ).
Therefore, we find that the charm quark plays less role than
the light quarks as far as the density dependence is concerned.
We use the factorization hypothesis for the four-quark conden-
sate in this section. Another possible density dependence of
the four-quark condensate and its effect to the result will be
discussed in Sec. IV. It is important to notice that the 〈qq〉 term
does not appear in the correlation function due to the structure
of the interpolating field J�c

. The di-quark structure in J�c
can

be described as (qT aCγ5q
b) = (−qT a

L Cγ5q
b
L + qT a

R Cγ5q
b
R) by

using the left- and the right-handed spinors, and thus the quark
condensate 〈qq〉 where a left-handed spinor is paired to a
right-handed one does not have contributions in the chiral
limit. Thus �c feels the in-medium effects mainly through the
four-quark condensate and 〈q†q〉m.

B. Total energy

We investigate the hadron properties by minimizing χ2.
In the case of the positive parity state, it is found that various
combinations of the parameters lead the value of χ2 to vicinity
of 1. The trivial solutions are contained in these combinations.
The values that are close to E�c

= mc and qth = mc give small
values of χ2 − 1 because, except for the terms of the dimension
8 condensate and the part of the gluon condensate, GmOPE(τ )
can be expressed by δ(q0 − mc) and θ (q0 − qth). These values
do not correspond to physical solutions and must be discarded.
In order to avoid such solutions, we impose further conditions.
The interpolating operator J�c

for �c couples to the continuum
states starting from around the value of the lowest threshold,
�cπ , i.e., 2600 MeV. Therefore, we exclude the qth parameter
region, qth < 2600 MeV. The qth dependence of the result
in vacuum are summarized in Table II. We find that the
uncertainty of the calculated ground state mass is about
100 MeV and the choice of qth = 2.715 GeV can reproduce the
experimental value. Therefore, we will fix the value of qth as

 2250

 2300

 2350

 2400

 0  0.5  1
ρ/ρN

(a)

EΛc
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 0  0.5  1
ρ/ρN

(b)
MΛc

* −MΛc

-50

 0
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 0  0.5  1
ρ/ρN

(c)
ΣΛc

v

FIG. 3. The density dependences of (a) the energy E�c (MeV),
(b) the effective mass M∗

�c
(MeV) and (c) the vector self-energy

�v
�c

(MeV). The solid lines show the results with the density
dependence of the four-quark condensate according to the factor-
ization hypothesis while dashed lines are the case where its density
dependence are estimated from the perturbative chiral quark model.

2.715 GeV and apply the analyses to the �c baryon in nuclear
matter. The density dependence of the energy E�c

is shown
in Fig. 3. We find that the energy of �c in nuclear matter,
namely the peak position in the spectral function, increases as
the density increases. At the normal nuclear matter density,
its value is 2.385 GeV. This result indicates that �c feels
a net repulsive potential in nuclear matter. The behavior is
different from the nucleon and �, whose total energy gradually
decreases and causes the formation of bound states in nuclei.
As for the negative parity state, the analysis does not work well
due to the small coupling between the present interpolating
field and �−

c state.

C. Effective mass and vector self-energy

The analyses in the previous subsection show that the
energy of �c in nuclear matter increases. In relativistic phe-
nomenological models, the total energy can be decomposed
into the effective mass m∗

B and the vector self-energy �v
B

as we have introduced in Eq. (26). These quantities have
been investigated from the previous QCD sum rule analyses
for the nucleon [17,53,56–64] and � [40,46,64–66]. The
studies show that significant cancellations of the modifications
of m∗

B and �v
B for both the nucleon and � cases occurs.

The modifications of m∗
B and �v

B can be connected with
the coupling strength of the baryon B to the scalar and the
vector mean fields, respectively. In a naive estimation where
exchanged light mesons only couples to the light quarks in the
baryon, one can derive a simple relation between the coupling
strengths of the nucleon and that of �. If this approximation
is valid, the effective masses and the vector self-energies
satisfy the following relation: M∗

� − M� ≈ 2
3 (M∗

N − MN ) and
�v

� ≈ 2
3�v

N . However, the previous QCD sum rule analyses
show a large violation of the above relation [40,46,64–66]. We
will investigate the effective mass and the vector self-energy
of �c and compare the results with those of the nucleon
and �.
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As we see from Eq. (33), we can study the energy E�±
c

in the parity projected QCD sum rule. Here we parametrize
the phenomenological side of each GmiOPE(τ ) (i = 1,2,3)

and investigate the effective mass and the vector self-
energy. The specific forms of phenomenological sides are as
follows:

Gm1SPF(τ ) =
∫ ∞

0
dq0

1√
4πτ

exp

(
−

(
q2

0 − m2
c

)2

4τ

)(
|λ+|2 M�c

2
√

M∗2
�c

δ
(
q0 − E�c

) + 1

π
Im[�m1OPE(q0)]θ (q0 − qth)

)

Gm2SPF(τ ) =
∫ ∞

0
dq0

1√
4πτ

exp

(
−

(
q2

0 − m2
c

)2

4τ

)(
|λ+|2 M∗

�c

2
√

M∗2
�c

δ
(
q0 − E�c

) + 1

π
Im[�m2OPE(q0)]θ (q0 − qth)

)

Gm3SPF(τ ) =
∫ ∞

0
dq0

1√
4πτ

exp

(
−

(
q2

0 − m2
c

)2

4τ

)(
|λ+|2 −�v

�c

2
√

M∗2
�c

δ
(
q0 − E�c

) + 1

π
Im[�m3OPE(q0)]θ (q0 − qth)

)
, (37)

where the structure of the lowest-lying pole comes from the
in-medium propagators of �±

c of Eq. (25). We do not consider
the contribution of negative parity state �−

c in the above
equation because its contribution are quite small. The validity
of such treatment in vacuum are guaranteed by the fact that
G−

mOPE(τ ) is much smaller than the G+
mOPE(τ ). Its validity

in nuclear matter can be also investigated by comparing
Gm2SPF(τ ) with Gm2OPE(τ ). Gm2SPF(τ ) is characterized by
qth, |λ+|2 and E�c

whose values have been already obtained
from the analyses of the parity projected QCD sum rules.
We confirm that such treatment is valid up to the normal
nuclear matter density. By fitting the Gm1SPF(τ ), Gm3SPF(τ )
and corresponding functions in the OPE side, we investigate
the effective mass and the vector self-energy. These density
dependences are shown in Fig. 3. From this figure, we find
that the effective mass increases while the vector self-energy
decreases as the density increases. At the normal nuclear
matter density, the values of the effective mass and the vector
self-energy is 2.402 GeV and −0.017 GeV, respectively.
Comparing them with the previous �c QCD sum rule analysis
with the same interpolating operator [28], we agree in the
increase of the effective mass but the sign of the vector
self-energy is different. The discrepancy may come from the
first-order αs corrections and the dimension 8 condensate. The
small contribution of the dimension 8 condensate implies the
good convergence of the OPE and thus we can use GmOPE(τ )
in the lower-energy region, which contains much information
about the �c ground state. In another preceding study where a
different interpolating operator is used [29], both the signs
of the modifications of the effective mass and the vector
self-energies are opposite to our results and the magnitude
of their values are much larger than ours.

Comparing our results with the previous QCD sum rule
of the nucleon [64] and � [46], we find that the shift of
the effective mass is about M∗

�c
− M�c

≈ −(M∗
� − M�) ≈

− 1
3 (M∗

N − MN ) and the vector self-energy is about �v
�c

≈
− 1

3�v
� ≈ − 1

12�v
N . Their values of �c are quite different. The

smallness of the vector self-energy may be understood from
the contribution of the 〈q†q〉 term in Gm3OPE(τ ). In the case
of the nucleon and � analyses [53,61–64], this contribution
plays a dominant role to determine the vector self-energy. The

〈q†q〉 contribution gives a repulsive vector self-energy of �c as
well as of the nucleon and �. However, the contribution in �c

is small because the Wilson coefficient of this term is propor-

tional to (q2
0 −m2

c )4

(q2
0 )3 and its value becomes small as q0 goes close to

mc. Therefore, when we investigate �c whose energy is close
to charm quark mass, the contribution of 〈q†q〉 to the vector
self-energy is suppressed. This suppression implies that the
coupling strength of the vector field is affected by not only the
light quarks but also the heavy quark because the Wilson coef-
ficient contains both the light and the heavy quark propagators.

IV. DISCUSSION

We have investigated the density dependence of the energy,
the effective mass and the vector self-energy of �c. The results
are different from our naive expectation and the qualitative
behaviors of the nucleon and �. Here we discuss the density
dependence of the four-quark condensate and its effects to
the results of the analyses. As we have shown in Fig. 2,
the four-quark condensate is dominant and thus will strongly
affect the density dependence of GmOPE(τ ). The expectation
value of the four-quark condensate has large uncertainty and
the deviation from factorization hypothesis has been pointed
out in previous studies [60,64,69–72,72–77]. Here, we use
an effective model to estimate the density dependence of the
four-quark condensate and then reinvestigate the properties of
�c. To discuss the validity of the estimation of the four-quark
condensate, we apply the same QCD sum rule analyses to �
hyperon (with appropriate strange quark condensates at finite
density, see Sec. IV B) and compare the results with the energy
shift of � in nuclear matter. We also investigate the in-medium
modification of �b.

A. Density dependence of four-quark condensate

In this section, we discuss the density dependence of
the four-quark condensate and its effect to the in-medium
modifications of �c. We specifically consider two types of
density dependences. The first one is based on the factorization
hypothesis and the second is estimated from the perturbative
chiral quark model (PCQM) [77,78].
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The in-medium condensates are usually evaluated in the
linear density approximation and can be described as 〈O〉m ∼=
〈O〉0 + ρ〈O〉N . It is important to obtain precise values of
〈O〉N , the values of the condensates in the nucleon. In some
cases, they can be experimentally subtracted. For instance,
expectation values of some twist-4 four-quark condensates in
the nucleon can be estimated from deep inelastic scattering
data [46,67,68]. However, general four-quark condensates
can not be determined. A commonly used technique is the
factorization hypothesis, where a four-quark condensate is
given by the product of two-quark condensates as〈

ua
αub

βdc
γ d

d

δ

〉 → 〈
ua

αub
β

〉〈
dc

γ d
d

δ

〉
, (38)

where a, b, c, and d are color indices and α,β,γ , and δ are
spinor indices. The factorization can only be justified in the
large Nc limit [14,15] and the validity in Nc = 3 is not so clear.
In fact, there are some studies, which claim significant viola-
tion of the factorization in the QCD sum rule analyses of ρ me-
son [69–73], φ meson [72,74], and the nucleon [60,64,75–77].
Deviation from the factorization in the �c channel and its
affect to the results of the analyses have not been studied.

We here consider a model-dependent but more sophisti-
cated approach based on PCQM. In general, the four-quark
condensates, which appear in the OPE calculations have
different density dependences. The four-quark condensates can
be expressed as linear combinations of the independent four-
quark condensates and their density dependence are different
from each other. In Refs. [77,78], the nucleon expectation
values of the various independent four-quark condensates are
estimated by PCQM. In the case of the nucleon channel, the
in-medium four-quark condensates, which are estimated by
PCQM, can quantitatively reproduce the known properties of
the nucleon in nuclear matter [77]. We estimate the density
dependence of the four-quark condensate from these results
and reinvestigate the in-medium modification of �c.

In the case of the interpolating operator J�c
, the structure

of the four-quark condensate can be described as

〈(εabcuaCγ5d
b) · (εef cd

f
γ5Cue)〉m

= − 1
4

[〈df
dbueua〉m + 〈df

γ5d
bueγ5u

a〉m
− 1

2 〈df
σμνd

bueσμνua〉m + 〈df
γμdbueγ μua〉m

+〈df
γ5γμdbueγ5γ

μua〉m
]
εabcεef c. (39)

Here, we have decomposed the four-quark condensate into
independent four-quark condensates, which have the differ-
ent Lorentz structures. We find that the twist-0 four-quark
condensates only appear in this sum rule. In the case of
the factorization hypothesis, the density dependence of the
four-quark condensate is expressed as

〈(εabcuaCγ5d
b) · (εef cd

f
γ5Cue)〉m

= −1

6
(〈dd〉m〈uu〉m + 〈d†d〉m〈u†u〉m)

= −1

6

(〈qq〉2
m + 〈q†q〉2

m

)

= −1

6

(
〈qq〉2

0 + ρ
σN

mq

〈qq〉0 +
(

σ 2
N

4m2
q

+ 9

4

)
ρ2

)
, (40)

where the isospin symmetry is used. This density dependence
is used in the previous sections. On the other hand, from
the results of the PCQM calculations [77,78], the density
dependence of whole four-quark condensate can be written
as

〈(εabcuaCγ5d
b) · (εefgd

f
γ5Cue)〉m

= − 1
6 〈qq〉2

0 − 1
4 0.935〈qq〉0 ρ + O(ρ2). (41)

The coefficient of 〈qq〉2
0 is determined by the factorization

hypothesis. For simplicity, we call the density dependences of
Eq. (40) and Eq. (41) as F-type and QM-type, respectively.
Comparing Eq. (40) with Eq. (41), we find that the QM-type
in-medium modification is much weaker than that that of the
F-type. Using this density dependence, we recalculate the in-
medium modifications of �c. The results are shown as dashed
lines in Fig. 3. At the normal nuclear matter density, the values
of the energy, the effective mass, and the vector self-energy
are 2.266 GeV, 2.277 GeV, and −0.011 GeV, respectively.
The total energy decreases about 20 MeV, which implies that
�c feels a net attractive potential and forms bound states in
nuclear matter. The results indicate that the density dependence
of the four-quark condensate strongly affects the in-medium
modifications of �c. Therefore, in turn, �c is useful as a probe
of the density dependence of the four-quark condensate.

Finally, we comment on the relation between the partial
restoration of chiral symmetry and the four-quark condensate
of Eq. (39). The chiral condensate is usually considered as
an order parameter of the chiral transition, but the role of
four-quark condensates in the spontaneous breaking of the
chiral symmetry is still an open issue. The effects from
four-quark condensates to the phase transition are discussed in
Refs. [79–82]. However, the four-quark condensate of Eq. (39)
is singlet under the chiral SU (2) × SU (2) transformation and
thus its in-medium modification is not directly related to
the partial restoration of chiral symmetry. The knowledge of
this density dependence may be useful when we investigate
other hadrons in nuclear matter. Some kinds of four-quark
condensates that appear in OPE may contain the four-quark
condensate of Eq. (39).

B. Analyses of � and �b

We carry out the analyses of � to discuss the validity of the
estimation of the in-medium modification of the four-quark
condensate in this section. The OPE of � contains some
extra terms in which the strange quark condensate is treated
differently from the charm quark. The Wilson coefficients of
the gluon condensate and strange quark condensate terms are
different from the case of �c. Therefore, we refer Ref. [46] and
construct the parity projected Gaussian sum rule of �. We also
investigate the properties of �b in nuclear matter. The OPE
representation of the �b correlation function is same as that
of �c except for the value of the quark mass mQ. The values
of the new parameters are as follows: mb = 4.78 ± 0.06 GeV
[51], ms = 130 ± 8 MeV [51], 〈ss〉0 = 0.8 〈qq〉0 [46], and
〈ss〉N = 0.1 〈qq〉N [46]. The analyzed parameter region for �
and �b are 0.6 < τ (GeV4) < 1.8 and 9.5 < τ (GeV4) < 23,
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FIG. 4. The positive and the negative parity OPE G±
mOPE(τ ) of �

in vacuum.

respectively, which are determined by the same criterion as the
�c analyses.

The behavior of the OPE for � is shown in Fig. 4. We find
that the interpolating operator couples to both the positive
and negative parity states, in contrast to the case of �c.
The result indicates that we should take into account effects
of the negative parity state when investigating the effective
mass and the vector self-energy of the positive parity state.
Therefore, we leave the individual quantities for a future work
and investigate the density dependence only of the energy of
the positive parity state in this study. The qualitative behavior
of GmOPE(τ ) of �b is same as that of �c. The results of
the analyses of � and �b are shown in Figs. 5 and 6. The
values of the threshold parameter are fixed to q�

th = 1.52 GeV
and q

�b

th = 6.03 GeV, respectively. They are taken so as to
reproduce the experimental mass in vacuum.

Figure 5 shows that energy of � increases in the case of
the F-type in-medium four-quark condensate while the energy
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FIG. 5. The density dependences of the energy E� (MeV). The
solid line shows the result with the density dependence of the four-
quark condensate according to the factorization hypothesis while the
dashed line is the case where its density dependence is estimated from
the perturbative chiral quark model.
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FIG. 6. The density dependences of (a) the energy E�b
(MeV),

(b) the effective mass M∗
�b

(MeV), and (c) the vector self-energy
�v

�b
(MeV). The solid lines show the results with the density

dependence of the four-quark condensate according to the factor-
ization hypothesis while dashed lines are the case where its density
dependence are estimated from the chiral quark model.

slightly decreases when we use the QM-type in-medium four-
quark condensate. The energy shift of � in nuclear matter has
been extracted from the binding energies of hypernuclei (see
Ref. [83] for a review), which is consistent with our result of
the QM-type density dependence. This consistency supports
that the QM-type density dependence is more realistic than
the F-type, namely the density dependence of the four-quark
condensate of Eq. (39) is quite weak. The results support that
�c in nuclear matter feels a weak attractive force. As for
the �b analyses with the QM-type density dependence, the
energy is almost independent of the density, which implies the
difficulty of forming a bound state. Comparing the results of
�b with those of �c, we find that the values of the energy shift,
the effective mass shift, and the vector self-energy of �b and
those of �c are of the same scale. These behaviors come
from the small in-medium modifications of the four-quark
condensate and 〈q†q〉.

V. SUMMARY AND CONCLUSION

We have studied the properties of �c in nuclear matter by
using the QCD sum rule. To improve the �c QCD sum rule,
we have taken into account the first-order αs correction and the
higher-order condensate terms in the OPE and then construct
the parity projected QCD sum rule. The employed �c interpo-
lating operator is the scalar di-quark-heavy quark type whose
structure is the same as the quark model picture of the �c

ground state. In the OPE side, the four-quark condensate is
dominant in vacuum, as 〈qq〉 does not appear due to the
structure of the interpolating operator. Therefore, �c feels the
in-medium effects mainly through the four-quark condensate.
We find that our interpolating operator strongly couples to the
positive parity state while the coupling to the negative parity
state is weak.

From the analysis of �c, the density dependences of
the energy E�c

, the effective mass m∗
�c

, and the vector
self-energy �v

�c
are obtained. We have found that the results
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depend strongly on the density dependence of the four-quark
condensate. We have considered two cases. The first one is the
density dependence according to the factorization hypothesis
(F-type) and the second one is estimated from perturbative
chiral quark model (QM-type). The density dependence of the
QM-type is much weaker than that of the F-type. The result
with the F-type in-medium four-quark condensate shows that
the energy and the effective mass increase while the vector
self-energy decreases in nuclear matter. On the other hand,
the result using the QM-type is that the energy, the effective
mass and the vector self-energy decrease in nuclear matter,
which indicates the �c bound states in nuclear matter. The
obtained binding energy is about 20 MeV at the normal nuclear
matter density. The sensitivity to the in-medium modification
of four-quark condensate implies that �c is useful as a probe of
the density dependence of four-quark condensate. Comparing
the values of m∗

�c
and �v

�c
with those of � in the previous QCD

sum rule analyses, we find that their values are considerably
different from each other. This implies the large violation of the
naive expectation where exchanged light mesons only coupled
to light quarks in the baryon. From the viewpoint of the OPE
expression, the discrepancy can be understood as follows. The
smallness of the vector self-energy comes from the 〈q†q〉 term
whose contribution plays a dominant role to determine the
vector self-energy in the case of the nucleon and �. The Wilson
coefficient of this term becomes small as q0 goes close to mQ.
Due to this property, when we investigate �Q whose energy is
close to the heavy quark mass, the contribution of 〈q†q〉 to the
vector self-energy is suppressed. As a result, the value of �v

�Q

becomes small. For the effective mass, its value is also small
as there is no contribution from the quark condensate 〈qq〉.

We have applied the parity projected QCD sum rule
to the analyses of � and �b in nuclear matter. It is found
that the in-medium modification of the energy of � depends
on the density dependence of the four-quark condensates
and the result with the QM-type density dependence is
qualitatively consistent with the experimental results. This
consistency supports that the density dependence of the four-
quark condensate is quite weak. Therefore, we conclude that
�c in nuclear matter feels weak attraction.

The results of the �b analyses using the QM-type density
dependence show that the energy is almost density indepen-
dent, which implies the difficulty of forming bound states.
Comparing the results of �b with those of �c, we find that
the values of the energy, the effective mass, and the vector
self-energy of �c and those of �b are of the same scale. These
behaviors come from the small in-medium modification of the
four-quark condensate and 〈q†q〉.
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