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Nucleon form factors in dispersively improved chiral effective field theory: Scalar form factor
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We propose a method for calculating the nucleon form factors (FFs) of G-parity-even operators by combining
chiral effective field theory (χEFT) and dispersion analysis. The FFs are expressed as dispersive integrals over the
two-pion cut at t > 4M2

π . The spectral functions are obtained from the elastic unitarity condition and expressed as
products of the complex ππ → NN̄ partial-wave amplitudes and the timelike pion FF. χEFT is used to calculate
the ratio of the partial-wave amplitudes and the pion FF, which is real and free of ππ rescattering in the t channel
(N/D method). The rescattering effects are then incorporated by multiplying with the squared modulus of the
empirical pion FF. The procedure results in a marked improvement compared to conventional χEFT calculations
of the spectral functions. We apply the method to the nucleon scalar FF and compute the scalar spectral function,
the scalar radius, the t-dependent FF, and the Cheng-Dashen discrepancy. Higher-order chiral corrections are
estimated through the πN low-energy constants. Results are in excellent agreement with dispersion-theoretical
calculations. We elaborate several other interesting aspects of our method. The results show proper scaling
behavior in the large-Nc limit of QCD because the χEFT calculation includes N and � intermediate states. The
squared modulus of the timelike pion FF required by our method can be extracted from lattice QCD calculations
of vacuum correlation functions of the operator at large Euclidean distances. Our method can be applied to the
nucleon FFs of other operators of interest, such as the isovector-vector current, the energy-momentum tensor,
and twist-2 QCD operators (moments of generalized parton distributions).

DOI: 10.1103/PhysRevC.96.055206

I. INTRODUCTION

A. Form factors and dispersion relations

Form factors (FFs) are the most basic expressions of the
nucleon’s complex internal structure and finite spatial extent.
They parametrize the transition matrix elements of local
operators between nucleon states with different momenta and
can be related to the spatial distribution of the corresponding
physical quantities in localized nucleon states [1,2]. The most
widely studied FFs are those of the conserved vector and
axial vector currents (spin-1 operators), which describe the
interaction of the nucleon with electromagnetic and weak
external fields. The nucleon vector FFs are measured in elastic
electron scattering experiments and are generally known
well [3]; on the axial FFs, limited information is available
from neutrino scattering and other sources [4]. Besides the
conserved currents, there are many more local operators of
interest for nucleon structure in the context of QCD. The
quark and gluon scalar operators (spin-0 operators) represent
the trace of the QCD energy-momentum tensor and measure
the contribution of quark and gluon fields to the nucleon mass;
they also govern the coupling of the nucleon to the Higgs
boson [5]. The corresponding rank-2 traceless tensor operators
(spin-2 operators) represent the traceless part of the QCD
energy-momentum tensor and measure the momentum and
angular momentum of quarks and gluons in the nucleon, as
well as the forces acting on them [6–8]. A much larger class of
local QCD operators (spin-n operators, n � 1) emerges in the
QCD factorization of hard exclusive processes on the nucleon,
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in connection with the moments of the generalized parton
distributions; see Refs. [9–12] for a review. Because all these
operators couple to external fields that are not easily excited
through scattering processes, little is known about the FFs
from present experiments. It is therefore necessary to develop
theoretical methods for calculating the nucleon FFs of such
operators from first principles.

Dispersion relations have proven to be a useful tool in the
theoretical analysis of nucleon FFs. They rely on the analytic
properties of the FFs as functions of the invariant momentum
transfer t and connect their behavior in the spacelike and
timelike regions, t < 0 and t > 0. The FFs are represented as
dispersive integrals over their cuts in the timelike region, which
describe processes in which the operator couples to the nucleon
through exchange of a hadronic system in the t channel. For
G-parity-even operators, the hadronic state with the lowest
mass is the ππ state, and the cut starts at t > 4M2

π (two-pion
cut). Examples of such operators are the isovector-vector
current, and the isoscalar-scalar and isoscalar-spin-2 operators.
To evaluate the dispersive integrals, one needs to know the
imaginary part of the FFs on the cut (spectral functions). The
two-pion cut lies in the unphysical region below the NN̄

threshold, where the spectral functions cannot be obtained
from timelike nucleon FF data. In the case of the vector
and scalar FFs, the spectral functions on the two-pion cut
have been determined using amplitude analysis techniques
with empirical input (unitarity relations with πN and ππ

scattering data [13–17]; Roy-Steiner equations [18,19]). In
order to make the dispersion relations predictive and to extend
them to other operators of interest, one needs a theoretical
method to calculate the spectral functions of the nucleon FFs.

Chiral effective field theory (χEFT) represents a system-
atic method for describing pion and nucleon structure and
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interactions in the low-energy, large-distance regime of strong
interactions [20,21]; see Refs. [22–24] for a review. It is based
on the effective dynamics resulting from the spontaneous
breaking of chiral symmetry and allows one to calculate
amplitudes at pion momenta kπ ∼ Mπ in an expansion in
Mπ/�χ with controlled accuracy (�χ ∼ 1 GeV represents
the chiral symmetry breaking scale). The method has been
applied to the spectral functions of the nucleon FFs on the
two-pion cut, using either the relativistic or the heavy-baryon
formulation for the nucleon degrees of freedom [25–29].
The χEFT results reproduce the empirical isovector-vector
spectral functions at energies very near the two-pion threshold,
t − 4M2

π = few M2
π , but significantly underestimate the latter

at larger energies t ∼ 10–50 M2
π ; see Ref. [29] for an explicit

comparison. The reason for the discrepancy is the strong
ππ rescattering in the t channel, which manifests itself in
the ρ resonance at t = 40 M2

π = 0.77 GeV2 and results in an
enhancement of the empirical spectral function. In χEFT, this
effect is encoded in higher order ππNN contact terms and
pion loops and would appear in the form of large higher-order
corrections, which makes the method impractical. A similar
situation is observed in the spectral function of the scalar FF,
where ππ rescattering does not produce a narrow resonance
but is nevertheless strong. The limited reach of the χEFT
calculations of the spectral functions precludes evaluation of
the dispersion integral for the FFs based on χEFT input alone,
as the contributions from larger t require separate modeling. In
order to extend the reach of χEFT calculations of the spectral
functions beyond the near-threshold region, one must find a
way to account for ππ rescattering in the t channel more
effectively.

In this article, we describe a new method that allows one
to construct the spectral functions of FFs on the two-pion cut
up to larger values of t (in practice, t � 1 GeV2) and enables
predictive dispersive calculations of the full nucleon FFs based
on χEFT input alone. It uses the elastic unitarity condition
for the ππ system in the t channel [13,14] and the N/D
method of amplitude analysis [30]. The spectral function of the
nucleon FF on the two-pion cut is expressed as the product of
the ππ → NN̄ t-channel partial-wave amplitude (PWA) and
the complex-conjugate timelike pion FF. The two complex
functions have same phase on the two-pion cut (Watson
theorem) [31]. χEFT is used to calculate the ratio of the PWA
and the timelike pion FF, which is real (it has no two-pion
cut) and free of ππ rescattering effects. This function is then
multiplied with the squared modulus of the empirical timelike
pion FF, which contains the full ππ rescattering effects. The
method results in a marked improvement compared to conven-
tional “direct” calculations of the spectral functions in χEFT.
Realistic spectral functions with controlled uncertainties are
obtained up to t � 1 GeV2. The basic idea was introduced in
Ref. [32] in the context of a χEFT calculation of the nucleon’s
peripheral transverse densities (the Fourier transforms of
the FFs) in the leading-order (LO) approximation. Here we
describe the general method, include next-to-leading-order
(NLO) chiral corrections (fixing of low-energy constants
[LECs], convergence, uncertainty estimates) and demonstrate
the potential for dispersive calculations of the FFs proper and
their derivatives, which opens up a range of new applications.

We also explore other interesting aspects of the new method.
We point out a possible combination with first-principles
calculations of the squared modulus of the timelike pion
FF with Euclidean correlation functions (e.g., lattice QCD),
which could be used for the dispersive calculation of FFs of
QCD operators whose pion FFs are not known empirically.
We demonstrate that our nucleon FF results have the correct
scaling behavior in the large-Nc limit of QCD because the
χEFT amplitudes include N and � intermediate states.

Here we apply the method to the nucleon scalar FF and
its spectral function. The choice is motivated by pedagogical
considerations and physical interest. The scalar density is
the simplest operator, with only a single nucleon FF, and a
single t-channel partial wave in the unitarity relation for the
spectral function. The pion scalar FF has been determined from
dispersion analysis with χEFT constraints and is available
as input for our calculation [33–35]. The scalar nucleon FF
has been computed using amplitude analysis techniques and
serves as a reference point for our results [17,19]. The scalar
FF thus represents the ideal testing ground for our method. It is
also of great physical interest in itself, in connection with the
nucleon mass problem and the coupling to the scalar sector of
the standard model (see below). Applications of our method
to the nucleon isovector-vector FFs will be presented in a
forthcoming article [36].

The plan of this article is as follows. In the remainder of this
section, we summarize the basic properties of the scalar FF and
its dispersive representation. In Sec. II, we describe the general
method of dispersively improved χEFT, including the elastic
unitarity relation and N/D method, LO χEFT calculations,
estimates of higher order corrections, and the properties of the
pion FF. In Sec. III, we apply the method to the nucleon scalar
spectral function and use it to calculate the nucleon scalar
radius, the scalar FF, and the Cheng-Dashen discrepancy. In
Sec. IV, we discuss the extraction of the timelike pion FF
from Euclidean correlation functions and the correspondence
of our approach with large-Nc QCD. An outlook on further
applications is presented in Sec. V.

A combination of χEFT and dispersion theory similar to
the one used here was proposed in the context of a recent
study of hyperon transition FFs [37]. Techniques related to
the N/D method were also applied in earlier χEFT studies of
meson-meson, meson-baryon, and baryon-baryon scattering
[38–44].

B. Scalar form factor

The scalar density of light quarks in QCD is measured by
the composite local operator

Oσ (x) ≡ m̂
∑

f =u,d

ψ̄f (x)ψf (x), (1)

where ψf (x)(f = u,d) is the quark field and m̂ ≡ mu = md

the quark mass (we assume isospin symmetry). The operator
Eq. (1) is scale independent and represents the quark mass
term in the QCD Lagrangian and Hamiltonian densities. The
same operator appears in the trace of the QCD energy-
momentum tensor, alongside the gluonic and strange-quark
scalar operators and a similar light-quark operator that results
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from the trace anomaly; see Ref. [5] for details. The transition
matrix element of the operator Eq. (1) between nucleon states
with 4-momenta p and p′ is of the form

〈N (p′,s ′)| Oσ (0) |N (p,s)〉 = ū′uσ (t), (2)

where ū′ ≡ ū(p′,s ′) and u ≡ u(p,s) are the nucleon 4-spinors,
and σ (t) is the nucleon scalar FF. It is a function of the
invariant momentum transfer t ≡ (p′ − p)2, with t < 0 in the
physical region of the nucleon transition (spacelike FF). The
corresponding timelike FF is defined analogously, as the matrix
element between the vacuum and a nucleon-antinucleon state,
with t ≡ (p′ + p)2 > 0. The matrix elements are diagonal in
isospin (N = proton, neutron).

The scalar FF is an analytic function of t . The physical
sheet has cuts along the positive real axis, which result from
processes in which the operator creates a hadronic state that
couples to the NN̄ system,

operator → hadronic state → NN̄ ; (3)

such processes occur in the unphysical region below the NN̄
threshold. The lowest mass hadronic state with scalar quantum
numbers is the ππ state with threshold at t = 4M2

π (two-pion
cut); other hadronic states (4π etc.) give rise to further cuts
with higher thresholds; the cuts can be combined to a principal
cut starting at t = 4M2

π . One can thus write dispersion relations
that express the FF in the complex plane as an integral over the
discontinuity on the principal cut. In practice, one considers a
once-subtracted dispersion relation,

σ (t) = σ (0) + t

π

∫ ∞

4M2
π

dt ′
Im σ (t ′)
t ′(t ′ − t)

, (4)

which suppresses contributions from large t ′ and ensures rapid
convergence of the integral (see below). It determines the FF
up to a subtraction constant, which is chosen as the value of
the FF at t = 0, σ (0), the so-called pion-nucleon σ term. The
integration is over the imaginary part of the FF on the principal
cut, Im σ (t ′), which is referred to as the spectral function.

Of particular interest is the behavior of the scalar FF near
t = 0. The derivative of the FF at t = 0 define the nucleon’s
scalar charge radius,

〈r2〉σ ≡ 6

σ (0)

dσ

dt

∣∣∣∣
t=0

. (5)

The finite difference

�σ ≡ σ
(
t = 2M2

π

) − σ (t = 0) (6)

is needed in the extraction of the σ term from πN scattering
data using the Cheng-Dashen theorem [45], which connects the
Born-subtracted isoscalar πN scattering amplitude at s = m2

N

and t = 2M2
π to σ (t = 2M2

π ). The dispersive representation of
these quantities is

〈r2〉σ = 6

πσ (0)

∫ ∞

4M2
π

dt ′
Im σ (t ′)

t ′2
, (7)

�σ = 2M2
π

π

∫ ∞

4M2
π

dt ′
Im σ (t ′)

t ′
(
t ′ − 2M2

π

) . (8)

FIG. 1. Distribution of strength in the dispersive integrals for the
scalar charge radius, Eq. (7) (solid red line), and the Cheng-Dashen
discrepancy, Eq. (8) (dashed blue line). The plot shows the integrands
as functions of t , divided by the value of the integral, i.e., normalized
to unit area under the curves.

The convergence of these integrals at large t ′ is similar to that
of the once-subtracted dispersion relation for the FF, Eq. (4).

The spectral function of the scalar nucleon FF has been
constructed using amplitude analysis techniques with empiri-
cal input [17,19]. Figure 1 shows the distribution of strength
in the dispersive integrals Eqs. (7) and (8). One sees that
the integral converges rapidly and that the main contribution
comes from the region t ′ � 0.5 GeV2. This determines the
range where one needs to calculate spectral functions if one
aims for a first-principles calculation of the scalar quantities
through their dispersive integrals.

Evaluation of the integrals with the empirical spectral
functions of Ref. [17] has found 〈r2〉 ∼ 1.6 fm2, substantially
larger than the proton’s charge radius 〈r2〉1 ∼ 0.65 fm2 (Dirac
radius). The discrepancy �σ has been obtained at ∼14 MeV.
The significance of these findings will be discussed in Sec. III.

The scalar FF of the pion is defined analogously to that of
the nucleon in Eq. (2),

〈π (p′)| Oσ (0) |π (p)〉 = σπ (t), (9)

where π = π+,π−,π0 (isospin symmetry) and t = (p′ −
p)2 < 0 in the physical region. The value at t = 0 is

σπ (0) = M2
π , (10)

which follows from the fact that the scalar operator corre-
sponds to the chiral-symmetry-breaking pion mass term in the
chiral Lagrangian. The corresponding timelike FF is defined
as

〈0| Oσ (0) |π (p′)π (p)〉 = σπ (t), (11)

where now t = (p + p′)2 > 4M2
π in the physical region. The

scalar FF of the pion is of physical interest in itself and enters
in dispersive calculations of the nucleon scalar FF.
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FIG. 2. (a) Unitarity relation for the imaginary part of the nucleon
scalar FF on the two-pion cut, Eq. (12). (b) Real function J 0

+(t),
Eq. (16), defined as the ratio of the ππ → NN̄ PWA and the pion
FF. (c) Unitarity relation in terms of J 0

+(t) and the squared modulus
of the pion FF, Eq. (15).

II. METHOD

A. Dispersively improved χEFT

We now describe the method for calculating the spectral
function of nucleon FFs on the two-pion cut in χEFT using
a representation based on the elastic unitarity condition and
the N/D method. While we use the scalar FF as a specific
example, the method is general and can be applied to the FFs
of any G-parity-even operator coupling to the ππ state.

In the region 4M2
π < t < 16M2

π , only the ππ state con-
tributes to the discontinuity of the nucleon FF through the
process Eq. (3). In this situation, the spectral function can
be computed using the elastic unitarity condition, which
expresses the conservation of flux in the t channel [13–15].
For the scalar nucleon FF, it takes the form [17]

Im σ (t) = 3kcm

4p̃2
N

√
t
f 0

+(t) σ ∗
π (t), (12)

where

kcm ≡
√

t/4 − M2
π (13)

is the center-of-mass momentum of the pions in the ππ system,
and

p̃N ≡
√

m2
N − t/4 (14)

is related to the unphysical momentum of the nucleons in the
NN̄ system [see Fig. 2(a)]. The function f 0

+(t) is the I =
J = 0 ππ → NN̄ t-channel PWA, and σ ∗

π (t) is the complex
conjugate of the timelike pion FF, Eq. (11). While the unitarity
condition applies at real t > 4M2

π on the upper edge of the
cut (t → t + i0), the functions f 0

+(t) and σπ (t) are defined
for arbitrary complex t , and it is worthwhile to recall their
analytic structure. The PWA f 0

+(t) has both a right-hand cut
and a left-hand cut [see Fig. 3(a)]. The right-hand cut results

(b)

(a)

0

2

πσ

4

t

−channelt

0f

M

+f

s−channel

π

t
+

FIG. 3. (a) Analytic structure of the ππ → NN̄ PWA. The
function has a right-hand cut resulting from the t-channel ππ

intermediate state and a left-hand cut resulting from s-channel
intermediate states (N,�,πN , ...). The phase of the PWA on the
right-hand cut is the same as that of the pion FF. (b) Analytic structure
of the pion FF. The function has a right-hand cut resulting from the
ππ intermediate state.

from t-channel processes with the ππ intermediate state and
starts at t = 4M2

π . The left-hand cut results from s-channel
processes with intermediate baryonic states (N,�,πN , ...)
and starts at t = 4M2

π − M4
π/m2

N for the intermediate N . The
two cuts are thus of different physical origin. The pion FF σ (t)
has only a right-hand cut starting at t = 4M2

π , resulting from
the ππ intermediate state, which is just the two-pion cut of the
pion FF [see Fig. 3(b)].

A crucial point is that the complex functions f 0
+(t) and σπ (t)

have the same phase on the right-hand cut (the two-pion cut).
Physically, this follows from the fact that the phases of the
two amplitudes arise from the same elastic ππ rescattering
processes (Watson theorem) [31]. Mathematically, this is
necessary for the product of f 0

+(t) and σ ∗
π (t) to result in the

real function Im σ (t), as was already implied in the unitarity
condition Eq. (12). This circumstance allows one to rewrite the
unitarity relation in a manifestly real form [13] [see Figs. 2(b)
and 2(c)]:

Im σ (t) = 3kcm

4p̃2
N

√
t
J 0

+(t) |σπ (t)|2, (15)

J 0
+(t) ≡ f 0

+(t)

σπ (t)
. (16)

The function J 0
+(t) is real at t > 4 M2

π and therefore has no
right-hand cut; if it had one, there would be a discontinuity
resulting in a nonzero imaginary part. It does have a left-hand
cut, inherited from the PWA f 0

+(t). The squared modulus
|σπ (t)|2 is obviously real. The representation of Eqs. (15) and
(16) permits a simple physical interpretation. Since the phase
of f 0

+(t) and σπ (t) arises from ππ rescattering processes,
the equations effectively separate the ππ → NN̄ coupling
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[contained in J 0
+(t), in which the phase cancels] from the ππ

rescattering [contained in |σπ (t)|2, which is a purely pionic
amplitude]. This interpretation can provide useful guidance
for the following.

The representation of Eqs. (15) and (16) is equivalent to
applying the N/D method to the ππ → NN̄ PWA [30]. In
this approach, the PWA is represented in the form f 0

+(t) =
N (t)/D(t), such that the right-hand cut (related to the t-
channel exchanges) appears only in the factor 1/D(t), and
the left-hand cut (related to the s-channel intermediate states)
appears in the factor N (t). In the case at hand, the D function
is chosen as the inverse pion FF, D(t) = 1/σπ (t), and the N
function is given by Eq. (16), N (t) = J 0

+(t) [15].
The representation of Eqs. (15) and (16) suggests a new

approach to calculating the spectral function of nucleon FFs
on the two-pion cut in χEFT. We use χEFT to compute
the real function J 0

+(t) at t > 4 M2
π to a fixed order. We

then multiply the result with the empirical |σπ (t)|2, which
contains the effects of ππ rescattering. This approach has
several advantages compared to “direct” calculations of the
nucleon spectral functions:

(a) The χEFT calculations of J 0
+(t) are not affected by

ππ rescattering, as the latter is contained entirely in
|σπ (t)|2. The rescattering effects are strong and would
require large higher-order corrections when treated
within χEFT. We therefore expect the new approach
to show much better convergence than direct χEFT
calculations of the spectral function. Higher-order
corrections can perturbatively improve the coupling
of the ππ system to the nucleon described by J 0

+(t),
while the rescattering effects described by |σπ (t)|2
are taken from other sources (dispersion theory, data,
lattice QCD).

(b) The organization according to Eqs. (15) and (16)
is consistent with the idea of “separation of scales”
basic to χEFT. The function J 0

+(t) is dominated by
the singularities of the N and � Born diagrams, or
diagrams with πN inelastic intermediate states in
higher orders, which are governed by the scales Mπ and
m� − mN . The t dependence of the pion FF, in contrast,
is governed by the chiral-symmetry-breaking scale
�χ ∼ 1 GeV. The intrinsic logic of χEFT therefore
suggests applying the χEFT calculations to J 0

+(t) and
treating |σπ (t)|2 as an external input.

(c) The timelike pion FF enters only through its squared
modulus |σπ (t)|2, not its phase. This reduces model
dependence in the determination of the empirical
pion FF and represents an advantage over approaches
working with the original unitarity condition, Eq. (12),
where the pion FF enters as a complex function. The
squared modulus of the timelike scalar pion FF can be
extracted directly from Euclidean vacuum-to-vacuum
correlation functions of the scalar operator, which
can be computed in lattice QCD (see Sec. IV A).
In the electromagnetic case, the squared modulus of
the timelike pion FF can directly be measured in
e+e− → π+π− exclusive annihilation experiments.

We refer to the new method as “dispersively improved
χEFT” (DIχEFT). The method is applicable strictly at 4M2

π <
t < 16 M2

π , where only the ππ channel is open and the
elastic unitarity condition Eq. (12) is valid. It is expected
that inelasticities from other channels (4π ) are small up to
the KK̄ threshold; by neglecting those, the representations of
Eqs. (15) and (16) can effectively be used up to t ∼ 1 GeV2.
Our method could thus in principle be applied up to such values
of t , provided that the χEFT calculations of J 0

+(t) converge
sufficiently well (this question will be investigated below).

B. Leading-order calculation

For the calculation of J 0
+(t), we use SU(2)-flavor χEFT

with relativistic N and � degrees of freedom. The relativistic
formulation ensures the correct analytic structure of the
amplitudes (position of branch points, threshold behavior),
which is critical in the present application. The inclusion of
the � as an explicit degree of freedom is needed because the
� Born term makes important contributions to the ππ → NN̄
PWA (see below); it is also needed to reproduce the correct
scaling behavior of the spectral function in the large-Nc limit
of QCD (see Sec. IV B). These features have proved to be
essential also in other applications of baryon χEFT to πN
scattering, photoproduction, and nucleon structure [46–56].

The basic setup of the relativistic χEFT used in the present
study (fields, Lagrangian, power counting, couplings) is de-
scribed in Ref. [57] and summarized in Ref. [32]. The spin-1/2
N is described by a relativistic bispinor field (Dirac field). The
spin-3/2 � is introduced as a 4-vector-bispinor field, which
has to be subjected to relativistically covariant constraints to
eliminate spurious spin-1/2 degrees of freedom. Here we use
the formulation in which the spin-1/2 degrees of freedom are
allowed to propagate but are filtered out at the interaction
vertices (consistent vertices) [58–61]. The construction of the
chiral Lagrangian with the spin-3/2 fields has been described
in Refs. [62,63]. Several expansion schemes have been pro-
posed for the χEFT with the �, assuming certain parametric
relations between the chiral parameters kπ ∼ Mπ and the
N -� mass splitting m� − mN . In the present application, the
differences between the various expansion schemes for the �
are irrelevant, because the calculations are carried out at an
accuracy where � loops do not enter. The only difference to
χEFT with N only is in the appearance of the � Born graphs at
leading order. We therefore denote the order of our calculations
by LO, NLO, and N2LO, as is common in χEFT with
N only.

Regarding the power counting, we note that χEFT cal-
culations with relativistic baryons must in principle deal
with power-counting-breaking terms arising from chiral loops
with baryons, i.e., lower order terms in the chiral counting
resulting from higher order terms in the loop expansion.
The standard power counting for loops can be recovered
by adopting the extended-on-mass-shell (EOMS) scheme
[64]. While diagrams with chiral loops are not consid-
ered in the present study, it is important to mention this
scheme here, as it ensures that the tree-level results are not
mixed up with power-counting-breaking terms arising from
chiral loops.
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(c)

N

(a)

Δ

(b)

FIG. 4. [(a), (b)] LO χEFT diagrams contributing to the ππ →
NN̄ PWA. (c) Pion scalar FF in LO.

The LO χEFT diagrams for the I = J = 0 ππ → NN̄
partial-wave amplitude f 0

+(t) are the N Born term shown in
Fig. 4(a) and the � Born term in Fig. 4(b); ππNN contact
terms appear only in higher orders and will be discussed below.
In the LO calculation of the ratio J 0

+(t), Eq. (16), the pion
FF in the denominator is evaluated at LO; see Fig. 4(c). At
this order in χEFT, the pion is pointlike, σπ (t) ≡ σπ (0) =
M2

π . The LO result for J 0
+(t) is therefore just the result for

f 0
+(t) divided by M2

π . At this accuracy, our approach based
on Eq. (15) simply amounts to multiplying the LO χEFT
result for the nucleon spectral function Im σ (t) (as obtained
by direct χEFT calculation of the spectral function without
the unitarity condition) by the normalized empirical pion FF
|σπ (t)|2/M4

π ,

Im σ (t) = Im σ (t) [LO]
|σπ (t)|2

M4
π

. (17)

This formula permits an extremely simple implementation of
unitarity at LO accuracy. The factor |σπ (t)|2/M4

π describes the
enhancement of the direct χEFT result for the spectral function
due to ππ rescattering. Numerical results obtained with this
approximation will be presented below.

The analytic expressions for the LO χEFT results for J 0
+(t)

are given in the appendix. The numerical values are shown in
Fig. 5. For a better view, the plot shows the function multiplied
by the kinematic factor of Eq. (15), 3kcm/(4p̃2

N

√
t) J 0

+(t);
this combination is equal to Im σ (t)/|σπ (t)|2 by virtue of

FIG. 5. LO χEFT result for the function [3kcm/(4p̃2
N

√
t)] J 0

+(t),
which enters in the manifestly real unitarity relation Eq. (15). Dashed
blue line: Contribution of N Born term, Fig. 4(a). Solid red line: Sum
of N and � Born terms, Figs. 4(a) and 4(b).

Eq. (15). One observes that the contributions from the N and
� Born term amplitudes have the same sign and are roughly
comparable in magnitude.

C. Estimates of higher-order corrections

At NLO accuracy, corrections to the πN scattering ampli-
tude arise only from NLO ππNN contact terms in the chiral
Lagrangian. The NLO contributions to the I = J = 0 ππ →
NN̄ PWA in Eq. (16) therefore have simple structures.
Corrections to the pion FF appear only at N2LO accuracy
through pion loops. The expression for the NLO corrections to
J 0

+(t) is given in Eq. (A15) of the appendix. At this accuracy,
Eq. (17) is still valid, and the NLO corrections to the spectral
function are obtained simply by replacing J 0

+(t) by its NLO
expression.

For evaluating the higher-order corrections, we use the
LECs of πN scattering. The values have to be adjusted
consistently with the logic of our unitarity-based approach.
The LECs in standard χEFT absorb rescattering effects that
are treated explicitly within our unitarity-based approach.
The contact terms appropriate for our approach are therefore
obtained by subtracting the effects of rescattering from the
original LECs. To do this in practice, we describe the
rescattering effects in the I = J = 0 ππ channel through the σ
meson exchange model of Ref. [65]. The resonance saturation
hypothesis [66] then allows us to estimate how much of the
original LECs is due to rescattering and subtract those amounts
(see Fig. 6).

We take the NLO χEFT πN amplitude from Ref. [57]
and perform the partial-wave projection according to the
formulas of Ref. [13]. The LECs appearing in this amplitude at
NLO have been determined through relativistic χEFT analysis
of πN scattering with explicit � [57,67]. Performing the
adjustment as described above, we obtain the values ci(i =
1,2,3) listed in Table III in the appendix. We use the parameters
to evaluate the NLO contribution to J 0

+(t) and estimate its
uncertainty by varying the values in the determined range.
Numerical results from this procedure will be shown below.

At N2LO accuracy, both the ππ → NN̄ PWA and the pion
FF involve loop corrections, and the structure of the χEFT
expressions becomes considerably richer. At this order, ππ
rescattering in the t channel occurs both in the PWA and in
the pion FF, so that both functions become complex at t >
4M2

π ; one should therefore be able to verify explicitly that they
have the same phase and that the phase cancels in the ratio
in Eq. (16). Furthermore, at N2LO πN and π� s-channel
intermediate states appear in the PWA and contribute to its

+
σ

=

FIG. 6. Adjustment of the LECs of the NLO ππNN contact
term in our unitarity-based approach. The original contact term
(filled circle, left-hand side) is equated with the sum of σ meson
exchange and a reduced contact term (open circle). The reduced
contact terms are used in the present scalar FF calculation with explicit
unitarization.
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left-hand cut. Here we do not pursue a full N2LO calculation
of the function J 0

+(t) including loops. Instead, we estimate the
size of the N2LO corrections in a simple way, by using the
N2LO tree-level result and varying the LECs in a meaningful
range. To this end, we impose the unsubtracted dispersion
relation for the scalar FF at t = 0 (σ term),

σ (0) = 1

π

∫ ∞

4M2
π

dt ′
Im σ (t ′)

t ′
, (18)

with the integration restricted to the region t ′ < 1 GeV2. This
relation fixes the LECs in the N2LO tree-level result in terms
of σ (0). We then generate an uncertainty band by varying σ (0)
in the range 45–59 MeV. The first value was determined in an
earlier dispersive analysis of the σ term [68], while the second
was obtained by χEFT from modern πN PWAs and pionic
atom data [46], and supported by a subsequent analysis using
Roy-Steiner equations [69]. Numerical results for J 0

+(t) with
these parameters will be shown below.

D. Pion form factor

For the pion scalar FF in Eq. (17), we take the result
of the dispersive analysis of Ref. [35]; for earlier results,
see Refs. [33,34]. The analysis includes the KK̄ channel at
t > 1 GeV2 in a coupled-channel approach; we require only
the result on the ππ cut for t < 1 GeV2. Figure 7 shows the
normalized squared modulus of the FF, |σπ (t)|2/M4

π , as it
enters in the dispersive improvement formula Eq. (17). One
sees that it reaches a value ∼3 at t ∼ 0.3 GeV2, which indicates
the presence of strong ππ rescattering. This underscores the
rationale for our approach, as it would be very difficult to in-
corporate these effects through higher order chiral corrections.

The overall uncertainty of the nucleon spectral function
calculated in our approach is determined by the uncertainty
of the χEFT calculation of J 0

+(t) and the uncertainty of the
empirical σπ (t). In the numerical results presented in the
following, we show only the uncertainties resulting from the
χEFT calculation of J 0

+(t), which can be quantified within our
approach.

FIG. 7. Pion scalar FF obtained in the dispersive analysis of
Ref. [35]. The plot shows the normalized squared modulus of the
FF, |σπ (t)|2/M4

π , as it enters in the improvement formula Eq. (17).

III. RESULTS

A. Nucleon scalar spectral function

We now present the results of the dispersively improved
χEFT calculation of the scalar FF with the methods described
in Sec. II. Figure 8 shows the function J 0

+(t), Eq. (16), which
is the primary object of the χEFT calculation (cf. Fig. 5). One
observes the following:

(a) The chiral expansion shows good convergence. Higher
order corrections are small at the threshold and become
increasingly important at larger t . NLO corrections
from the LECs give a strong positive contribution at
t > 0.5 GeV2 (mainly due to the contribution of c3),
which is corrected downward by the N2LO corrections
estimated according to Sec. II C. As a consequence, the
NLO+N2LO results are close to the LO over a wide
range of t .

(b) The χEFT predictions agree well with the dispersion-
theoretical result of Ref. [70], obtained by analytic
continuation of the ππ → NN̄ PWA extracted from
πN scattering data. The LO χEFT result describes the
dispersion-theoretical result very close to threshold.
The NLO corrections improve the behavior in the
near-threshold region and lead to agreement with the
dispersion-theoretical result up to t � 0.2GeV2, but
are too large at larger t . Finally, the N2LO estimate
reproduces the dispersion-theoretical result over the
entire range up to t ∼ 0.8GeV2.

These observations provide strong justification for our
program of applying χEFT to the real function J 0

+(t), including
the approximate treatment of N2LO corrections (see Sec. II C).
The convergence pattern observed here directly carries over to
the spectral function Im σ (t).

FIG. 8. χEFT results for the function 3kcm/(4p̃2
N

√
t) J 0

+(t), which
enters in the manifestly real unitarity relation Eq. (15). Long-dashed
red line: LO. Blue band with short-dashed contours: NLO. Red
band with solid contours: NLO + N2LO, estimated as described in
Sec. II C. (The bands labeled NLO and NLO+N2LO show the total
result up to that order and include the LO contribution.) Dash-dotted
black line: Dispersion-theoretical result of Ref. [70].
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FIG. 9. DIχEFT results for the scalar spectral function, Eq. (17).
The upper plot (a) covers the full range up to t = 0.8 GeV2; the
lower plot (b) covers the near-threshold region. The long-dashed red
lines (LO approximation), blue bands with short-dashed contours
(NLO), and red bands with solid contours (NLO+N2LO) correspond
to those of Fig. 8. Dash-dotted black lines: Roy-Steiner result of
Ref. [19].

Figure 9 shows our predictions for the scalar spectral
function Im σ (t), obtained by multiplying the χEFT results
for J 0

+(t) with the empirical |σπ (t)|2, Eq. (15). Also shown
is the spectral function obtained from a recent analysis using
Roy-Steiner equations [19].1 One observes that the LO χEFT
result is in reasonable agreement with the Roy-Steiner result up
to energies t ∼ 0.3 GeV2. The NLO correction improves the
near-threshold behavior but overestimates the spectral function
at intermediate energies. The N2LO corrections, estimated
according to Sec. II C, have the right t dependence to correct
this issue. Altogether we obtain excellent agreement with the
Roy-Steiner result up to t ∼ 1 GeV2.

B. Nucleon scalar radius

With the DIχEFT result for the spectral function, we
can now compute the nucleon scalar radius, using the well-

1We compare our results for J 0
+(t) with the dispersion-theoretical

analysis of Ref. [70], which is based on old data but quotes results
directly for this real function. Our results for Im σ (t) we instead
compare with the Roy-Steiner analysis of Ref. [19], which is based
on the most recent ππ and πN scattering data.

TABLE I. Nucleon scalar radius obtained in DIχEFT with
different values of σ (0). (A) σ (0) = 59 MeV; (B) 45 MeV.

LO NLO NLO+N2LO

〈r2〉σ (fm2) A 1.06 1.40–1.67 1.03–1.13
B 1.38 1.83–2.19 1.34–1.49

convergent dispersion integral Eq. (7). Table I shows the
results obtained with different values of σ (0). Note that
σ (0) enters directly in the normalization factor, Eq. (7), and
indirectly through the procedure fixing the N2LO parameters
(see Sec. II C). One observes that the nucleon scalar radius
is substantially larger than the charge radius (Dirac radius),
〈r2〉σ > 〈r2〉1 ∼ 0.65 fm2, as pointed out in Ref. [17].

It is interesting to compare our results for the scalar
radius with those of the dispersion-theoretical calculation
of Ref. [17], not the least because the DIχEFT calculation
can provide systematic uncertainty estimates. We find that,
at NLO+N2LO accuracy, our radius calculated with σ (0) =
45 MeV is smaller than that of Ref. [17], which uses the same
value of σ (0). The difference can be traced back to the spectral
function, which in our calculation comes out smaller than that
of Ref. [17] in the near-threshold region. We note that the
DIχEFT result agrees with that of the Roy-Steiner analysis of
Ref. [19]. The latter provides a value of 〈r2〉σ = 1.07(4) fm2

when σ (0) = 59 MeV is used [71], in excellent agreement
with what we obtain.

C. Nucleon scalar form factor

Using the once-subtracted dispersion relation Eq. (4), we
can also calculate the t-dependent scalar FF, both in the
region below threshold t < 4M2

π (where it is real) and above
threshold t > 4M2

π (where it is complex). Figure 10 shows
the results obtained with the DIχEFT spectral functions at
different orders, along with the dispersion-theoretical result of
Ref. [17]. In order to suppress the dependence on the uncertain
σ (0) the figure shows the difference σ (t) − σ (0) instead of
σ (t). One observes that the DIχEFT calculations converge
well, especially at t < 4M2

π . The LO approximation already
gives a result in good agreement with the dispersive one. The
NLO contribution corrects the LO result in the right direction,
but by too much in magnitude; this is because it overestimates
the spectral function in the intermediate-t region, which still
has some modest influence on the result of the dispersion
integral for the FF. At NLO+N2LO, once we enforce that the
dispersion integral reproduce the chosen σ (0) (see Sec. II C),
the DIχEFT scalar FF is in excellent agreement with the
dispersion-theoretical one.

D. Cheng-Dashen discrepancy

Table II gives the results for the Cheng-Dashen discrepancy
Eq. (6) in DIχEFT, calculated through the dispersion integral
Eq. (8). One observes the same pattern of convergence as
in the scalar radius and the FF: The NLO corrections are
strongly positive and the N2LO corrections are negative, such
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FIG. 10. Real part of the nucleon scalar FF �σ (t) = σ (t) − σ (0),
obtained from the once-subtracted dispersion integral Eq. (4) with
the DIχEFT spectral functions. The upper plot (a) shows the full
t-range up to 0.5 GeV2, the lower plot (b) the near-threshold region.
The long-dashed red lines (LO approximation), blue bands with
short-dashed contours (NLO), and red bands with solid contours
(NLO+N2LO) correspond to those of Figs. 8 and 9. Green bands
with dotted contours: Dispersion-theoretical result of Ref. [17].

that the total result at N2LO is rather close to the original
LO one.

The Cheng-Dashen discrepancy has been computed
previously using different methods. The first χEFT calculation
was reported in Ref. [25] and obtained �σ = 4.6 MeV at
O(p3) accuracy. The dispersive analysis of Ref. [17] then
obtained a much larger value, �σ = 15.2(4) MeV, pointing
to the inability of χEFT to generate sufficient curvature in
σ (t) at O(p3) accuracy (according to the the same reference,
this has almost no effect on the extraction of the σ term
from πN scattering data). The curvature necessary to recover
the dispersive result was obtained in an O(p4) calculation in

TABLE II. DIχEFT results for the Cheng-Dashen discrepancy
�σ , Eq. (6).

LO NLO NLO+N2LO

�σ (MeV) 13.3 17.4 - 20.6 13.3 - 14.5

Ref. [72], which found �σ = 14.0 MeV + 2M4
π ē2. This larger

value was supported by an updated dispersive calculation
in Ref. [19], which finds �σ = 13.9(3) MeV. The DIχEFT
approach described here gives results in excellent agreement
with the dispersive calculation. The main improvement com-
pared to conventional χEFT is that it includes the strong
ππ rescattering effects. It is interesting that such effects are
essential even at t = 2M2

π , which should be well within the
radius of convergence of conventional χEFT calculations.

IV. DISCUSSION

A. Euclidean correlation functions

The DIχEFT approach incorporates ππ rescattering effects
in the nucleon spectral functions through the timelike pion FF,
which is provided by sources outside of χEFT. An important
aspect is that the pion FF enters only through its squared
modulus, so that knowledge of its phase is not required [see
Eq. (15)]. The modulus of the pion timelike FF can in principle
be extracted from the vacuum correlation function of the
operator, which can be continued to imaginary time (Euclidean
QCD) and evaluated using nonperturbative methods such as
lattice QCD. This opens up the interesting possibility of com-
bining the χEFT calculations of the ππ → NN̄ amplitude
with Euclidean QCD calculations of the pion timelike FF.
Here we describe this connection for the scalar operator;
the expressions can easily be generalized to other G-parity-
even operators.

The vacuum polarization induced by the scalar density
operator Eq. (1) is given by the two-point correlation function
[73–75]

	σ (q2) ≡ i

∫
d4xeiqx〈0| T Oσ (x)Oσ (0) |0〉, (19)

where x is a 4-dimensional Minkowskian space-time
displacement, T denotes the time-ordering operation, and the
4-momentum q can be spacelike or timelike, q2 < 0 or > 0.
	σ (q2) is an analytic function of q2, with no singularities
at q2 < 0 and cuts at q2 > 0, corresponding to hadronic
intermediate states produced by the operator Oσ . The function
obeys subtracted dispersion relations of the form [	(k)

σ (q2)
denotes the kth derivative with respect to q2],

	σ (q2) −
n−1∑
k=0

(q2)k
	(k)

σ (0)

k!
= (q2)n

π

∫ ∞

4M2
π

dt ′
Im 	σ (t ′)

(t ′)n(t ′ − q2)
,

(20)

where n � 2 for the scalar operator, based on the expected
short-distance behavior of the coordinate-space correlation
function. The imaginary part is proportional to the cross
section for hadron production by the scalar operator at the
squared mass t ′ and is positive, Im 	σ (t ′) > 0. In the region
4M2

π < t ′ < 16M2
π , the only accessible hadronic state is the

ππ state (two-pion cut). The imaginary part on the two-pion
cut is given by an elastic unitarity formula analogous to
Eq. (12), with the pion FF appearing both in the initial
(operator → ππ ) and the final (ππ → operator) amplitudes

055206-9



J. M. ALARCÓN AND C. WEISS PHYSICAL REVIEW C 96, 055206 (2017)

q

> 4Mπ
2q2

q
=

π

π

πσσΠ πσ

FIG. 11. Two-pion cut of the scalar correlation function, Eq. (21).

(see Fig. 11),

Im 	σ (t ′) = kcm

8π
√

t
|σπ (t ′)|2 (

4M2
π < t ′ < 16M2

π

)
. (21)

It provides a direct connection between the squared modulus
|σπ (t ′)|2 and the vacuum correlation function.

In order to put Eq. (21) to practical use, one must have
a method to extract the imaginary part on the two-pion cut
from (approximate) calculations of the correlation function,
Eq. (19). Here one may use the fact that the lowest-mass state in
the spectral representation determines the asymptotic behavior
of the coordinate-space correlation function at large spacelike
distances. Substituting the spectral representation Eq. (20)
of 	σ (q2) in Eq. (19) and inverting the Fourier transform,
one obtains a spectral representation of the coordinate-space
function at spacelike distances,2

〈0| T Oσ (x)Oσ (0) |0〉

=
∫ ∞

4M2
π

dt ′
√

t ′ K1(
√

t ′
√−x2)

4π2
√−x2

Im 	σ (t ′) (x2 < 0).

(22)

The modified Bessel function decays exponentially at large
arguments, K1(z) ∼ [π/(2

√
z)]1/2 exp(−z) for z � 1. For

a given distance
√−x2, the factor K1(

√
t ′
√−x2) strongly

suppresses the contribution from energies
√

t ′ � 1/
√−x2 in

Eq. (22). The asymptotic behavior of the coordinate-space
function is therefore dominated by t ′ in the vicinity of the
two-pion threshold in the spectral integral; it is of the form
∼ exp(−2Mπ

√−x2)P (−x2), where the pre-exponential fac-
tor P depends on the threshold behavior of Im 	σ (t ′), Eq. (21).
At large but finite distances, the spectral integral Eq. (22)
extends over the entire two-pion cut, with exponential suppres-
sion of higher mass states. Whether this representation could
be used to extract quantitative information on |σπ (t ′)|2 from
lattice QCD calculations of the coordinate-space correlation
function at distances

√−x2 ∼ 1/Mπ is an interesting question
for further study. The success of this program depends on
the contribution of higher mass states with t ′ > 16 M2

π to the
spectral integral, which could be inferred from the lattice QCD
calculations of the correlator at shorter distances or estimated
using quark-hadron duality.

2In deriving Eq. (22), one may disregard the subtractions in Eq. (20)
and consider the Fourier transform of the formal unsubtracted
dispersion integral with n = 0. The subtraction terms result in δ

functions at x = 0, or derivatives thereof, which can be neglected
when considering the behavior of the coordinate-space correlation
function at finite distances.

The timelike pion FF at 4M2
π < t < 16M2

π can also be
computed in lattice QCD using a variant of the Lüscher
method, which exploits the correspondence between the ππ
scattering phase shift and the energy levels of the ππ system
in a finite volume [76]. Again this method delivers the squared
modulus of the timelike pion FF without determining the
phase. Results for |σπ (t ′)|2 obtained with either of the methods
described here could be incorporated into our DIχEFT
approach through Eq. (15).

B. Connection with large-Nc QCD

It is worthwhile to investigate the connection of our
approach with the large-Nc limit of QCD. This exercise shows
that the DIχEFT results obey the general Nc-scaling relations
for the scalar FF and explains the relative contribution of N
and � intermediate states in the chiral processes.

The limit of a large number of colors is a powerful
method for connecting properties of mesons and baryons with
the microscopic theory of strong interactions [77–79]; see
Ref. [80] for a review. While the dynamics remains complex
and cannot be solved exactly, the scaling behavior of meson
and baryon properties with Nc can be established on general
grounds and provides insights into their structure and guidance
for the formulation of effective theories. The masses of low-
lying mesons scale as O(N0

c ); the masses of baryons scale as
O(Nc) for states with spin-isospin O(N0

c ); while the hadronic
size of mesons and baryons is O(N0

c ) and remains stable in the
large-Nc limit. Baryons thus are heavy objects of finite size,
whose external motion in coordinate and isospin-spin space
can be described classically, with a mass and moment of inertia
of O(Nc). The N and � are the rotational states of the classical
body with isospin-spin I = J = 1/2 and 3/2, and the mass
splitting is m� − mN = O(N−1

c ). Further scaling relations
can be obtained for the matrix elements of QCD operators
between meson and baryon states, and the meson-meson and
meson-baryon couplings. The relations are model independent
and can be derived in many different ways: diagrammatic
arguments [78], group-theoretical methods [81,82], large-Nc

quark models [83,84], and the soliton picture of baryons
[85,86].

The Nc scaling of the nucleon’s scalar FF considered
in the present study can be established as follows. The
standard techniques show that the nucleon σ term scales as
σ (0) = O(Nc). This is plausible because the σ term represents
the response of the nucleon mass to a change of the QCD
quark mass, σ (0) = m̂(∂/∂m̂)mN . Since the nucleon’s spatial
size is O(N0

c ), we consider the scalar FF at nonexceptional
momentum transfers |t | = O(N0

c ), in either the spacelike or
timelike domain. For such values of t , the scaling behavior of
the FF is then given by

σ (t) = O(Nc) [|t | = O(N0
c )]. (23)

Because Mπ = O(N0
c ), the t region of elastic unitarity (4M2

π <
t < 16M2

π ) remains stable in the large-Nc limit. Thus the
basic setup of our dispersive analysis remains stable in the
large-Nc limit: The dispersion integral extends over momenta
t = O(N0

c ) and converges in that parametric domain, and we
require the spectral function at energies t = O(N0

c ). For the
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pion scalar FF, the same arguments lead to σπ (0) = M2
π =

O(N0
c ) and therefore

σπ (t) = O(
N0

c

) [|t | = O(
N0

c

)]
. (24)

Equations (23) and (24) imply that the scalar FF of the hadrons
scales with the number of their valence quarks, as one would
expect in a “constituent quark” picture of dynamical chiral
symmetry breaking.

It is easy to verify the that the DIχEFT results for the
scalar nucleon FF obey the general Nc scaling of Eq. (23).
Using the explicit expression Eq. (A2) with gA = O(Nc) and
fπ = O(

√
Nc), one finds that the contribution of the N Born

term to J 0
+(t) scales as

J 0
+(t)[LO,N ] = O(

N3
c

) [|t | = O(
N0

c

)]
. (25)

Using Eq. (A5) with hA = O(Nc), one finds the same
scaling behavior for the contribution of the � Born term.3

Multiplication with |σπ (t)|2, Eq. (24), does not change this
scaling behavior. Taking into account the scaling behavior
of the kinematic factor in Eq. (12), one concludes that the
DIχEFT result for the spectral function scales according to
Eq. (23). This scaling behavior then carries over to the FF
through the dispersion relation Eq. (4).

It is interesting to compare the relative contributions of the
N and � Born terms to the scalar spectral function in the large-
Nc limit. In the large-Nc limit, the N and � become degenerate,
{mN,m�} = O(Nc) and m� − mN = O(N−1

c ), and the πNN
and πN� couplings are related by [85]

gπN� = 3
2gπNN (Nc → ∞). (26)

Both statements follow from the fact that the N and � are
rotational states of a classical body with combined isospin-spin
symmetry. The conventional couplings of Eq. (26) are related
to the χEFT couplings by

gπNN = gAmN

fπ

, gπN� = hAmN√
2fπ

, (27)

and scale as {gπNN,gπN�} = O(N3/2
c ). Using Eqs. (26) and

(27) and the expressions in the appendix, one easily shows
that the LO χEFT results satisfy

Im σ (t)[LO,�] = 2 Im σ (t)[LO,N ] (Nc → ∞); (28)

i.e., the contribution of the � Born term is twice as large
as that of the N one. Such behavior was observed in earlier
χEFT calculations of the nucleon’s scalar structure [87,88].
It was also seen in studies of the nucleon’s peripheral gluon
and singlet quark structure, which are measured by operators
with the same isospin-spin quantum numbers as the scalar
density [89,90].

3Equation (25) is valid for k2
cm = t/4 − M2

π = O(N 0
c ), i.e., for

nonexceptional values t = O(N0
c ), not parametrically close to the

two-pion threshold. In this case, {xN,x�} = O(N−1
c ) in Eqs. (A3)

and (A6), and the inverse tangent functions in Eqs. (A2) and (A5)
count as arctan {xN,x�} ≈ π/2 = O(N0

c ). The polynomial terms in
Eqs. (A2) and (A5) are suppressed relative to the inverse tangent
terms by a power N−1

c .

The relative factor in Eq. (28) can be explained in a simple
manner. Consider the scalar FF in the proton isospin state, p. In
the Born graph with intermediate N , the possible intermediate
states are π0p and π+n; in the Born graph with intermediate
�, they are �++π−,�+π0, and �0π+. The Lagrangian with
the relevant πNN and πN� couplings is

LπNB ∝ gπNN

2
(
√

2p̄nπ+ + p̄pπ0)

+ gπN�

3
(
√

3p̄�++π− +
√

2p̄�0π0 + p̄�0π+)

+ (H.c.), (29)

where we display only the isospin structure and omit the
dependence on the pion momentum (for the full structure, see
Ref. [91] and references therein). Each pion state contributes
equally to the scalar charge; cf. Eq. (9). The relative contribu-
tion of the N and � Born graphs is therefore given by the sum
of the squared couplings in Eq. (29),

Im σ (t)[LO,N ] ∝ g2
πNN

4
(2 + 1) = 3g2

πNN

4
, (30)

Im σ (t)[LO,�] ∝ g2
πN�

9
(3 + 2 + 1) = 2g2

πN�

3
. (31)

With the large-Nc relation between the couplings, Eq. (26),
one then obtains the relative factor of Eq. (28).

The observation of Eq. (28) represents one instance of
a general phenomenon in χEFT: In the large-Nc limit the
contributions of N and � intermediate states are related by a
simple factor, and their sum produces a result that exhibits the
correct Nc scaling established on general grounds. Note that
the factor between the N and � contributions depends on the
isospin-spin quantum numbers of the operator and the matrix
element [87,88]. For the scalar operator considered here, the
individual N and � contributions already have the correct
Nc scaling, and summing them just increases the coefficient
compared to N only. In the case of the isovector-vector FFs
(Dirac and Pauli), the individual N and � contributions have
incorrect Nc scaling—their scaling exponents are too large by
one power of Nc—and summing them is necessary in order
to cancel the leading term and recover the correct general Nc

scaling [87,88,91,92].
The large-Nc relation Eq. (28) represents an important

theoretical constraint on our χEFT calculation of scalar
nucleon structure. Confronting the large-Nc prediction with
the actual χEFT results for J 0

+(t) obtained with the phys-
ical N and � masses and couplings, Fig. 5, we observe
the following: (a) The actual N and � contributions have
the same sign, in agreement with the large-Nc predictions.
(b) The magnitude of the actual � contribution is significantly
smaller than the large-Nc prediction, amounting to ∼1/2 rather
than 2 times the N contribution. This demonstrates that 1/Nc

suppressed terms play an essential role in the χEFT result
for J 0

+(t). Notice that the large-Nc limit corresponds to the
heavy-baryon limit of χEFT because Mπ/mN = O(N−1

c ); it
is known that the heavy-baryon expansion converges poorly
for the spectral functions on the two-pion cut; see Refs. [27,92]
for a discussion.
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V. OUTLOOK

We have presented a general method for calculating the
nucleon FFs of G-parity-even operators by combining χEFT
and dispersion theory. The spectral functions on the two-pion
cut are constructed with the help of the elastic unitarity
condition, using a manifestly real representation that separates
the coupling of the ππ system to the nucleon from the ππ
rescattering (N/D method). χEFT is used to calculate the real
function describing the ππ coupling to the nucleon, which is
free of ππ rescattering effects. It is dominated by the LO Born
amplitudes with N and � intermediate states and shows good
convergence in higher orders. The effects of ππ rescattering
are then incorporated by multiplying with the squared modulus
of the timelike pion FF, which can be determined empirically
or extracted from lattice QCD calculations of the vacuum
correlation function of the operator. Our method represents a
major improvement over traditional χEFT calculations of the
spectral functions, which try to account for the ππ rescattering
effects through χEFT interactions. It permits calculations of
nucleon spectral functions up to t ∼ 1 GeV2 (details depend
on the operator) and opens up the prospect of a realistic
dispersive analysis of nucleon FFs and related quantities based
on χEFT.

We have applied the method to the nucleon scalar FF.
The χEFT calculations of the real function J 0

+(t) show good
convergence and are in excellent agreement with dispersion-
theoretical results up to t ∼ 0.8 GeV2. This information is
sufficient for evaluating the t dependence of the scalar
FF, the scalar radius, and the Cheng-Dashen discrepancy,
through a once-subtracted dispersion relation. Our calculation
determines the scalar FF at momentum transfers up to |t | ∼
0.5 GeV2 with controlled uncertainties. The nucleon’s scalar
FF is of principal interest for understanding the role of
dynamical chiral symmetry breaking in nucleon structure and
the origin of the nucleon mass. It is also an ingredient in
modeling the interaction of dark matter with the nucleon for
the purpose of designing direct detection experiments [93].

The method described here can be applied to nucleon FFs of
any G-parity-even operators with a two-pion cut. Applications
to the nucleon isovector-vector FFs will be presented in a
forthcoming article [36]. Other possible applications are the
nucleon FFs of the energy-momentum tensor and the moments
of generalized parton distributions; see Ref. [94] for a recent
dispersive calculation. The impact of the method depends on
the convergence of the χEFT calculations of the J functions
and on the actual strength distribution in the dispersion
integrals under study, and has to be demonstrated channel
by channel. Subtractions can make the dispersion integrals
more convergent and emphasize the low-t ′ region where the
spectral functions can be computed using our method. Another
attractive possibility is to consider the transverse spatial
densities associated with the FFs, which are represented by
exponentially convergent dispersion integrals and can safely be
calculated with our method at peripheral distances b � 1 M−1

π

[32]. An interesting question is whether the dispersive method
described here could be extended to calculate the nucleon’s
peripheral partonic structure at fixed light-front momentum
fraction x; such calculations have so far been performed in

the standard χEFT approach without explicit treatment of ππ
rescattering [89,90,95].

An obvious extension of the present calculation would be
to the nucleon FFs of the scalar strange quark and gluonic
operators, which have the same quantum numbers as the light-
quark scalar operator, Eq. (1) [5]. The dispersive calculation of
these FFs must include also the KK̄ channel and its coupling
to ππ in a coupled-channel approach. The extension of our
method to this situation raises several interesting questions:
(a) One would need to generalize the N/D method and
the manifestly real representation of the unitarity condition,
Eq. (15), to the case of coupled ππ and KK̄ channels, and
possibly other inelasticities. (b) One would need to explore
how well χEFT works for the coupling of the KK̄ system
to the nucleon (octet and decuplet baryon Born terms, contact
terms). (c) The distribution of strength in the dispersive integral
of the strange and gluonic FF is expected to be very different
from that of the light-quark scalar FF and may involve large
contributions from energies t ′ > 1 GeV, where our approach
is not applicable. (d) One would need a parametrization of the
pion and kaon FFs of these operators that takes into account
coupled-channel dynamics. Some experimental information
on these FFs is available from τ lepton decays [35]. The
timelike pion and kaon FFs could also be extracted from the
vacuum correlation function of the respective operators, as
described in Sec. IV A.

The DIχEFT approach described here could in principle
also be extended to the nucleon FFs of G-parity odd operators
with a 3-pion cut. Methods for implementing elastic unitarity in
3-body channels are presently being developed in connection
with the analysis of meson decays [96] and the extraction of
scattering phase shifts and resonance parameters from lattice
QCD [97,98]. How to formulate an analog of the present N/D
method for the 3-body system, and how to match the 3-body
unitarity formula with χEFT calculations, are interesting
problems for further study. If our method could be extended
to the 3-pion cut it would open up applications to the nucleon
isoscalar-vector and isovector-axial FFs, about which little is
known from first principles.
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APPENDIX: EXPRESSIONS

For reference, we present in this appendix the LO and NLO
χEFT expressions for the real function J 0

+(t), Eq. (16), which
are used in the analytical and numerical studies in the text. In
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the following, 4M2
π < t < 4m2

N and [cf. Eqs. (13) and (14)]

kcm =
√

t/4 − M2
π , p̃cm =

√
m2

N − t/4. (A1)

The contribution of the N Born diagram [Fig. 4(a)] is

J 0
+(t)[LO,N ] = g2

Am3
N

4πf 2
π M2

π

(
arctan xN

xN

− t

4m2
N

)
, (A2)

xN ≡ 2kcmp̃cm

AN

=
2
√

t/4 − M2
π

√
m2

N − t/4

t/2 − M2
π

, (A3)

AN ≡ t/2 − M2
π . (A4)

The contribution of the � Born diagram [Fig. 4(b)] is

J 0
+(t)[LO,�] = h2

A

48πf 2
π M2

π

(C� arctan x� + D�), (A5)

x� ≡ 2kcmp̃cm

A�

=
2
√

t/4 − M2
π

√
m2

N − t/4

t/2 − M2
π + m2

� − m2
N

, (A6)

A� ≡ t/2 − M2
π + m2

� − m2
N. (A7)

The coefficient of the inverse tangent function in Eq. (A5) is
obtained as

C� ≡ 2p̃2
cmF − A�mNG

kcmp̃cm
, (A8)

in which

F ≡ α(m� + mN ) + β

3
(m� − mN ), (A9)

G ≡ −α + β

3
, (A10)

α ≡ t

2
− m2

N +
(
m2

� + m2
N − M2

π

)2

4m2
�

, (A11)

β ≡
(

mN + m2
� + m2

N − M2
π

2m�

)2

. (A12)

The full expression for the numerator in Eq. (A8), organized
according to powers of M2

π and t , is

2p̃2
cmF − A�mNG

= 1
/(

48m2
�

)[
8mN (mN + m�)4(mN − m�)2

− 8mN (mN + m�)2
(
3m2

N − 2mNm� + 3m2
�

)
M2

π

− 8m�(mN + m�)2
(
m2

N − 4mNm� + m2
�

)
t

+ 8mN

(
3m2

N + 2mNm� + 3m2
�

)
M4

π

+ 16m�

(
m2

N − mNm� + m2
�

)
M2

π t

− 12m3
�t2 − 8mNM6

π − 8m�M4
π t

]
. (A13)

TABLE III. LECs used in the NLO contact term contribution
to J 0

+(t), Eq. (A15). The values were determined according to the
procedure described in Sec. II C.

c1 c2 c3

LECs (GeV−1) (−0.28, −0.18) (1.0, 1.2) (−1.64, −0.79)

The polynomial terms in Eq. (A5) are obtained as

D� = 1
/(

18M2
�

)[
6mN (mN + m�)3(mN − m�)

+ 4mN

(
4m2

N + 3mNm� + 3m2
�

)
M2

π

− (
19m3

N + 24m2
Nm� + 9mNm2

� − 6m3
�

)
t

− 6mNM4
π − (mN + 6m�)M2

π t

+ (4mN + 6m�)t2
]
. (A14)

The inverse tangent function in Eqs. (A2) and (A5) contains
the logarithmic singularity in t resulting from the left-hand cut
of the ππ → NN̄ PWA. This singularity corresponds to the
intermediate baryon line of the diagrams going on mass shell,
s = {m2

N,m2
�}. The coefficient of the singularity is therefore

determined by the πN scattering amplitude at the on-shell
point. The latter is independent of the off-shell behavior of
the χEFT even in the case of the intermediate �, where the
definitions of the � propagator and the πN� vertices off
the mass shell are generally ambiguous (for a discussion,
see Refs. [32,91] and references therein). We note that the
functions F and G in Eqs. (A9) and (A10) are just the invariant
amplitudes of πN scattering at t > 4M2

π and s = m2
�, as

defined in Eqs. (4.15) and (4.16) of Ref. [91]. The polynomial
terms in Eqs. (A2) and (A5) depend on the behavior of the πN
amplitude off the baryon mass shell. In the case of the �, they
depend on the specific choice of the off-shell behavior and the
vertices.

The masses and coupling constants used to evaluate the
LO expressions are the standard values for the SU(2) flavor
group (see Ref. [54]): Mπ = 139 MeV,fπ = 93 MeV,mN =
939 MeV,gA = 1.27, and m� = 1232 MeV,hA = 2.85.

The contribution to J 0
+(t) arising from the NLO contact

terms in the πN amplitude is

J 0
+(t)[NLO, contact]

= − p̃2
cm

12πf 2
π m2

NM2
π

(
12c1M

2
πm2

N

+ 2c2p̃
2
cmk2

cm + 6c3m
2
NAN

)
; (A15)

cf. Eqs. (A1) and (A4). The values of the LECs ci(i = 1,2,3),
determined according to the procedure described in Sec. II C,
are listed in Table III.
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