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Finite-size effects on the phase structure of the Walecka model
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In this work we investigate the finite-size effects on the phase structure of the Walecka model within the
framework of a generalized ζ -function, focusing on the influence of temperature as well as the number and length
of compactified spatial dimensions. Here we concentrate on the situation of larger values of the coupling between
the scalar and fermion fields, in which a phase transition of first order takes place. The phase transitions are
analyzed and compared with the system in the situations of one, two, and three compactified spatial dimensions.
Our findings suggest that the thermodynamic behavior of the system depends on the length and number of spatial
dimensions, with the symmetric phase being favored as the size of the system diminishes.
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I. INTRODUCTION

One of the most interesting questions that has been
receiving a great deal of attention in hadron and nuclear physics
concerns the study of strongly interacting matter properties
under the changes of the environment. As examples, we can
highlight several phenomena: the phase diagram of nuclear
and quark matter, relativistic degenerate gas phase transitions,
quark-gluon plasma formation in heavy-ion collisions, the
phase structure of neutron stars, and so on [1,2].

In light of the theoretical grounds to treat these physical
systems, effective quantum field theories of quantum chro-
modynamics (QCD) at finite temperature have proved to be
very useful tools. In particular, one emblematic example is
the Walecka model [3]. Different versions of this model have
been largely employed as a laboratory to get insights on
the thermodynamic behavior of hadronic matter, describing
a reasonable number of phenomena in the sector of strong
interactions (for reviews, see Refs. [4–21]).

A representative system which has been understood at
least qualitatively via Walecka-like models is that of nuclear
matter, whose the exchange nucleon-nucleon interactions are
discussed. Considering the scenario of finite-temperature field
theory, it can be thought of as a gas of nucleons (associated
with the Dirac field) embedded in a bath of scalar, vector, and
other types of particles constituting the hot and dense hadronic
medium (associated with scalars, vectors, and other fields).
Therefore, interesting aspects of thermodynamic properties
of this system can be investigated under certain conditions,
such as finite temperature, finite chemical potential, external
magnetic field, and others [2–21].

Besides, there is a vast bibliography on the subject of the
of finite-size effects on the thermodynamics of effective field
theories for different physical phenomena. Some interesting
examples of these works are in Refs. [22–48]. The general
question treated in these cited works is to estimate the
relevance of the fluctuations owing to finite-size effects in
the thermodynamic properties of the system. In particular,
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within the approach of a scalar version of the Yukawa model,
it is argued in Refs. [41,42] that the reduction of the size of
the reservoir which encloses the boson gas might favor the
symmetrical phase.

Thus, taking as motivation the discussion done above, in
this work we perform an investigation about the influence of
the boundaries on the thermodynamic behavior of Walecka’s
mean-field theory without quantum correction. In the present
study we make use of mean-field approximation for the real
scalar and vector fields, which could be associated with a
first-order estimate of the thermodynamic properties of hadron
matter [4]. This engenders the interpretation of a thermal gas
of fermions confined in a reservoir and interacting with a
medium constituted of other hadrons. We treat jointly spatial
compactification and the introduction of finite temperature,
using a generalized Matsubara prescription [49] and a ζ -
function regularization method [22,26,29,35,38,50,51]. The
thermodynamic potential and gap equations can be determined
analytically, and the phase structure is analyzed under the
change of temperature, as well as the number and length of
compactified spatial dimensions.

The paper is organized as follows. In Sec. II, we present
the model and calculate the relevant thermodynamic quantities
using the ζ -function regularization approach. In particular, in
Secs. II A and II B we introduce the situation without and
with boundaries, respectively. Section III is devoted to the
discussion of the thermodynamics of this system. Finally, Sec.
IV presents some concluding remarks.

II. THE MODEL

Let us introduce the effective Lagrangian density of the
Walecka model. It describes a Dirac field interacting with
scalar and vector fields, denoted, respectively, as ψ, σ , and
ω, and is given by

L = ψ̄(iγ μ∂μ − mψ + gσσ − gωγ μωμ)ψ

+ 1
2

(
∂μσ∂μσ − m2

σ σ 2
) − 1

4WμνWμν

+ 1
2m2

ωωμωμ, (1)

where mψ, mσ , and mω are the masses of the Dirac, scalar,
and vector fields, respectively; Wμν = ∂μων − ∂νωμ is the
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ω-field strength tensor; and gσ (gω) is the coupling constant
for interaction between the Dirac and scalar (vector) field.

In the Lorentz gauge, ∂μωμ = 0, the equations of motion
obtained from Eq. (1) are

[γ μ(∂μ − igωωμ) + mψ − gσσ ]ψ = 0, (2)(
∂μ∂μ + m2

σ

)
σ = gσρs, (3)(

∂μ∂μ + m2
ω

)
ων = igωjν, (4)

where ρs = ψ̄ψ is the scalar density and jμ = ψ̄γ μψ the
fermion 4-current. Therefore, we have a system of three
coupled equations to solve.

The lowest-order estimate of the thermodynamic properties
of the ψ field interacting with other fields can be performed by
considering the mean-field approximation. It means that we
will neglect the fluctuations of the scalar and vector fields. In
this sense, the σ and ω fields are replaced with their classical
counterparts, i.e.,

σ = 〈σ 〉,
(5)

ω = 〈ω0〉,
with ωμ = 0 for μ �= 0. Then, in mean-field approximation
the Lagrangian density in Eq. (1) can be rewritten as

L̄ = ψ̄[iγ μ∂μ − (mψ − gσ 〈σ 〉) − gωγ 0〈ω0〉]ψ
− 1

2m2
σ 〈σ 〉2 + 1

2m2
ω〈ω0〉2, (6)

and the equations of motion in Eqs. (3) and (4) become

[γ μ∂μ + (mψ − gσ 〈σ 〉)]ψ = gωγ0〈ω0〉ψ, (7)

〈σ 〉 =
(

gσ

m2
σ

)
ρs, (8)

〈ω0〉 =
(

gω

m2
ω

)
ρ, (9)

where ρ = j 0 = ψ̄γ 0ψ is the fermion density.
To investigate the thermodynamic properties of the model

introduced above within imaginary time formalism [2,49], we
assume that the system is in equilibrium at a temperature T
and chemical potential (density) μ. So, we define the grand
partition function in a D-dimensional Euclidean spacetime at
finite temperature T and d compactified spatial dimensions,

Z =
∫

Dψ†Dψ

× exp

{
−
∫ β

0
dτ

d∏
i=1

∫ Li

0
dxi

∫
dD−δ�z[L̄E + μj0]

}
,

(10)

where β = 1/T ; δ = d + 1 � D; {Li} are the compactifi-
cation lengths of the spatial coordinates; L̄E is the La-
grangian density given by Eq. (6) in Euclidean space; and
μ is the fermion (baryonic) chemical potential. Finite-size
and temperature effects are taken into account along the
prescription described in Ref. [50]: Each spatial coordinate xi

is compactified in a length Li and, as usual, imaginary time is
compactified in the range [0,β]. A vector in the D-dimensional

spacetime is given by u = (τ,x1,x2, . . . ,xd,�z), where τ is the
imaginary time, (x1,x2, . . . ,xd ) correspond to the compactified
spatial coordinates, and �z is a (D − δ)-dimensional vector.
The Fourier dual of u is a D-dimensional vector in momentum
space, q = (kτ ,kx1 , . . . ,kxd

, �p), with �p being the corresponding
momentum to �z. As a consequence, in explicit calculations
temperature and finite-size effects are implemented through
the following modifications in the Feynman rules,∫

dDq

(2π )D
f (q) → 1

βLi × · · · × Ld

×
∞∑

l,{ni }=−∞

∫
dD−δp

(2π )D−δ
f (ωl,{ωni

},p),

(11)

where {ni} ≡ n1, . . . ,nd ; {ωi} ≡ ω1, . . . ,ωd ; in the right-hand
side, we have performed the replacements

kτ → ωl = 2π

β

(
l + 1

2

)
− iμ, l = 0, ± 1, ± 2, . . . ,

kxi
→ ωni

= 2π

L
(ni + c), ni = 0, ± 1, ± 2, . . . ,

with c = 0 or c = 1/2 for periodic or antiperiodic spatial
boundary conditions, respectively. In the present study we use
the antiperiodic spatial boundary conditions.

Then, after the integration of the fields ψ† and ψ , we can
obtain from Eq. (10) the thermodynamic potential,

U (T ,{Li},μeff) ≡ 1

β
lnZ

= V

2

[
m2

σ 〈σ 〉2 − m2
ω〈ω0〉2

]
− γV

βLi × · · · × Ld

Y
′
(0), (12)

where γ is the degeneracy factor (we adopt here γ = 4 [4]),
V is the volume, and Y (s) is the multiple sum obtained
after performing the integration over the (D − δ)-dimensional
momentum vector remaining from the prescription in Eq. (11),

Y (s) = J (s,δ)
∞∑

l,n1,...,nd=−∞

{[
2π

β

(
l + 1

2

)
− iμeff

]2

+
d∑

i=1

[
2π

Li

(
ni + 1

2

)]2

+ m2
eff

}−s+ D−δ
2

, (13)

with

J (s,δ) = 1

(4π )(D−δ)/2

�
(
s − D−δ

2

)
�(s)

. (14)

Y
′
(s) in Eq. (13) represents the derivative of Y (s) with respect

to the argument s; meff and μeff are, respectively, the effective
mass and chemical potential of the fermion field and are
given by

meff = mψ − gσ 〈σ 〉, (15)

μeff = μ − gω〈ω0〉. (16)
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Then, modifications of the scalar and vector mean fields
[whose allowed values are obtained from the solutions
of gap equations in Eqs. (8) and (9)] change the mass
and chemical potential of the fermions. We can interpret
this as follows: The mass and density of fermions (for
instance nucleons) are effectively modified due to their

interactions with the hot and dense medium in which they are
immersed.

It is relevant to notice that the multiple sum in Eq. (13) is the
well-known Epstein-Hurwitz inhomogeneous ζ function [51],
whose analytical continuation valid in the whole complex ν
plane has the representation

AC2

δ (ν,{ai},{bi}) =
∞∑

{ni }=−∞

[
δ∑

i=1

ai(ni − bi)
2 + C2

]−ν

= πδ/2

√
a1 × · · · × aδ�(ν)

⎧⎨
⎩�

(
ν − δ

2

)
Cδ−2ν + 2

δ∑
i=1

∞∑
ni=1

cos(2πnibi)

(
πni√
aiC

)ν− δ
2

Kν− δ
2

(
2πniC√

ai

)

+22
δ∑

i<j=1

∞∑
ni ,nj =1

cos(2πnibi)cos(2πnjbj )

⎛
⎝ π

C2

√
n2

i

ai

+ n2
j

aj

⎞
⎠

ν− δ
2

Kν− δ
2

⎛
⎝2πC

√
n2

i

ai

+ n2
j

aj

⎞
⎠

+ · · · + 2δ

∞∑
n1,...,nδ=1

δ∏
i=1

[cos(2πnibi)]

⎛
⎝ π

C2

√√√√ δ∑
i=1

n2
i

ai

⎞
⎠

ν− δ
2

Kν− δ
2

⎛
⎝2πC

√√√√ δ∑
i=1

n2
i

ai

⎞
⎠
⎫⎪⎬
⎪⎭, (17)

where Kν is the modified Bessel function of the second kind.
Thus, the grand thermodynamic potential can be obtained

by taking the derivative of the function Y (s) in Eq. (17) and
placing the result into Eq. (12). In Eq. (12) we have ν = s −
(D − δ)/2, which engenders the label of the Bessel functions
equal to ν − δ/2 = s − D/2. Therefore, for D = 4 the Bessel
functions are Ks−2 independently of the value of δ.

In addition, to study the thermodynamic behavior of the
system, we need to consider the state equations of mean fields
〈σ 〉 and 〈ω0〉,

∂U

∂〈σ 〉 = 0, (18)

∂U

∂〈ω0〉 = 0. (19)

The solutions of these equations give the values of 〈σ 〉 and 〈ω0〉
corresponding to the extrema of the grand thermodynamic
potential U , where the system reaches the the equilibrium
configuration. In this sense, we are interested in the fermion
effective mass meff = meff(T ,μeff,{Li}) defined in Eq. (15),
which will be a (T ,μeff,{Li})-dependent order parameter
which governs the phase diagram of the model.

A. System without spatial boundaries (d = 0)

For completeness, we begin with the usual case where the
system is in the absence of boundaries. It means that we use
the recurrence formula in Eq. (17), with D = 4 and δ = 1,
identifying a1 = ( 2π

β
) and b1 = −i μeffβ

2π
+ 1

2 , and after that we
replace the expression obtained for Y (s) in Eq. (13). Never-
theless, we must perform the pole structure analysis in the
calculations of the derivative of Y (s) with respect to s, where
s → 0, before using it in the expression of thermodynamic

potential (12). Accordingly, it can be remarked that for any
regular function G(s), we have lims→0(d/ds)[G(s)/�(s)] =
G(0).

Then, after performing the derivative of Y (s) given in
Eq. (13) with respect to s for ε → 0, but with the observations
mentioned above in mind, we can rewrite the thermodynamic
potential as

U (T ,μeff)

V
= 1

2
m2

σ 〈σ 〉2 − 1

2
m2

ω〈ω0〉2 − Uvac + γ

π2

∞∑
l=1

(−1)l

× cosh(βlμeff)

(
meff

lβ

)2

K2(lβmeff), (20)

where Uvac is the vacuum fluctuation energy per unit volume,
i.e., the quantum correction, associated with the first term in
the second line of Eq. (17). This contribution can be better
understood from the discussions available in Refs. [52–54]:
Because the scalar interaction effectively changes the fermion
mass from mψ to meff = mψ − gσ 〈σ 〉, it induces an energy
density shift of the vacuum of magnitude

Uvac ∝
[

1

(4π )
D
2 −1

�

(
−D

2

)
mD

eff

]
D=4

−
[

1

(4π )
D
2 −1

�

(
−D

2

)
mD

ψ

]
D=4

, (21)

where the second term on the right-hand side of the equation
above has been introduced to eliminate the physically mean-
ingless constant shift of the energy. Clearly, this expression
contains divergences, which can be canceled by a renormal-
ization procedure, as done in Refs. [52,54]. However, it is
relevant to notice that in the present work we are interested
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in the finite-size effects on the phase structure of the model
introduced in Ref. [4]. In other words, we investigate the
influence of boundaries on the thermodynamic behavior of
Walecka’s mean-field theory, without quantum correction.
Therefore, henceforth we will omit in the calculations the
term in Eq. (21). In this sense, the present analysis can be
considered as a starting point for further work in which the
quantum corrections might be considered.

Thus, the relevant thermodynamic properties can be derived
from the grand thermodynamic potential in Eq. (20). The
substitution of Eq. (20) in Eqs. (18) and (19) allows us to
rewrite the gap equations as

〈σ 〉 = gσ

m2
σ

ρs, (22)

〈ω0〉 = − ω

m2
ω

ρ, (23)

where ρs and ρ are the scalar and number densities, respec-
tively, given by

ρs = m2
eff

π2β

∞∑
l=1

al cosh(lβμeff)K1(lβmeff), (24)

ρ = m2
eff

π2β

∞∑
l=1

bl sinh(lβμeff)K2(lβmeff), (25)

with al = (−1)l−1

l
and bl = −2 (−1)l−1

l
.

B. System with compactified spatial dimensions (d = 1,2,3)

Now we present the model under question with the presence
of boundaries, in the scenarios of d = 1, 2, and 3 compactified
spatial coordinates.

We start by considering the simplest case, which is just one spatial compactification, d = 1, corresponding to a reservoir in
the form of an infinite hollow slab of thickness L1 ≡ L, in with the system at equilibrium and at a temperature β−1. Then, to
obtain the thermodynamic potential, we use Eqs. (13) and (17), with D = 4 and δ = 2, and introduce the notation a1 = ( 2π

β
),

a2 = ( 2π
L

), b1 = −i μeffβ
2π

+ 1
2 , and b2 = 1

2 . Then, proceeding similarly as the way to find Eqs. (20), (22), and (23), the grand
thermodynamic potential in Eq. (20) becomes

U (T ,μeff,L)

V
= 1

2
m2

σ 〈σ 〉2 − 1

2
m2

ω〈ω0〉2 + Uvac

+
∞∑
l=1

(−1)l cosh( l βμeff )

(
meff

l β

)2

K2( lmeff β ) +
∞∑

n=1

(−1)n
(meff

nL

)2
K2(nmeff L)

+
∞∑

l,n=1

(−1)l+n−1cosh(lβμeff)

(
meff√

β2l2 + L2n2

)2

K2

(
meff

√
β2l2 + L2n2

)
. (26)

Then, the use of Eq. (26) in the gap equations (18) and (19) and after some mathematical manipulations yield gap equations
similar to those shown in Eqs. (22) and (23), but with the scalar and number densities in the present case, with d = 1 being
respectively given by

ρs = A

⎡
⎣ 1∑

i=0

∞∑
ni=1

dni

Li

cosh(δ0iniLiμeff)K1(nimeffLi) + 2
∞∑

n,l=1

cn,lcosh(lβμeff)K1

⎛
⎝meff

√√√√ 1∑
i=0

L2
i n

2
i

⎞
⎠
⎤
⎦, (27)

ρ = −4π2A2

⎡
⎣ ∞∑

l=1

bl

2β
senh(lβμeff)K2(lmeffβ) − 2β

∞∑
l,n=1

bl,nsenh(nβμeff)K2

⎛
⎝meff

√√√√ 1∑
i=0

L2
i n

2
i

⎞
⎠
⎤
⎦, (28)

where A = meff
π2 , dn0 = al, dn1 = cn, cn,l = (−1)n+l√∑1

i=0 L2
i n

2
i

, and

bn,l = 2(−1)n+l√∑1
i=0 L2

i n
2
i

; also, we use the notation L0 ≡ β, L1 ≡ L,

and n0 ≡ l and n1 ≡ n.
We also analyze the present approach with two compactified

spatial coordinates (d = 2), in which the reservoir has the
geometry of a hollow, infinitely long wire with a rectangular
cross section. In this context we return to Eqs. (13) and
(17), with D = 4 and δ = 3, and introduce the quantities
a1 = ( 2π

β
), a2 = ( 2π

L1
), a3 = ( 2π

L2
), b1 = −i μeffβ

2π
+ 1

2 , b2 = 1
2 ,

and b3 = 1
2 . Then, proceeding in a way to similar to that found

Eqs. (20), (22), and (23), the (L1,L2)-dependent expressions
for grand thermodynamic potential in Eq. (20), gap equations

in Eqs. (18) and (19), and number and scalar densities can be
generated after some manipulations. For brevity, we omit these
expressions because the reader can obtain them for himself.

Finally, looking at the case of three compactified spatial
coordinates (d = 3), the reservoir has the form of paral-
lelepipedal box of volume L1 × L2 × L3. Once more, Y (s)
can be be obtained by taking D = 4 and δ = 4 in Eqs. (13)
and (17) and introducing the quantities a1 = ( 2π

β
), a2 =

( 2π
L1

), a3 = ( 2π
L2

), a3 = ( 2π
L3

), b1 = −i μeffβ
2π

+ 1
2 , b2 = 1

2 , b3 =
1
2 , and b4 = 1

2 . Hence, (L1,L2,L3)-dependent expressions for
the thermodynamic potential, scalar and number densities,
pressure, entropy, and other thermodynamic quantities are
determined by procedures similar to those described above.
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In next section we will carry out the discussion of the
thermodynamics of the model in these different situations.

III. PHASE STRUCTURE AND COMMENTS

Now we are able to analyze the thermodynamic behavior
of the system previously introduced.

In the present approach, we consider the case in which
the system is at effective chemical equilibrium, i.e., μeff = 0.
It can be seen from Eqs. (24) and (25) that this constraint
engenders ρ = 0 and therefore yields vanishing solutions for
the 〈ω0〉 field in all cases of compactified spatial dimensions.
It means that in the present analysis the numbers of fermion
particles and antiparticles are equal. Therefore, we focus
on the thermodynamics of the system as a function of the
solutions of the gap equation (24) for 〈σ 〉 = 〈σ 〉(T ,Li) or
meff = meff(T ,Li) at 〈ω0〉 = 0.

For convenience, all physical quantities are scaled by units
of mass of the fermion field ψ,mψ :

U

m4
ψ

→ U,
T

mψ

→ T ,
μ

mψ

→ μ,
σ

mψ

→ σ,

(29)
mσ

mψ

→ mσ ,
meff

mψ

→ meff, Lmψ → L.

The discussion about the phase structure of the present
model is accomplished under changes of the relevant pa-
rameters, paying attention to the influence of the number
of compactified spatial dimensions. In this sense, the phase
transitions are analyzed and compared with the system in
the situations of one, two, and three compactified spatial
dimensions. To make this comparison more accessible, the
length of all spatial compactified coordinates is set to be
the same, i.e., Li ≡ L. This choice reduces the system to the
following scenarios for d = 1, 2, and 3: confined between two
parallel planes a distance L apart; confined to an infinitely long
cylinder having a square transversal section of area L2; and to
a cubic box of volume L3.

A. System without spatial boundaries (d = 0)

For completeness, we begin with a qualitative analysis of
the behavior of the effective mass meff under changes of the
relevant parameters but without the presence of boundaries,
similarly to the scenario described in Ref. [4].1 In what follows,
including the figures, all parameters are understood to be
redefined by the scaling in Eq. (29).

In Figs. 1 and 2 are plotted the values of meff that
are solutions of the gap equation in Eq. (22) as function of
temperature, by taking arbitrary values of the coupling constant
gσ . As discussed in Ref. [4], the increasing of the magnitude of
the interaction between the σ and the ψ fields makes the system
undergo a phase transition at a smaller critical temperature.
This can be understood from the role of the σ field in binding
the fermion particles: The increasing of the magnitude of

1We notice that we use a different scaling and notation with respect
to Ref. [4].

FIG. 1. Plot of values of meff that are solutions of the gap equation
in Eq. (22) for d = 0 as a function of temperature at chemical
equilibrium. We fix mσ = 0.53. Solid, dashed, and dotted lines
represent, respectively, the cases for gσ = 8.00, gσ = 16.00, and
gσ = 26.00.

attractive interaction between the fermions makes them more
strongly bound, reducing the effective mass. Furthermore, the
nature of the phase transition depends strongly on the strength
of the coupling constant gσ . For the case with lowest gσ the
dependence of meff on T is continuous, while for larger gσ

FIG. 2. Same as in Fig. 1, but with solid and dashed lines
representing, respectively, the cases for gσ = 16.00 and gσ = 26.00,
and with the temperature axis in the range near the transition point.
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FIG. 3. Plot of normalized thermodynamic potential density in
Eq. (30) for d = 0 as a function of effective mass and at chemical
equilibrium. We fix mσ = 0.53 and gσ = 26.00. Solid, dashed, and
dotted lines represent the cases for T = 0.120, T = 0.125, and T =
0.130, respectively.

the curves cross twice, characterizing a discontinuous phase
transition.

Specifically, in Fig. 2 are plotted the solutions for meff as a
function of temperature for larger values of gσ , which engender
a first-order transition, with the temperature axis in the range
near the transition point. The points AB and CD indicate the
ordered pairs of coordinates (meff,T ) of the intersections that
give the values of the critical temperature and meff at both
end points of the mixed phase. In the case of gσ = 26.00 the
jump occurs at T ≈ 0.125–0.126, where the effective mass
changes from ≈ 0.98 to ≈ 0.1, while for gσ = 16.00 the phase
transition is at T ≈ 0.158–0.159, where meff goes from ≈ 0.90
to ≈ 0.20. At high temperatures, the system behaves like an
almost-free zero-mass fermion gas.

It is worth mentioning that a more detailed study of the
scenario above for several values of gσ gives the following
result: For gσ < 9.8 the effective mass is smooth in the
temperature, whereas for gσ > 9.8 a phase transition of first
order takes place.

To complete the characterization of the thermodynamics
of this system, we examine the thermodynamic potential
density, which will be normalized with respect to reference
state U (meff = 0):

1

V
[U (meff) − U (meff = 0)] → U (meff)

V
. (30)

Thus, in Figs. 3 and 4 the normalized thermodynamic potential
density U (T ,μeff = 0)/V , obtained by using Eq. (20) in (30),
is plotted as a function of effective mass for gσ = 26.00 and
gσ = 16.00, respectively, and for mσ = 0.53. The discontinu-
ous phase transition is clearly seen as T increases; the absolute
minimum of the potential is displaced to a smaller value of
meff as T increases. As suggested in Fig. 2, this first-order
phase transition occurs at smaller critical temperatures as

FIG. 4. Same as in Fig. 3, but with gσ = 16.00. Solid, dashed,
and dotted lines represent the cases for T = 0.153, T = 0.158, and
T = 0.163, respectively.

the magnitude of interaction between the σ and the ψ fields
increases. For larger values of temperature, the effective mass
decreases smoothly.

B. System with compactified spatial dimensions (d = 1,2,3)

Now we analyze the behavior of the effective mass under
changes of the relevant parameters for the system with
compactified spatial dimensions. Here we concentrate on the
situation of larger values of gσ , in which a phase transition of
first order takes place.

In Fig. 5 are plotted the values of meff that are solutions of
the gap equation in Eq. (22) as a function of temperature in
the case of one compactified spatial dimension [with the scalar
density being given by Eq. (24) for d = 1]. We see that allowed
values of effective mass are affected by the presence the of
boundary; the range of temperature where the mixed phase
occurs is spread out as the length of compactified coordinate
decreases. This result suggests that the symmetric phase is
favored as the size of the system decreases. This will be better
described via the plots involving the thermodynamic potential
density, which will be done as follows.

In Figs. 6–8 are plotted the normalized thermodynamic
potential density defined in Eq. (30) for d = 1 as a function
of effective mass, taking different values of temperature, but
with each plot at a given value of the size of the compactified
coordinate. These three plots manifest the following nature of
the transition: At smaller temperatures the global minimum is
at a greater value of meff; the increasing of T makes the second
local minimum at a smaller value of meff overcome the first
one, becoming the absolute minimum; for higher temperatures,
the absolute minimum goes slightly to zero.

Besides, from Figs. 6–8 it can be seen that decreasing of the
size L inhibits the broken phase, in agreement with the analysis
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FIG. 5. Plot of values of meff that are solutions of the gap equation
in Eq. (22) for d = 1 as a function of temperature, at chemical
equilibrium. We fix mσ = 0.53 and gσ = 26.00. Solid, dashed,
and dotted lines represent, respectively, L = 15.00, L = 10.00, and
L = 9.00.

concerning Fig. 5. In other words, smaller values of L induce
a first-order phase transition at lower critical temperatures.

Also, we plot in Fig. 9 the values of effective mass that are
solutions of the gap equation in Eq. (22) as a function of inverse
of length (x = 1/L), in the case of one compactified spatial
dimension [with the scalar density being given by Eq. (24) for

FIG. 6. Plot of normalized thermodynamic potential density in
Eq. (30) for d = 1 as a function of effective mass and at chemical
equilibrium. We fix mσ = 0.53, gσ = 26.00, and L = 15.00. Solid,
dashed, and dotted lines represent the cases for T = 0.1220, T =
0.1254, and T = 0.1293, respectively.

FIG. 7. Same as in Fig. 6, but with L = 10.00. Solid, dashed, and
dotted lines represent the cases for T = 0.1150, T = 0.1200, and
T = 0.1250, respectively.

d = 1]. We notice that meff remains without change at greater
values of L, where the fluctuations due to size effects are not
relevant. However, we remark that the decreasing of the size
of the system induces a sudden drop in meff. Namely, there is
a critical length Lc of the compactified dimension at which a
discontinuous phase transition occurs. Besides, lower values
of Lc are induced for smaller temperatures.

We continue our discussion with Fig. 10, in which is plotted
the normalized thermodynamic potential density defined in
Eq. (30) for d = 1 as a function of effective mass, taking
different values of L and at a fixed temperature. It can be

FIG. 8. Same as in Fig. 6, but with L = 9.00. Solid, dashed, and
dotted lines represent the cases for T = 0.1050, T = 0.1127, and
T = 0.1190, respectively.
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FIG. 9. Plot of values of meff that are solutions of the gap equation
in Eq. (22) for d = 1 as a function of inverse of length (x = 1/L)
at chemical equilibrium. We fix mσ = 0.53 and gσ = 26.00. Solid,
dashed, and dotted lines represent, respectively, T = 0.050, T =
0.095, and T = 0.110.

seen that the global minimum of the system is discontinuously
driven from the regime of greater values of meff to smaller
ones, and it goes slightly to zero as L diminishes.

We conclude this investigation with the dependence of
the phase structure on the number of compactified spatial

FIG. 10. Plot of normalized thermodynamic potential density in
Eq. (30) for d = 1 as a function of effective mass and at chemical
equilibrium. We fix mσ = 0.53, gσ = 26.00, and T = 0.120. Solid,
dashed, and dotted lines represent the cases for L = 13.00, L =
10.00, and L = 9.00, respectively.

FIG. 11. Plot of values of meff that are solutions of the gap
equation in Eq. (22) as a function of temperature, at chemical
equilibrium. We fix mσ = 0.53, gσ = 26.00, and L = 12.00. Solid,
dashed, and dotted lines represent, respectively, the case of d =
1, d = 2, and d = 3 compactified spatial dimensions.

dimensions. Then, in Fig. 11 are plotted the values of effective
mass that are solutions of the gap equation as a function of
temperature, for the three situations of compactified spatial di-
mensions under study with same length L, which is kept fixed.
Precisely, in this plot is shown the solutions of Eq. (22), with

FIG. 12. Plot of normalized thermodynamic potential density in
Eq. (30) as a function of effective mass and at chemical equilibrium.
We fix mσ = 0.53, gσ = 26.00, L = 12.00, and T = 0.123. Dotted,
dashed, and solid lines represent the cases for d = 3, d = 2, and
d = 1, respectively.
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the scalar density being given by Eq. (27) for d = 1 and analog
expressions for d = 2,3, setting Li = L in each case. We
remark that the range of temperature in which the mixed phase
occurs is spread out as the number of compactified dimensions
grows, with the symmetric phase being favored for bigger
values of d. That is, one of the consequences of increasing of
the number of compactified spatial dimensions is to cause the
decreasing of the temperature at which transition occurs.

Once more, the analysis is completed with the normalized
thermodynamic potential density defined in Eq. (30) for three
situations of compactified spatial dimensions with the same
length L, as a function of effective mass, at fixed values of
temperature and length L. This plot is presented in Fig. 12.
It can be seen that the system is driven from the broken to
the disordered phase as the number of compactified spatial
coordinates d increases. In other words, our findings suggest
that the presence of more boundaries disfavors the maintenance
of long-range correlations, making the suppression of the
ordered phase.

IV. CONCLUDING REMARKS

In this work we have investigated the finite-size effects
on the phase structure of the Walecka model within the
framework of generalized ζ function, focusing on the influence
of temperature, as well as the number and length Li = L of
compactified spatial dimensions. As pointed out in previous
papers, the nature of the phase transition strongly depends
on the strength of the coupling constant gσ . Here we have
concentrated on the situation of larger values of gσ , in which
a phase transition of first order takes place. The main results
obtained are summarized as follows.

We have seen that allowed values of effective mass are
affected by the presence of boundaries; the range of temper-
ature where the mixed phase occurs is spread as the length
of compactified coordinates decreases. This result suggests
that the symmetric phase is favored as the size of the system
diminishes. In this sense, the decreasing of the size of the
system induces a sudden drop in meff. It is suggested that a
critical length Lc of the compactified dimensions at which a
discontinuous phase transition occurs, and lower values of Lc

are induced for smaller temperatures.
Besides, it has been remarked that the thermodynamic

behavior of the system depends on the number of com-
pactified spatial dimensions d. The symmetric phase is
favored for bigger values of d with decreasing of the
critical temperature. The presence of more boundaries tends
to inhibit the broken phase. In other words, our findings
suggest that the presence of more boundaries disfavors the
maintenance of long-range correlations, inhibiting the broken
phase.

Finally, we remark that the findings outlined above may give
us insights about relativistic systems that can be interpreted
as a fermion gas in a hot medium confined in a reservoir.
Further studies will be done to apply the present approach to
a specific physical system, such as nuclear matter. Moreover,
the present analysis can be considered a starting point for
further work in which the quantum corrections might be
considered.
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