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Viscosity of a net-baryon fluid near the QCD critical point
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In the dynamics of the QCD critical point, the net-baryon fluid, linked to the slow component of the order
parameter, relaxes to a three-dimensional Ising system in equilibrium. An analytical study of shear and bulk
viscosity, with constraints imposed by the dynamics of the critical net-baryon fluid, the universality property,
and the requirements of a class of strong-coupling theories, is performed in the neighborhood of the critical
point. It is found that the shear viscosity of the net-baryon fluid is restricted in the domain 1.6 � 4π η

s
� 3.7

for Tc < T � 2Tc, whereas the bulk viscosity is small, 4π ζ

s
< 0.05 (for T > 1.27Tc), but rising towards the

singularity at T = Tc.

DOI: 10.1103/PhysRevC.96.055207

I. INTRODUCTION

Near the QCD critical point, the transport coefficients of
a strongly interacting fluid, created in high-energy nuclear
collisions, are expected to exhibit anomalous temperature
dependence. This behavior is implied by the time evolution
of the order parameter fluctuations after reaching equilibrium.
At time scales of the order of the relaxation time, the order
parameter fluctuations are governed by the fluctuations of the
baryon number density nb. The reason is that the latter is
the slow component of the order parameter due to baryon
number conservation [1,2]. In contrast, all other degrees of
freedom, occurring in the energy-momentum tensor of the
strongly interacting fluid, do not contribute to the singular
behavior of the transport coefficients in the stage of relaxation
to equilibrium. In particular the chiral condensate, the other
component of the order parameter, is linked to a fast mode
since the σ field becomes massive and therefore does not
participate in the dynamics of the QCD critical point at long
time scales [1]. As a result, one may claim that, although in
the study of static properties of the QCD critical point (critical
fluctuations, and divergence of baryon-number susceptibility)
both components of the order parameter (σ,nb) are relevant
[3], in any attempt to investigate the dynamic properties of the
QCD critical point (divergence of transport coefficients) only
the baryon number density nb is a relevant order parameter
[1]. Experimentally, one may state that, in the search for
the location of the critical point in the phase diagram, the
investigation of critical fluctuations of π+π− pairs may
simulate σ -field critical fluctuations [4]. However, dynamic
properties of the QCD critical point cannot be revealed within
a study of transport coefficients (viscosity) of a meson gas
produced in high-energy nuclear collisions [5].

In what follows, we consider the behavior of viscosity
(shear and bulk) in the baryon-number fluid, near the QCD
critical point in a process of relaxation towards a state
of equilibrium described by a three-dimensional (3D) Ising
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universality class. Conventional systems (He, N2, H2O) of
liquid-gas transition [6] also belong in the same universality
class, and the basic ingredients in this process out of equi-
librium are thermal diffusion and sound waves [7]. The Ising
model description in equilibrium is characterized by the critical
exponents of the divergent thermodynamic quantities and of
the correlation length, near the critical point [8].

Within this context, we may conjecture that, approaching
the critical point, the following thermodynamic quantities
prevail in the description of shear (η) and bulk (ζ ) viscos-
ity: η(T ,vs,ξ, cP

cV
, . . .) and ζ (ρ,vs,ξ, cP

cV
, . . .). In fact, thermal

diffusion produces an inverse relaxation time (τ−1) for a
disturbance, proportional to the specific heat coefficient,
τ−1 ∼ cP [7], whereas the correlation length ξ represents the
length scale near the critical point. The velocity of sound,
vs , is present since we have assumed that sound waves are
among the nonequilibrium modes in this process. Finally,
from the thermodynamic quantities in the equation of state,
shear viscosity captures the dependence on the temperature
(T ), whereas bulk viscosity must depend on the mass density
(ρ) of the medium (net-baryon fluid) in the bulk. In this
approximation, no other quantities are considered in the
description of shear and bulk viscosity during the relaxation
stage. On the basis, now, of dimensional considerations,
viscosity = energy density × time, one may obtain the
following expressions in terms of singular quantities in the
limit T → Tc, μb = μc:

η

s
= kBT v−1

s

ξ 2s
F (s)

(
cP

cV

)
,

ζ

s
= ρvsξ

s
F (b)

(
cP

cV

)
, (1)

where we have introduced the entropy density (s) forming
the dimensionless ratios (1) in the system of units kB = c =
h̄ = 1. The basic thermodynamics of the fluid is formulated in
terms of the relations

cP − cV = T kT

(
∂P

∂T

)2

V

,
cP

cV

= kT

kS

, v2
s = (ρkS)−1,

s = ε + P

T
− μbnb

T
, (2)
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where kT and kS are the isothermal and adiabatic (isentropic)
compressibility, ε the energy density, P the pressure, and μb

the baryochemical potential.
A minimal requirement of relativistic thermodynamics

leads to the identification of the mass density ρ of the fluid
with the enthalpy density: h = ε + P (ρ = h

c2 ) in Eqs. (1)
and (2) as a result of the properties of the energy-momentum
tensor [9]. Moreover, in order to fix the amplitudes (scales)
of the singular quantities, consistent with relativity, one may
consider the net-baryon fluid consisting, in the quark phase
(T � Tc), of the quark excess with conserved number density,
following the equation of state of an ideal, massless, classical
system and leading to

ε = 3P, P = nbT , h = 4nbT , cV = 3nb, cP = 4nb,

kT = (nbT )−1, s =
(

4 − μb

T

)
nb, vs = 1√

3
. (3)

In this description the remaining balanced quarks and anti-
quarks (zero baryon number) form an environment for the
net-baryon fluid which affects the dependence of the chemical
potential μb on the temperature T .

II. CRITICAL EXPONENTS OF VISCOSITY

Introducing now the appropriate critical exponents and the
corresponding amplitudes, we obtain in the limit T → Tc,
μb = μc, the power laws

cV = A±|t |−α, kT = �±|t |−γ ,
(4)

ξ = ξ±|t |−ν

(
t ≡ T − Tc

Tc

)
,

where the indices (±) in the amplitudes correspond to the
limits t → 0+ and t → 0−, respectively [8].

In Eqs. (4) not only are the critical exponents universal but
also the ratios of the amplitudes A+

A−
, �+

�−
, and ξ+

ξ−
, corresponding

to the phases T > Tc (net-baryon, quark-matter fluid) and
T < Tc (net-baryon, baryonic fluid), are fixed within the
universality class of the critical point [8]. Moreover, following
our discussion above, the amplitudes (A+, �+) in the quark-
matter phase, representing the scales of the thermodynamic
quantities (cV , kT ) near the critical temperature, can be fixed
with the help of Eqs. (3) assuming a continuous transition
to the ideal behavior. To ensure the continuity of the sound
velocity [see Eqs. (7) below], reaching the constant value 1√

3
in the ideal regime, the matching of cV , kT has to be taken at
t = 1 (T = 2Tc), leading to the relations

A+ = 3nc, �+ = (2ncTc)−1, (5)

where nc ≡ nb(Tc) = nb(2Tc) denotes the critical baryon
number density. Here we have made use of the fact that the
order parameter nb(T ) − nc vanishes in the symmetric phase
T > Tc [10]. We are aware of the fact that the extrapolation
of the power laws (4), beyond the critical region, is a
crude approximation. Our conjecture, however, is that the
combination of the singular thermodynamic quantities to form
expressions (1) of shear and bulk viscosity may lead to
a solution, valid also in a distance from Tc, developing a

noncritical behavior there. Obviously, this conjecture can only
be verified a posteriori, at the end of our treatment.

In this framework one may proceed to a semiquantitative
treatment of shear and bulk viscosity, near the QCD critical
point, on the basis of Eqs. (1), (2), and (4). For the functions
F (i)( cP

cV
), i : (s,b) in Eqs. (1), we adopt a simple model inspired

by a perturbative treatment of conventional fluids, in the
vicinity of the liquid-gas critical point, sharing the same
universality class (3D Ising) with QCD [7]: F (i)( cP

cV
) = f (i) cP

cV
,

where the dimensionless constants f (i) are not universal—they
depend on the nature and the length scale of the medium at
microscopic level. With this choice, Eqs. (1) and (2) give

v2
s = k−1

T

h

[
1 + T kT

(
∂P

∂T

)2

V

c−1
V

]
,

η

s
= f (s) T

3/2h1/2

s

(
∂P

∂T

)
V

kT ξ−2c
−1/2
V

×
[

1 + T −1

(
∂P

∂T

)−2

V

cV

kT

]1/2

,

ζ

s
= f (b) T

3/2h1/2

s

(
∂P

∂T

)3

V

kT ξc
−3/2
V

×
[

1 + T −1

(
∂P

∂T

)−2

V

cV

kT

]3/2

. (6)

Incorporating the power laws (4) for cV , kT , and ξ in Eqs. (6)
we obtain the singular forms in the limit T → Tc:

v2
s = |t |α

h

[
�−1

± |t |γ−α + A−1
± T

(
∂P

∂T

)2

V

]
,

(η

s

)
±

= f (s) T
3/2
c h

1/2
c λc

sc

(�±ξ−2
± A

−1/2
± )

×(
1 + T −1

c λ−2
c A±�−1

± |t |γ−α
)1/2|t |−γ+2ν+ α

2 ,(
ζ

s

)
±

= f (b) T
3/2
c h

1/2
c λ3

c

sc

(�±ξ±A
−3/2
± )

×(
1 + T −1

c λ−2
c A±�−1

± |t |γ−α
)3/2|t |−γ−ν+ 3α

2 , (7)

where λc ≡ ( ∂P
∂T

)
V

at T = Tc. In fact Eqs. (7) contain also a
noncritical contribution increasing for T > Tc. This leads to
a solution interpolating smoothly between the critical and the
asymptotic ideal gas behavior, taking also the constraint of
baryon-number conservation into account. The critical expo-
nents (α,γ,ν) are not independent since they are constrained by
the Josephson scaling law νd = 2 − α. Therefore, the indices
of the power laws in Eqs. (7) are given in terms of two
independent critical exponents. In particular, the leading power
laws of shear and bulk viscosity are

η ∼ |t |1−γ+ ν
2 , ζ ∼ |t |3−γ− 11

2 ν, (8)

where the exponents (γ,ν) are expected to be compatible with
Ising-like universality class in three dimensions. In fact the
behavior of Eqs. (8) is universal; it is valid near the liquid-gas
critical point of conventional matter [7] and also near the
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quark-hadron critical point of QCD matter. However, the
behavior of Eqs. (8) must be in accordance with the dynamical
aspects of the QCD critical point which suggest, according to
a compilation of predictions [1,11–15], the singular behavior
η ∼ ξ 0.05, ζ ∼ ξ 2.8. Comparing these power laws with the
behavior of Eqs. (8) we find (ξ ∼ |t |−ν) γ � 1.34, ν � 0.61,
a solution compatible with the Ising-like universality class.

Finally, in order to verify explicitly the compatibility of
the scaling relations (8) with the dynamics of the critical
point, we consider the treatment in Ref. [14] in which
the renormalized transport coefficients, computed in the ε
expansion, behave as follows: ηR ∼ ξ ε/19 and ζR(0) ∼ ξz−α/ν

in the slow mode ω = 0. The dynamic critical exponent z is
given by the expansion z = 4 − 18

19ε + · · · and for a 3D fluid
and the Ising exponents ν � 0.61, α = 2 − νd, one finds, to
first order in ε = 4 − d, ηR ∼ ξ 0.053, ζR(0) ∼ ξ 2.77, in a very
good agreement with Eqs. (8).

III. SINGULAR SOLUTIONS

The characteristic properties of viscosity near the QCD
critical point, described by the solution (7), depend on a
number of nonuniversal amplitudes which are fixed by the
following constraints: (a) the assumption that in the quark-
matter phase (T � Tc) the amplitudes �+ and A+ are given
by Eqs. (5), which are compatible with the equation of state
of a noninteracting, massless, classical system with constant
baryon number density nb(T ) = nc for T � Tc and (b) the
universality constraint imposed on the ratios of the Ising am-
plitudes: A+

A−
= 0.5 − 0.6, ξ+

ξ−
= 2, and �+

�−
= 4.5 − 5.0 [16].

In fact, the solution (7) can be written in a simplified form:(η

s

)
±

= f (s)M±(1 + �±|t |γ+3ν−2)1/2|t |1−γ+ ν
2 ,

(9)(
ζ

s

)
±

= f (b)N±(1 + �±|t |γ+3ν−2)3/2|t |3−γ− 11
2 ν,

where

M± ≡ T
3/2
c h

1/2
c λc

sc

�±ξ−2
± A

−1/2
± ,

N± ≡ T
3/2
c h

1/2
c λ3

c

sc

�±ξ±A
−3/2
± , and

�± ≡ T −1
c λ−2

c A±�−1
± , (10)

with hc = 4ncTc, λc = nc, and sc = (4 − μc

Tc
)nc, assuming the

(approximate) validity of Eqs. (3) in the temperature range
(Tc,2Tc) for all thermodynamic quantities which do not possess
divergent singularities for T → Tc. Constraints (a) and (b) lead
to the following solution for the dimensionless amplitudes
(10):

M+ = 1√
3

ξ−2
+ Tc

sc

, N+ = 1

3
√

3

ncξ+Tc

sc

, �+ = 6,

M− = 4

7
√

3

ξ−2
+ Tc

sc

, N− = 1

84
√

3

ncξ+Tc

sc

, �− = 60.

(11)

Here ξ+ � 1 fm is a typical scale of the correlation length
and a set of critical values (Tc, μc, and nc) can be taken
from Ref. [10], where a study of baryon-number susceptibility
near the critical point is performed and also from NA49
measurements in a search for critical fluctuations [4,17]: Tc �
160 MeV, μc � 220 MeV, and nc � 0.13 fm−3. The location
of the critical point (Tc,μc) in the QCD phase diagram is still
an open problem and the above values are only indicative.
However, a change of these quantities affects only the actual
values of the constants f (i) but not the solution (9). In fact,
if we choose the critical values suggested by lattice QCD,
Tc � 160 MeV and μc � 400 MeV [18,19], the constants f (i)

increase by a factor of 1.7 but the overall prefactors f (s)M± and
f (b)N± in Eqs. (9) remain unchanged, fixed by the constraint
of the Kovtun-Son-Starinets (KSS) bound, described in the
discussion below.

To complete our treatment and determine the remaining
constants f (s) and f (b) in Eqs. (9), we employ, as a final
guiding principle, the KSS bound [20], which is assumed to be
reached by the minimum of the ratio η

s
, located very close to the

critical temperature, in the hadronic phase (t � −2.9 × 10−3)
according to Eqs. (9). This constraint has its origin in a class of
strong-coupling field theories (anti-de Sitter–conformal field
theory (AdS/CFT) limit) and it is widely accepted that the
formation of quark matter in high-energy nuclear collisions
creates an ideal environment in order to test its validity [6].
Also, in the same framework, a constraint on the bulk viscosity
can be obtained if we use the parametrization ζ

s
= 1

8π
( 1

3 − v2
s )

introduced in Ref. [21] and take, for our purpose, the average
in the domain 0.5 � t � 1. From Eqs. (7) we have for
Tc � T � 2Tc

v2
s = t2−3ν

4

(
2tγ+3ν−2

1 + t
+ 1

3

)
,

〈
v2

s

〉 � 0.27. (12)

Thus, we obtain the final constraints,(η

s

)
min

= 1

4π
(t � 0−),

〈(
ζ

s

)
+

〉
� 0.030

4π
, (13)

which lead to the estimate f (s) � 8.2 × 10−2 and f (b) �
2.0 × 10−3.

IV. DISCUSSION AND CONCLUSIONS

The solution for shear viscosity is unstable at T = Tc, under
small changes of the critical exponents (ν,γ ). In fact if we
consider the values of 3D Ising exponents given by recent
theoretical studies [22], ν � 0.63 and γ � 1.24, the weakly
divergent singularity at T = Tc discussed above (solution I),
becomes a cusp singularity (solution II). This solution vanishes
at T = Tc but, for the same value of f (s), it rapidly approaches
solution I as we depart from the critical temperature (|t | �
0.04), leaving, as a single imprint, a cusp at t = 0. Solution
II violates the KSS bound and therefore the dimensionless
constant f (s) remains a free parameter. In Fig. 1 we show,
for illustration, three different solutions of type II, sharing
the same cusp singularity and corresponding to the values
f (s) = 0.082, 0.130, and 0.325. In fact, solutions of types I and
II are presented in Fig. 1 and compared with other findings,
not related to critical behavior. In the hadronic phase (T < Tc)
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FIG. 1. Our solution of type I (continuous dark line) for the shear
viscosity compared with the findings of Refs. [5] (open triangles),
[23] (open circles), [24] (solid circles and solid triangles), [25] (open
rectangles), [26] (dashed line), [27] (a quasiparticle model; band),
and [6] (dotted line with solid rectangles). In the inset graph we focus
on the shape of our solution in the vicinity of the critical temperature.
Also solutions of type II (continuous light lines) are shown.

we found 1 � 4π η
s

� 4.3 for Tc

2 � T < Tc (in solution I),
deviating from the behavior of chiral matter (meson gas in
chiral perturbation theory) [5] and the behavior of η

s
extracted

from heavy-ion collisions at intermediate energies (HIC-IE)
[23]. For T > Tc (quark matter) we found 1.6 � 4π η

s
� 3.7

for Tc < T � 2Tc (in solution I), and a comparison with recent
results of lattice QCD (lQCD) for the shear viscosity of gluonic
matter [24] is illustrated. In the same figure, it is of particular
interest to compare our solutions with the estimate of the
ratio η

s
for QCD with dynamical Nf = 3 quarks given in

Ref. [25]. Also in Fig. 1, predictions of perturbative QCD
[26] and of a quasiparticle model [27] (band) are presented for
comparison. Finally, it is of interest to note that the weakness
of the singularity, at T = Tc, manifests itself as a two-minima
structure, very close to the critical temperature (Fig. 1). The
absolute minimum reaches the KSS bound in the hadronic
phase and not in the quark-matter phase. This structure cannot
be seen in the coarse data of conventional matter, as shown in
Fig. 1 in the case of helium [6], and, certainly, is not expected to
be observable in high-energy nuclear collisions either. We also
observe that in the quark-matter phase (T > Tc) the critical

-0.1 0.0 0.1 0.2
t=(T-Tc)/Tc

8

18

28

38

4
(

/s
)

0.6 0.7

A.Monnai, et al.
H.B. Meyer

 f (b)=0.002

f (b)=0.008

bulk viscosity

KSS bound = 1

FIG. 2. Solutions for the bulk viscosity (continuous lines) com-
pared with the findings of Refs. [11] (dot-dashed line) and [28]
(solid rectangles) with systematic (large) and statistical (small)
uncertainties.

behavior of the shear viscosity is confined in a very narrow
region �T

Tc
� 10−2 corresponding to the position of the local

minimum at tmin � 2.0 × 10−2. Departing from this region
(t � 10−2) the solution (9) may still be valid, dominated by
the square-root term which leads to a smoothly increasing
function with a noncritical behavior (Fig. 1). Moreover, in a
distance from the critical point (t � 1) the properties of shear
viscosity are expected to deviate from the requirement of a
strong-coupling regime and come close to the properties of a
noninteracting system with conserved baryon number density
(3). This observation justifies a posteriori the constraint (5)
on the amplitudes A+ and �+. Similar remarks may apply to
bulk viscosity, which remains practically constant beyond its
critical region �T

Tc
� 10−2 (Fig. 2).

In Fig. 2 the bulk viscosity of net-baryon matter, in our
solution, is presented (continuous light line). The behavior
of bulk viscosity remains practically unchanged under small
changes of the critical exponents (ν,γ ). Despite the fact that
it develops a strong singularity at the critical point (ζ ∼ ξ 2.8),
it decreases rapidly and stays at an approximately constant
value, smaller than the KSS bound, for |t | � 0.025. Our result
is compared with the solution (dot-dashed line) in Ref. [11]
where a dynamical treatment of enhanced bulk viscosity near
the critical point is performed. In the same figure, the results
of lattice QCD for gluonic matter are shown [28], whereas in a
similar lQCD treatment [23] the results for the bulk viscosity
of gluonic matter are compatible with zero, for 3Tc

2 < T < 2Tc,
and are not shown in Fig. 2.

Finally, if we remove the constraint on bulk viscosity,
inspired by gauge-gravity duality, given in Eq. (13), the
constant f (b) remains a free parameter. In Fig. 2 a solution
with f (b) = 0.008 is also shown (continuous dark line),
approaching, in the quark phase, the solution described in
Ref. [11].

In summary, an analytical study of shear and bulk viscosity
of net-baryon matter near the QCD critical point is performed.
It is based on the assumption that the net-baryon fluid,
associated with the slow order parameter (baryon number
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density nb) of the critical phenomenon, relaxes, in a process out
of equilibrium, to the Ising universality class in equilibrium.
The universal indices (critical exponents, and ratios of the
amplitudes of critical singularities) are basic ingredients in this
approach, leading to a prediction of viscosity near the critical
point. This becomes possible if we employ constraints inspired
by gauge-gravity duality, in the strong-coupling regime, near
the critical point (KSS bound for shear viscosity and a related
parametrization for bulk viscosity). In fact, these constraints

provide us with an estimate of the dimensionless constants f (s)

and f (b) [Eq. (13)], something which at present is beyond our
capability to calculate in QCD. If we remove these constraints,
these constants remain free parameters. As a final conclusion,
this study suggests that precision measurements of elliptic flow
of net protons at the Super Proton Synchrotron (NA61 experi-
ment) or at the Relativistic Heavy Ion Collider in the Beam En-
ergy Scan program [29] are of particular importance since they
are strongly linked to the dynamics of the QCD critical point.
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