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We argue that statistical data analysis of two-particle longitudinal correlations in ultrarelativistic heavy-ion
collisions may be efficiently carried out with the technique of partial covariance. In this method, the spurious event-
by-event fluctuations due to imprecise centrality determination are eliminated via projecting out the component of
the covariance influenced by the centrality fluctuations. We bring up the relationship of the partial covariance to the
conditional covariance. Importantly, in the superposition approach, where hadrons are produced independently
from a collection of sources, the framework allows us to impose centrality constraints on the number of sources
rather than hadrons, that way unfolding of the trivial fluctuations from statistical hadronization and focusing
better on the initial-state physics. We show, using simulated data from hydrodynamics followed with statistical
hadronization, that the technique is practical and very simple to use, giving insight into the correlations generated
in the initial stage. We also discuss the issues related to separation of the short- and long-range components of
the correlation functions and show that in our example the short-range component from the resonance decays is
largely reduced by considering pions of the same sign. We demonstrate the method explicitly on the cases where
centrality is determined with a single central control bin or with two peripheral control bins.
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I. INTRODUCTION

From the outset of the studies of correlations in ultrarela-
tivistic heavy-ion collisions, it has been known that event-by-
event fluctuations due to the choice of the centrality class of
the sample lead to spurious effects that should be separated
from the physical correlations. A simple example involves
the forward-backward (FB) fluctuations of the multiplicity of
produced hadrons, with the centrality defined from multiplicity
in a suitable reference bin, or via some other quantity obtained
from detector response, correlated to multiplicity. As the
measurements in the physical F and B bins are correlated to
the reference bin, the FB correlations determined via a naive
definition depend strongly on the fluctuations in the reference
bin, thus the character of the “true” FB correlations is obscured.

Several remedies have been proposed to cure the problem
of centrality fluctuations. First, if the size of the data sample al-
lows, then one may use sufficiently narrow centrality bins, such
that centrality fluctuations are negligible. Then, to improve
statistics, one may average the obtained covariance matrices
over several narrow centrality bins within a broader class.
This method, essentially based on the concept of conditional
correlation (see, e.g., Ref. [1]), was successfully used in the
analysis by the STAR Collaboration [2], with further proposals
presented in Ref. [3].

In this paper we explore the so-called partial correlation
analysis (see, e.g., Refs. [1,4]) in application to ultrarelativistic
heavy-ion collisions. The method is closely related to the
conditional correlations (see Appendix B); however, it offers
an appealing simplicity as well as immediate insight into
conditional independence of the studied variables. It has
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been widely used in other domains of statistical applications,
ranging from physics (see, e.g., an interesting example from
the x-ray spectroscopy, where partial correlations are used to
remove the spurious effects of beam intensity fluctuation [5])
to medicine and psychology. The basic goal of the approach is
to assess the correlation (or independence) of some “physical”
variables, where the sample is determined by certain fluctuat-
ing control (or external or nuisance) variables, whose effects
needs to be removed to accomplish the understanding of the
relations between the physical variables.

We bring up the relationship of the partial covariance to
the conditional covariance [6,7], which holds under conditions
which are well satisfied in ultrarelativistic heavy-ion collisions.
Then, the partial covariance with a control bin may be
understood as conditional covariance with the fixed hadron
multiplicity in the control bin. An important point, however,
is that one should impose centrality constraints at the level
of initial state rather than finally produced hadrons; that
way, we limit the external fluctuations concerning the initial
production, which are of our principal interest. One can
accomplish this goal in the framework of the superposition
model [8] of particle production, where hadrons are emitted
from independent sources. We extend the partial correlation
analysis to this physically interesting case. The result is a
simple modification of the partial-correlation formulas, where
variances have the autocorrelation terms removed. That way
one can impose the constraints at the level of the initial sources,
which is a nontrivial outcome of the partial covariance method
in the superposition approach.

In our study, we use simulated events for ultrarela-
tivistic heavy-ion collisions generated with event-by-event
3+one-dimensional (1D) viscous hydrodynamics [9] and
THERMINATOR [10,11] to argue that the partial covariance tech-
nique is a practical tool to analyze two-particle correlations.
We apply it to examples where centrality is determined with
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the multiplicity in a single midrapidity control bin, as well as
in two peripheral-rapidity control bins.

We verify in our examples that with the removed effects
of resonance decays, the partial FB multiplicity correlations
obtained from the simulated data reflect very closely the initial
correlations in spatial rapidity, here implemented in the very
simple Bzdak-Teaney (BT) [12] form for the wounded quark
model [13]. This feature shows that the partial correlation
technique may be used in practice to access information on
the initial-state correlations. However, as in other approaches,
this possibility relies on the separation of the short-range
correlations (such as from the resonance decays, jets, or
femtoscopic correlations) from the long-range correlations,
generated in the initial state.

We recall that another approach separating centrality
fluctuations, somewhat different in spirit and derived from the
superposition approach, defines the so-called strongly inten-
sive measures [14,15], which by construction do not depend
on fluctuations of the number of sources (or the volume) which
emit the observed hadrons. Yet another technique which can be
used to accomplish the goal invokes the principal components
analysis (PCA) [16]. We discuss the relation of the partial
covariance technique to these methods in Appendix C.

The outline of our paper is as follows: In Sec. II we provide
the basic definitions of the partial covariance and partial
correlation and discuss their meaning linked to imposing
conditions with control variables. Then in Sec. III we pass
to the discussion of the FB multiplicity correlations, followed
in Sec. IV by the description of the superposition approach to
the multistage particle production process. Our key formulas,
allowing us to impose centrality fixing conditions at the level
of sources rather than hadrons, are derived there. In Sec. V we
obtain partial correlations in the initial state for the BT model,
which are confronted with the corresponding results obtained
with simulated data in Sec. VI. In Sec. VII we recapitulate
our results, summarizing in practical terms the method based
on partial correlations, which can be used in experimental
analyses. The appendices contain the discussion of the relation
of the partial covariance analysis to other methods, as well as
some technical details.

II. PARTIAL CORRELATION

In this section we establish the notation and provide
the standard definitions, with more details presented in
Appendix A.

The simplest case of partial correlations [1,4] involves two
physical random variables, X and Y , and a single control
random variable Z. One defines the element of the covariance
matrix in the standard way as

c(A,B) = 〈AB〉 − 〈A〉〈B〉, A,B = X,Y,Z,

where 〈.〉 denotes the averaging over the sample of n events.
The variance is, of course, the diagonal term,

v(A) = 〈A2〉 − 〈A〉2 = c(A,A). (1)

The partial covariance between X and Y with the control
variable Z is defined by the formula (see Appendix A for

interpretation)

c(X,Y • Z) = c(X,Y ) − c(X,Z)c(Z,Y )

v(Z)
. (2)

The second term in Eq. (2) removes the piece of the covariance
between X and Y which is due to their correlation to Z by
means of projecting out the components of X and Y which are
parallel to Z (in the n-dimensional space, with n denoting the
number of events). The partial variance is, correspondingly,

v(A • Z) = v(A) − c(A,Z)2

v(Z)
= c(A,A • Z), A = X,Y.

(3)

In experimental studies one often uses the correlation func-
tion defined as the covariance scaled with the multiplicities,
i.e.,

C(X,Y ) = c(X,Y )

〈X〉〈Y 〉 , (4)

and, correspondingly, V (A) = v(A)/〈A〉2. Then the partial C
correlation following from Eq. (2) is

C(X,Y • Z) = C(X,Y ) − C(X,Z)C(Z,Y )

V (Z)
. (5)

Finally, one defines the partial analog of Pearson’s ρ
correlation [1,4],

ρ(X,Y • Z) = c(X,Y • Z)√
v(X • Z)v(Y • Z)

= ρ(X,Y ) − ρ(X,Z)ρ(Z,Y )√
1 − ρ(X,Z)2

√
1 − ρ(Z,Y )2

, (6)

where

ρ(A,B) = c(A,B)/
√

v(A)v(B). (7)

As discussed in a greater detail in Appendix B, the partial
covariance, under quite general assumptions [6,7] which are
typically fulfilled in ultrarelativistic heavy-ion collisions, is
related to the conditional covariance, namely

c(X,Y • Z) � c(X,Y |Z), (8)

where the meaning of the condition in c(X,Y |Z) is that
first Z is fixed to a very narrow class (for instance, if it
describes the discrete multiplicity of hadrons in the reference
bin, it can be fixed to a natural number equal to this
multiplicity), then the covariance between X and Y is evaluated
within this subsample, and, finally, averaging of thus-obtained
covariances over various values of Z within the sample is
performed.

As a matter of fact, such a conditional procedure was used
in the STAR experiment [2] to analyze the FB multiplicity
correlations in Au+Au and p + p collisions at

√
sNN =

200 GeV. In this context, relation (8) was derived by Lappi-
McLerran [17] under the assumption of normal distributions,
and by Bzdak [18] with the condition (B1), similarly as in
Refs. [6,7].

The practical significance of Eq. (2) or (5) is that the
imposition of external constraints (such as fixing centrality)
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may be, under general assumptions, accomplished via the
partial covariance technique.

III. FORWARD-BACKWARD
MULTIPLICITY CORRELATIONS

In our study, X, Y , and Z random variables are the
multiplicities of produced hadrons in, correspondingly, a
forward pseudorapidity bin F , a backward pseudorapidity
bin B, and a reference bin. We will explore two cases:
reference bin C located at a central pseudorapidity bin, and
the sum of bins L and R, located symmetrically at peripheral
rapidities ηL and ηR = −ηL. Multiplicity in the reference bin
determines the centrality of the event. The location of the
reference bin is fixed, whereas F , centered around η1, and B,
centered around η2, vary in the covered pseudorapidity range
(in this more general arrangement we do not request that F
is forward and B backward, but they assume any location
in pseudorapidity within the acceptance range). We will also
consider the case where the multiplicities in L and R bins are
fixed independently, according to the case with two constraints
described in Appendix A.

Experimental studies of the longitudinal multiplicity corre-
lations have a long history. Early investigations of pp and
pp̄ collisions [19–25] and nuclear collisions [26,27] were
followed by the studies of ultrarelativistic heavy-ion and pp
reactions at the Relativistic Heavy Ion Collider [2,28] and at
the Large Hadron Collider (LHC) [29–35]. Numerous physical
models and theoretical methods have been invented in attempts
to understand the mechanisms behind the generation of
long-range correlations [3,12,17,18,36–63]. The importance
of these investigations lies in the well-known fact that the
correlations over a large rapidity separation can originate only
from the earliest stages of the collision, and thus they may
reveal fingerprints of the early dynamics of the system.

In our study we demonstrate the methodology based on
partial correlations with simulated events for Pb+Pb collisions
at

√
sNN = 2.76 TeV, described in detail in Sec. VI.

IV. SUPERPOSITION APPROACH

One should bear in mind that the particle production in
ultrarelativistic heavy-ion collisions is an effect of a multi-
stage process (see, e.g., Refs. [8,64]). First, we have an early
production of entropy, resulting from partonic physics. It
is modeled in various approaches, such as string formation
[40,45], the color glass condensate theory [65,66], or the
Glauber approach [67–72], used in this work. The initial
partonic entropy is distributed in space in a correlated way.

This distribution, treated event by event, serves as an initial
condition for the intermediate hydrodynamic evolution (for
reviews see, e.g., Refs. [73,74] and references therein) or for
transport modeling [75]. In our work the applied hydrody-
namics is deterministic, and hence it does not introduce extra
fluctuations, which should arise in a viscous system [76] but
which according to estimates are not very significant [77,78].

The intermediate evolution continues until freeze-out,
where the Cooper-Frye formalism [79] is applied at the freeze-
out hypersurface defined with a constant temperature (we take

Tf = 150 MeV). It generates primordial hadrons (stable and
resonances) according to a thermal distribution. Subsequently,
resonances undergo decays, possibly in cascades, into stable
particles. Due to a statistical nature of the production process,
the distribution of a hadron of a given species is Poissonian, and
hence (trivial) fluctuations are generated due to the sampling
with a finite number of particles.

The goal of the data analyses is to unfold of the trivial
fluctuations [14,15,80–83], such as those from statistical
hadronization, and acquire information on correlations gen-
erated in the earlier evolution phases. Below we describe how
this is accomplished in the superposition approach.

Let us first bring up an important approximation underlying
this approach, which may be termed as no bin mixing. The
initial distribution of entropy may be divided into cells labeled
with their space-time rapidity

η‖ = 1

2
log

(
t + z

t − z

)
(9)

(and also by the transverse coordinates x and y). The bins
are “carried over” with hydrodynamics or transport to the
freeze-out hypersurface, with the assumption of no mixing
between the bins, such that the final pseudorapidity of the
fluid element, η, is a function of η‖. The hydrodynamic push
in the longitudinal direction is not very strong, and we estimate

η � kη‖, (10)

with k = 1.2 for the model we apply.
At freeze-out, there is some thermal dispersion of the

momenta of hadrons, as particles originating from the same
hydrodynamic fluid cell acquire rapidities spread with �η ∼ 1.
This causes some bin mixing of the two-particle correlation
function in pseudorapidity. In addition, resonance decays
generate extra short-range correlations with the width of
�η ∼ 1 (we will return to the issue of separating the short-
range components when describing our results in Sec. VI).

We remark that inclusion of the detector acceptance into the
framework does not lead to a new element. If the acceptance
is expressed with a Bernoulli trial of success rate p, then its
folding with a Poisson distribution from the thermal motion
leads to a Poisson distribution with a mean enhanced by
the factor p. Sums of various particle species with Poisson
distributions also lead to a Poisson distribution with the mean
expressed as a sum means of the added distributions.

Our basic methodology is as follows: We will use simulated
data (with removed short-range component coming from
resonance decays) to obtain the two-particle partial correlation
function with the trivial fluctuations unfolded with the help our
formalism. The result will be directly compared to the partial
correlation function of the initial state used in the simulations
(cf. Sec. V), with arguments shifted according to Eq. (10).

We now come to the derivation of relevant formulas. One
may consider the fluid cells at the freeze-out hypersurface as
sources, which emit hadrons. Each source, by definition, emits
particles independently of other sources, but with the same (for
the sake of simplicity) distribution. The number of fluid cells
(sources) at the forward F and backward B pseudorapidity is
denoted as SF and SB , respectively (recall that the fluid cells at
a given rapidity are located at various transverse positions
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and their number fluctuates). Then, the number of produced
hadrons in each bin is

NA =
SA∑
i=1

mi, A = F,B, (11)

where mi denotes the number of particles produced from
source i. We assume that each source produces particles with
the same distribution, hence 〈mi〉 = 〈m〉 and v(mi) = v(m).
The assumption of the independent production leads to simple
formulas which connect moments of the number of sources
with the moments of the number of the produced particles
[8,64]:

〈SA〉〈m〉 = 〈NA〉,
c(SA,SA′)〈m〉2 = c(NA,NA′) − δAA′

ω(m)〈NA〉 (12)

≡ c(NA,NA′),

where ω(X) = v(X)/〈X〉2 is the scaled variance. We notice
a subtraction of ω(m)〈NA〉 appearing for the diagonal term
A = A′, i.e., for the variance:

v(SA)〈m〉2 ≡ c(SA,SA)〈m〉2 = v(NA) − ω(m)〈NA〉
≡ v(NA). (13)

The origin of this term is the presence of variance (or
autocorrelation) of the particles produced from the same
sources, v(mi) = c(mi,mi) > 0, whereas the covariance of
the overlaid distributions from different sources vanishes by
the assumption of independent production, c(mi,mj ) = 0 for
i 
= j .

For the special case of the Poisson distribution of the
overlaid variable m (which is the case of our numerical
study presented in Sec. VI), we have ω(m) = 1 and v(NA) =
〈NA(NA − 1)〉 − 〈NA〉2, which corresponds to the subtraction
of autocorrelations; the average number of pairs appears in
the formula. However, Eq. (13) is more general, holding,
under the assumptions of the superposition model, for any
distribution of the overlaid variable m. In this paper, we refer
to the subtraction of ω(m)〈NA〉 from the variance as to “the
removal of autocorrelations” and indicate it with a bar.

In an experimental study, where in principle one does
not know the distribution of m, one may find ω(m) in a
numerical way with the following procedure: One examines
the covariance matrix c(NA,NA′ ) as a two-dimensional matrix
in A and A′ indices. The diagonal term at A = A′ forms a sharp
discontinuous ridge, sticking up from a smooth “background”
function. One then adjusts the value of ω(m) to remove the
sharp ridge from the function c(NA,NA′) − δAA′

ω(m)〈NA〉.
This prescription conforms to Eq. (12), as the covariance of
the sources c(SA,SA′) is a smooth function of A and A′.

The meaning of Eq. (13) is that the covariance of the number
sources is proportional to the covariance of the observed
hadron multiplicities, but with the autocorrelations removed.
Passing to the scaled covariance (4), we have

C(SA,SA′) = C(NA,NA′ ) − δAA′ ω(m)

〈NA〉 ≡ C(NA,NA′). (14)

We are now ready to build the partial covariance for the
superposition approach. Some introductory discussion is in

place. As stated in Sec. II and further discussed in Appendix B,
the meaning of the partial covariance is, essentially, an
imposition of a condition on the value of the control variables.
In the case of multiplicity correlations in ultrarelativistic
heavy-ion collisions, a first instinct is to constrain the centrality
fluctuations, i.e., the fluctuations of number of hadrons in a
reference bin. However, a more desired constraint concerns the
number of sources corresponding to the reference bin. Such
a constraint is more directly related to a physical situation in
the initial state. Suppose a reference bin, defined as C, has
in a given event SC sources which “determine the physics.”
On the other hand, the number of detected hadrons NC is
sensitive to the fluctuation in the production from sources.
Therefore a fixed value of NC corresponds to event-by event
fluctuating values of SC ; constraining NC does not completely
constrain SC and the physics of the initial condition remains
washed out.

According to our formalism, the constraint imposed at the
level of initial sources is realized with the equation

C(SF ,SB • SC) = C(NF ,NB ) − C(NF ,NC)C(NB,NC)

v(NC)

� C(SF ,SB |SC). (15)

This is the key formula used in our analysis of the simulated
data in the following sections.

If one wishes, however, to impose the constraint at the level
of the produced hadrons, then using the formula

c(SA,NA′) = c

(
SA,

SA′∑
i

mi

)
= 〈m〉c(SA,SA′),

one arrives at the expression

C(SF ,SB • NC) = C(NF ,NB ) − C(NF ,NC)C(NB,NC)

v(NC)

� C(SF ,SB |NC). (16)

Note that the subtle but important difference between Eq. (15)
and (16) is in the denominator of the subtracted term, where
we find the variance of the multiplicity in the reference bin
with autocorrelations subtracted or present. In our sample, the
autocorrelations increase the variance by ∼100%, hence the
effect is very important.

We stress that despite its simplicity, the meaning of Eq. (15)
is nontrivial, as it allows us to impose a strict centrality
constraint at the level of sources and infer partial correlation
of sources, whereas the evaluation is based solely on measured
multiplicities of the produced hadrons.

V. MODELING INITIAL CORRELATIONS

For our illustrative purposes, we use the wounded quark
model [84,85] for the initial state. In this model, the initial
sources are the wounded quarks, moving forward or backward,
according to the motion of their parent nucleons from nuclei
A and B. An advantage of using the wounded quarks
compared to wounded nucleons [69] is that one obtains proper
scaling [13,86–90] of the multiplicities on the number of
participants with no need for the binary-collision component

054903-4



PARTIAL CORRELATION ANALYSIS METHOD IN . . . PHYSICAL REVIEW C 96, 054903 (2017)

[70]. The event-by-event distribution of wounded quarks in the
transverse plane is obtained from the Glauber simulations with
GLISSANDO [91,92], corresponding to the transverse location
of the wounded quarks. The longitudinal profile in spatial
rapidity η‖ is taken according to the model of “triangles”
[93–95], where each source has the entropy distributed
preferentially in the direction of its motion, according to a
simple formula

fA,B(η‖) = yb ± η‖
yb

h(η‖), for |η‖| < yb, (17)

where A and B denote the sources belonging to, respectively,
the left- and right-moving nuclei, yb is the rapidity of the beam
(yb � 8 for Pb+Pb collisions at

√
sNN = 2.76 TeV), and h(η‖)

is an additional profile, typically of a flattened Gaussian form
[95]. As h(η‖) cancels from the formulas for symmetric A + B
collisions, we do not need to specify it explicitly.

Let us introduce the notation QA and QB for the number
of wounded quarks belonging to the A and B nuclei, and
Q± = QA ± QB . Then, according to Eq. (17), the number
of sources (combined from nucleus A and B) at location
η‖ is

S(η‖) =
(

Q+ + Q−
η‖
yb

)
h(η‖). (18)

For symmetric collisions the average over events yields
〈Q−〉 = 0, and hence 〈S(η‖)〉 = 〈Q+〉h(η‖).

Bzdak and Teaney [12] computed the correlation function in
the model of triangles (in the variant with wounded nucleons).
It yields a very simple result,

C(SF ,SB) = v(Q+)

〈Q+〉2
+ v(Q−)

〈Q+〉2
u1u2, (19)

where

u1,2 = η‖1,2

yb

= η

kyb

(20)

[cf. Eq. (10)], and indices 1 and 2 correspond to labels F and
B, respectively. Note that, as announced, the overall rapidity
profile h(η‖) cancels out. The moments of Q± are read out
from GLISSANDO simulations via averaging over some chosen
class of events.

Next, we use Eq. (5) to derive the partial covariance function
for the BT model with the control bin C placed at η‖ = 0. A
short calculation yields

C(SF ,SB • SC) = v(Q−)

〈Q+〉2
u1u2. (21)

We note that Eq. (21) differs from Eq. (19) by not carrying the
term with v(Q+). This is clear from the point of view of the
conditional correlation, as in the present case C(SF ,SB |SC)
corresponds to fixing the multiplicity at η‖ = 0. From Eq. (18)
we get S(0) = Q+h(0), hence this is equivalent to fixing
Q+, and thus v(Q+) = 0 in the calculation of the conditional
covariance. The obtained consistency verifies in an obvious
way the relation C(SF ,SB • SC) = C(SF ,SB |SC).

For the ρ correlation of Eq. (6) we find the very simple
formula

ρ(SF ,SB • SC) = sgn(u1u2), (22)

where sgn denotes the sign function. This means that the partial
ρ correlation of multiplicities in bins located at rapidities of
the same (opposite) sign is +1 (−1), indicating maximum
correlation (anticorrelation).

In experiments, it frequently happens that multiplicities
in peripheral forward (R) and distant backward (L) bins are
available and can be used for centrality determination. Below
we consider two cases: (1) where the sum of the multiplicities
in L and R is taken and Eq. (5) is used and (2) the multiplicities
in L and R are taken as separate constraints according to
Eq. (A11). We consider the case where the peripheral bins are
symmetrically arranged, with R and L around pseudorapidities
ηR and ηL = −ηR .

In case (1) the BT model yields exactly the same result as
Eq. (21),

C(SF ,SB • SL + SR) = v(Q−)

〈Q+〉2
u1u2, (23)

which follows from the fact that according to Eq. (18) S(ηL) +
S(ηR) ∼ Q+, and the condition with symmetrically arranged
peripheral bins fixes Q+, as in the case of the central bin.

In case (2) Eq. (A11) gives for the BT model a vanishing
result,

C(SF ,SB • SL,SR) = 0, (24)

which is compatible with the simultaneous constraints S(ηL) =
0 and S(ηR) = 0, which fixes both Q+ and Q−, hence
v(Q+) = v(Q−) = 0, and C(SF ,SB |SL,SR) = 0. We note that
this is a specific feature of the BT model, whereas models
which include extra fluctuations in the initial state, e.g., the
fluctuating-string model of Ref. [60], would yield a nonzero
result.

VI. RESULTS FOR THE SIMULATED EVENTS

Our final goal is to test to what extent the formulas
obtained in the previous section are reproduced with simulated
data and the master formula (15) and its equivalent for the
case of left and right peripheral bins. Because of departures
from assumptions of the superposition approach (bin mixing,
resonance decays) this is not an academic exercise but a
verification if the method may be practical in actual data
analyses.

The simulated data are obtained as follows: For the initial
condition, we apply the wounded quark model for Pb+Pb
collisions at

√
sNN = 2.76 TeV, as described in Sec. V. We

take a rather broad sample corresponding to centrality (as
determined with Q+) of 30–40%. Then we use the results of
event-by-event 3+1D viscous hydrodynamics [96] obtained
with the wounded-quark initial conditions. The statistical
hadronization at freeze-out is carried out with THERMINATOR
[10,11], which incorporates all hadrons from the Particle
Data Tables and implements resonance decays. We label the
results obtained with the products of resonance decays as “all
charged,” which consists of π±, K±, p, and p̄. To reduce the
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FIG. 1. Two-particle C correlation (with removed autocorrelations) in pseudorapidity of hadron multiplicities for the simulated data (a)
for all charged particles after resonance decays and (b) for the primordial hadrons. Wounded quark model, 3+1D viscous event-by-event
hydrodynamics, statistical hadronization. Pb+Pb collisions at

√
sNN = 2.76 TeV in centrality class 30–40%.

correlations induced by the resonance decays, we also present
the results obtained with the “primordial” particles generated
at freeze-out, i.e., before the resonance decays.

As we wish to have a view as broad as possible, we take a
large continuous acceptance window in our numerical study,
with |η1,2| � 5.1 divided into 51 physical bins of width of 0.2.
Our coverage is thus (on purpose) much larger than accessible
in the LHC experiments to better illustrate the approach. The
central reference bin, where the number of hadrons in NC , is
taken as ηC � 0.5, and thus it has a width of five physical bins
(other values of width of the reference bin could be taken, with
similar results up to statistical uncertainties).

Figure 1 presents the basic output from the simulated data,
namely the C correlation (with autocorrelations removed),

obtained with (a) all charged particles (i.e., after resonance
decays) and (b) for the primordial particles. In case (a) we note
a hallmark ridge, wide by about one unit of pseudorapidity,
extending along the diagonal. It is due to the resonance decays,
which is the basic difference between cases (a) and (b). We
also note other nontrivial structures in the C correlation arising
from the applied hydrodynamic model, such as its rise at the
boundaries; however, understanding these intricate details is
not the goal of this work. Rather, we take the simulated data
(which, as we see, are not trivial) as they are and then carry
out the partial correlation analysis outlined in the previous
sections.

In Fig. 2 we compare the partial C-correlation function
for the source multiplicities with the central reference bin,

FIG. 2. Partial C-correlation function for the source multiplicities with the central reference bin (a) for the BT model and (b) for the
simulated data with primordial hadrons.
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FIG. 3. Partial C-correlation function for the source multiplicities for the simulated data for all charged hadrons, obtained with (a) the
central reference bin and (b) with the sum of left and right peripheral bins.

obtained for the BT model with Eq. (21), shown in panel (a),
to the same quantity obtained from the simulated data with
primordial hadrons with Eq. (15). We note that the overall
agreement of (a) and (b) is quite remarkable. Hence, if we
had the possibility of separating the resonance decays (and in
real data, also other sources of short-range correlations from
later stages of the evolution), then we could infer the initial
state correlations with the presented methodology. Note that
the application of Eq. (15) leads to large cancellations when
passing from Fig. 1(b) to Fig. 2(b). Also, the nonuniformities
are “miraculously” smoothed out, and hence they had to
originate from centrality fluctuations.

Separating other sources of correlations is of course far from
simple. One method (as done by the ATLAS collaboration in
Ref. [97]) is to do a numerical fit to a function describing
the short-range corrections and then simply subtract it. In our

illustration, it would correspond to “skimming” the ridge in
Fig. 1(a), and then carrying out the calculation, which would
lead to a result similar to Fig. 2(b).

We note that our model does not account for the correlations
reflecting the conservation laws, which is not essential for
testing the partial covariance approach.

When the short-range effects from the resonance decays
are kept, i.e., we are using the data from Fig. 1(a), then the
resulting partial C correlation with the central reference bin
has the shape shown in Fig. 3(a). We note the ridge along the
η1 = η2 diagonal but also several other features. First, we can
see a depletion along the lines η1 = 0 and η2 = 0. This is a
simple artifact of the central reference bin placed at η = 0,
since the definition (5) has the feature that when one of the
measurement bins is equal to the reference bin, e.g., Y = Z,
then C(X,Z • Z) = 0 identically. Suppose we decompose the

FIG. 4. Partial C-correlation function for the source multiplicities for the simulated data for π+, with (a) the central reference bin and (b)
with the sum of left and right peripheral bins.
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FIG. 5. Partial ρ correlation for the source multiplicities (a) for the BT model and (b) for the simulated data with primordial hadrons.

measured correlation function into the short- (s) and long-range (l) components, C = Cs + Cl . Then Eq. (15) becomes

C(SF ,SB • SC) = Cs(NF ,NB) + Cl(NF ,NB) − [Cs(NF ,NC) + Cl(NF ,NC)][Cs(NB,NC) + Cl(NB,NC)]

vs(NC) + vl(NC)
. (25)

We see from here all the features coming out in Fig. 3(a).
When F � B, we get the ridge from Cs(NF ,NB), and when
F � C or B � C, the function drops to zero for the reason
discussed above Eq. (25). Note, however, that even when F ,
B, and C are all sufficiently separated, we get still an artifact
from the presence of vs in the denominator of the second term
in Eq. (25). It leads to a reduction of the subtraction and,
consequently, larger values of C(SF ,SB • SC) in Fig. 3(a) (in
the region where F , B, and C are separated) than in the BT
model shown in Fig. 2(a).

Similar distortions are seen in the case of the L + R
reference bin, displayed in Fig. 3(b). We note that C(SF ,SB •
SL + SR) is “pulled down” at the peripheries and too large in
the region where F , B, L, and R are well separated.

The conclusion of the above discussion is that the short-
range components must be separated at the level of C(NF ,NB)
for the presented analysis to make practical sense.

A well-known method of reducing correlations from the
resonance decays is to use particles of the same charge. We
apply our procedures for π+, as there are no resonances that
decay into π+π+ pairs. Only some remnant correlation is
expected from resonance decays proceeding in cascades. The
result is shown in Fig. 4, with the central reference bin in
panel (a) and the sum of the peripheral bins L + R in panel
(b). We note a very weak correlation from cascade decays,
visible along the y1 = y2 diagonal. In the region away from the
diagonal we see a very close agreement with Fig. 2. Therefore
the use of hadrons of the same sign is an efficient way of getting
rid of the short-range correlations from the resonance decays.

In Fig. 5 we show the partial ρ correlation of Eq. (6),
with the central reference bin. We recall that in the BT
model it is given by Eq. (22), visualized in panel (a). As

expected, this shape is reproduced within statistical noise by
the primordial particles of the simulated data. We remark that
the ρ correlation, being the ratio of the covariance and variance,
carries less information than the C correlation. From the C
correlation we can read off both the scaled covariance and
variance (along the diagonal).

Finally, we test the partial correlation approach for the case
of the two peripheral reference bins discussed in Appendix A,
with −6.1 < ηL < −5.1 and 5.1 < ηR < 6.1. We recall that in
the BT model the corresponding partial correlation vanishes,
cf. Eq. (24). This is also the case, within numerical uncertain-
ties, for the simulated data, as visualized in Fig. 6, for the case
of primordial particles (a) and all positively charged pions (b).

VII. CONCLUSIONS

We have presented a simple method capable of providing
information on the initial two-particle multiplicity correla-
tions, which is insensitive to centrality fluctuations. The basic
formalism relies on the concept of partial covariance, where
a reference bin (or a few reference bins) are used to impose
constraints on the sample. Application of the method to a
superposition model, where particle production occurs in
subsequent stages, allows us to unfold the trivial statistical
fluctuations from the hadronization at freeze-out and gain
insight into the correlations in the initial stage of the reaction.

We have demonstrated the feasibility of the method by
carrying out an illustrative analysis on simulated data obtained
with hydrodynamics, run event by event on initial conditions
provided by the wounded quark model, and followed by
statistical hadronization. We have shown that performing the
calculations for the partial correlations of hadrons which do not
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FIG. 6. Partial C-correlation function for the source multiplicities with two peripheral reference bins, obtained for the simulated data with
(a) primordial hadrons and (b) all positively charged pions, π+.

carry correlations from resonance decays (primordial hadrons,
or pions of the same charge) reproduces efficiently the initial
partial correlations. Thus the method can be used as a practical
tool in experimental data analysis of two-particle correlations.

A nontrivial aspect of our approach is a simple way of
unfolding trivial statistical fluctuations generated at statistical
hadronization. In the superposition model, it amounts to
removal of autocorrelations from the building blocks of the
partial correlation function. Moreover, that way we are able to
impose constraints on the number of sources in the reference
bin, rather than the number of hadrons, which is desirable from
the point of view of studying the initial state.

The method is directly extendable to imposition of more
constraints, related to a possible involvement of more de-
tectors. This allows for getting more information of the
correlations generated in the initial state.

A crucial element of the correlation analyses is the separa-
tion of the short-range component, expected to be generated
in later stages of the collision, and the long-range component,
generated in the initial phase. We have demonstrated on the
simulated data that the use of same-charge pions largely
reduces the correlations due to resonances. Other sources of
short-range correlations (jets, femtoscopy) should be removed
with a suitable method.

To summarize, the procedure of obtaining the partial
correlations in the initial state is as follows:

(i) Obtain the two-particle correlation function in
(pseudo)rapidity from the data.

(ii) Remove autocorrelations and the short-distance com-
ponent.

(iii) Apply Eq. (15) or its generalizations in the case of
more control bins.

(iv) Up to corrections from bin mixing and spatial rapidity-
pseudorapidity mapping, the result represents the
correlations in the initial state of the collision with
centrality fluctuations removed at the level of sources.

Finally, we note that the technique of partial correlations
is applicable to other observables which correlate to the
“centrality” determination, for instance, various charges or
the transverse momentum.
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APPENDIX A: PARTIAL COVARIANCE WITH MORE
CONTROL VARIABLES

In this Appendix we list some basic definitions and
properties referring to the partial correlations. In a general case
we have n physical random variables X = (X1, . . . ,Xn) and
m control random variables Z = (Z1, . . . ,Zm). The quantities
Xi and Zj are vectors in the Nev-dimensional space, where
Nev (the number of events) is the number of the data points.
Averaging over events for a quantity A is defined as 〈A〉 =
1/Nev

∑Nev
k=1 Ai . One defines the partial covariance matrix as

�XX•Z = �XX − �XZ�−1
ZZ�ZX, (A1)

where �AB is the standard covariance matrix defined as

(�AB)ij = 〈(Ai − 〈Ai〉)(Bj − 〈Bj 〉)〉
= 〈AiBj 〉 − 〈Ai〉〈Bj 〉, A,B = X,Z, (A2)

where i and j label the variable types. Mathematically,
Eq. (A1) corresponds to projecting out from the vectors X
the components belonging to the space spanned by the vectors
Z (shifted to their central values). Indeed, introducing the
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projected physical vectors

Xi = Xi − (�XZ)ij
(
�−1

ZZ

)
jj ′(Zj ′ − 〈Zjj ′ 〉), (A3)

which by construction gives the orthogonality condition

〈ZmXi〉 − 〈Zm〉〈Xi〉 = 0, (A4)

we straightforwardly verify Eq. (A1).
The above formulas simplify when the control vectors Zj −

〈Zj 〉 are orthonormal (which we can always achieve via the
Gramm-Schmidt procedure or by diagonalization). Denoting
these orthonormal vectors as Uj ≡ Zj − 〈Zj 〉, j = 1, . . . ,m,
we have

Xi = Xi − (�XU )ijUj (A5)

and

(�XX•Z)ii ′ = (�XX)ii ′ −
m∑

j=1

(�XU )ij (�UX)ji ′ . (A6)

From construction, the diagonal terms are non-negative,
(�XX•Z)ii � 0, where the equality occurs when Xi − 〈Xi〉 is
contained in the space spanned by the vectors Uk .

The interpretation of Eq. (A6) is straightforward: we
subtract from the covariance of the physical variables the

covariance proceeding via a correlation, one by one, to
the control variables Uj . The meaning of the general case
(A1) is the same, with the complication arising from the
nonorthonormality of the control variables. Some further
mathematical facts, in particular the connection to the linear
regression analysis, may be found in Ref. [98].

Throughout the paper we use the shorthand notation

c(Xi,Xi • Z) ≡ (�XX•Z)ii ′ , c(Xi,Xi) ≡ (�XX)ii ′ . (A7)

The partial covariance matrix scaled with the multiplicities is
defined as

C(Xi,Xj • Z) = c(Xi,Xj • Z)

〈Xi〉〈Xj 〉 . (A8)

The Pearson-like partial correlation coefficient between Xi

and Xj is defined as

ρ(Xi,Xj • Z) = c(Xi,Xj • Z)√
c(Xi,Xi • Z)c(Xj,Xj • Z)

, (A9)

which makes sense as long as c(Xi,Xj • Z) > 0. From the
Schwartz inequality −1 � ρ(Xi,Xj • Z) � 1, and for the
diagonal terms ρ(Xi,Xi • Z) = 1, as in the case of the standard
Pearson’s correlation ρ(Xi,Xi).

For the simplest case of a single control variable, the above
formulas reduce to Eqs. (2) and (6). For the special case of two
physical and two control variables, explored in this paper, we
have

c(X,Y • Z1,Z2)

= c(X,Y ) − c(X,Z1)v(Z1)c(Z1,Y ) + c(X,Z2)v(Z2)c(Z2,Y ) − c(Z1,Z2)[c(X,Z1)c(Z2,Y ) + c(X,Z2)c(Z1,Y )]

v(Z1)v(Z2) − c(Z1,Z2)2
. (A10)

For the case of the scaled covariance Eq. (A10) becomes

C(X,Y • Z1,Z2)

= C(X,Y )−
C(X,Z1)V (Z1)C(Z1,Y ) 〈Z1〉2

〈Z2〉2 + C(X,Z2)V (Z2)C(Z2,Y ) 〈Z2〉2

〈Z1〉2 − C(Z1,Z2)[C(X,Z1)C(Z2,Y ) + C(X,Z2)C(Z1,Y )]

V (Z1)V (Z2) + C(Z1,Z2)2
,

(A11)

where V (Zj ) = v(Zj )/〈Zj 〉2 = C(Zj ,Zj )/〈Zj 〉2.
For the partial correlation coefficient the explicit formula reads

ρ(X,Y • Z1,Z2) = A(X,Y )√
A(X,X)A(Y,Y )

,

A(X,Y ) = [1 − ρ(Z1,Z2)2]ρ(X,Y ) + ρ(Z1,Z2)[ρ(Z2,X)ρ(Z1,Y ) + ρ(Z1,X)ρ(Z2,Y )]

− v(Z1)

v(Z2)
ρ(Z1,X)ρ(Z1,Y ) − v(Z2)

v(Z1)
ρ(Z2,X)ρ(Z2,Y ). (A12)

APPENDIX B: RELATION OF THE PARTIAL
COVARIANCE TO THE CONDITIONAL COVARIANCE

Lawrance [6] has shown that if a sample satisfies the affine
condition

E(X|Y ) = α + BY, (B1)

with α a constant and B a constant matrix, then the equality
of the partial covariance and the conditional covariance

follows,

�XX•Y = �XX|Y . (B2)

The converse was shown by Baba, Shibata, and Sibuya [7], and
hence conditions (B1) and (B2) are equivalent. The question
whether (B1) holds can be tested on the actual data. In the
context of ultrarelativistic heavy-ion collisions, it should hold
for sufficiently narrow centrality classes [18]. Also, condition
(B1) holds for normal distributions [7].
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The important practical implication of Eq. (B2) is that
the partial covariance method is a simple way of imposing
constraints in the correlation analysis.

APPENDIX C: RELATION TO OTHER METHODS

One may relate the partial covariance method to the PCA
[16]. Suppose all bins are the measurement bins X, obtained,
for instance, by dividing the full pseudorapidity acceptance of
the detector info narrower bins. Let Uj denote the eigenmodes
of the covariance matrix �XX. Then one may project out the
eigenmodes (with the highest eigenvalues) from the covariance
matrix, according to Eq. (A6). Thus, PCA may be viewed as
a special case of the partial covariance method, where the
constraints have the form of the eigenmodes of the covariance
matrix.

Whereas the algebra (projection) in the two methods is the
same, the accents are different. In PCA one does not separate
the measurement and reference variables, treating all the bins
“democratically,” and there is a focus on a possible hierarchy
in the eigenvalues (large gaps in the spectrum are linked to
strong correlations, or collectivity, in the fluctuations). In the
partial covariance method the measured variables are grouped
from the outset into the physical bins X and the reference
bins Y . This is more natural when the reference data come
from different detectors (e.g., in ultrarelativistic heavy-ion
collisions, from the peripheral detectors, transverse energy
colorimeters, etc.) than the detector collecting the physical
data (central TPC). In this case the constraints come entirely
from the reference variables, and the constraint vectors Uj are
built from the vectors Y (see Appendix A).

In PCA applied to pseudorapidity fluctuations, the mul-
tiplicity eigenmode with a highest eigenvalue, denoted in
Ref. [16] as v

(1)
0 , corresponds to an η-independent fluctuation,

i.e., where multiplicities in all the bins vary by an equal
amount. This may be interpreted as centrality fluctuation, and
hence the removal of the highest eigenvalue mode in PCA
is equivalent to getting rid of the centrality fluctuations, with
centrality defined via the total multiplicity from all the bins.

The issue of separating centrality fluctuations is also focal
the methods aiming at strongly intensive fluctuation measures
[14,15,99,100]. The framework applied there is also based
on the superposition model, but there is one common source
(with its multiplicity traditionally termed as the “volume”)
and two types of particles, A and B, emitted from the source
with multiplicities mA and mB , respectively. One may then use
the superposition approach to relate the statistical moments of
mA and mB to the corresponding moments of the observed
multiplicities of A and B, NA and NB , in such a way the
fluctuation of the sources cancels out. Thus the object of
the study is the emission process from the source, and not

the fluctuation of the number of sources (volume), considered
trivial.

With the method described in this paper we study the case
where there are multiple types of sources (each in a given
rapidity bin) and (for simplicity) just one type of hadrons
(an extension to more types of hadrons is possible). Our
objective is the fluctuation of the number of sources (at various
rapidities), whereas the fluctuations of the overlaid variable m
are considered not interesting. Thus, the partial covariance
method used with the superposition approach in this work is,
in a sense, complementary to the studies based on the strongly
intensive fluctuation measures.

APPENDIX D: THE AN M COEFFICIENTS

In this Appendix we discuss the partial covariance for
the case, where the C-correlation function for hadrons (with
autocorrelations removed) is expressed via the expansion [12]

C(η1,η2) =
∞∑

m,n=0

anmTn

(η1

Y

)
Tm

(η2

Y

)
, (D1)

where Tn(x) is a set of orthonormal functions and [−Y,Y ] is
the pseudorapidity domain. The choice of Refs. [30,97,101] is

Tn(x) =
√

2 + 1/2Pn(x), (D2)

where Pn(x) denote the Legendre polynomials. The orthonor-
mality condition

∫ 1
−1 dxTn(x)Tm(x) = δnm is satisfied. The anm

coefficients are

anm =
∫ Y

−Y

dη1

Y

∫ Y

−Y

dη2

Y
C(η1,η2)Tn

(
η1

Y

)
Tm

(
η2

Y

)
. (D3)

The transformation to the partial C-correlation function of
Eq. (15) leads, in general, to mixing of the anm coefficients, i.e.,
the coefficients aC

nmfor C(SF ,SB • SC) become complicated
functions of the anm coefficients for C(NF ,NB).

We can, however, derive a simple formula connecting these
coefficients, introducing the expansion (for a fixed ηC of the
reference bin)

C(η1,ηC) =
∞∑
m

am(ηC)Tm

(
η2

Y

)
. (D4)

Then

aC
nm = anm − an(ηC)am(ηC)

v(ηC)
(D5)

[up to the rescaling effects of Eq. (10), not included explicitly
in the present discussion].

We remark that for the special case of the BT model with
the central reference bin, aC

11 = a11.
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[9] P. Bożek, Phys. Rev. C 85, 034901 (2012).
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