⁴He, ¹⁰Be, ¹⁴C, and ¹⁶O light-fragment-accompanied cold ternary fission of the ²⁵⁰Cm isotope in an equatorial three-cluster model

M. R. Pahlavani,^{*} O. N. Ghodsi,[†] and M. Zadehrafi[‡]

Department of Nuclear Physics, Faculty of Basic Science, University of Mazandaran, P.O. Box 47415-416, Babolsar, Iran (Received 18 September 2017; revised manuscript received 17 October 2017; published 29 November 2017)

The cold ternary fission of ²⁵⁰Cm accompanied with ⁴He, ¹⁰Be, ¹⁴C, and ¹⁶O light charged particles in the equatorial three-cluster model configuration is studied. Driving potential and fission yield for each accompanied light charged particles for individual fragmentation are calculated. The obtained results reveal that even-mass-number components are more favored than odd-mass-number components. Furthermore, upon increasing the mass of light fixed fragment in ternary fission, the probability of crossing over the potential barrier (driving potential) is decreased considerably due to the height of the potential barrier. The comparison between relative yields for a variety of fragmentation in each group indicates that the presence of doubly or near doubly magic closed-shell fragments are more favored in the cold ternary fission of the ²⁵⁰Cm superheavy isotope.

DOI: 10.1103/PhysRevC.96.054612

I. INTRODUCTION

With the advent of fission and its application to produce nuclear energy in the late 1940s, most attempts focused logically on products of binary fission. Ternary fission was recognized as a curious source of energetic alpha particles. This rare type of fission was discovered by Chinese scientists in cooperation with French researchers [1-5]. Tritium gas emitted in thermal-neutron-induced ternary fission of the ²⁴⁹Cf isotope was observed for the first time in the Laue-Langevin Institute located in Grenoble (France) [6]. Also, tritium as a ternary fission product was discovered by monitoring fission fuel wastes [7,8]. The spontaneous breakup of a superheavy nucleus into three fission fragments is referred to as cold ternary fission and has been considered as a very rare process compared with binary fission. Usually, one of the ternary fission fragments is much lighter than the other two main fragments and hence the ternary fission is often referred to as a light-charged-particle-accompanied (LCP-accompanied) process. In most cases of ternary fission, the light fixed fragment is emitted in a direction perpendicular to the other two fission fragments due to the formation of the LCP in the neck region. Hence, LCP is accelerated due to the Coulomb repulsion of both heavy fragments after emission in the perpendicular direction relative to the main fragments. Such a process is called LCP-accompanied equatorial ternary fission. However, in true ternary fission in which the parent nucleus splits into three fragments of not very different masses, all fragments escape along the same line, which is called collinear ternary fission. True ternary fission mostly occurs in heavy and superheavy nuclei with large values of the fissility parameter, $Z^2/A > 31$ [9]. Also, the energy released in true ternary fission is much larger than that in equatorial LCP-accompanied ternary fission. In spite of huge attempts, the theoretical aspects of this process are not well understood.

054612-1

fission of heavy and superheavy isotopes, this rare process has been studied extensively both theoretically and experimentally [11–23]. A coplanar three-cluster approach was developed to study the cold α particle accompanied ternary fission of ²⁵²Cf by using a double folding potential [18]. Rosen and Hudson [24] have shown experimentally that the probability of true ternary fission is much lower than that of binary fission (approximately 6.7 ± 3 per 10⁶ binary fission in the ²³⁵U isotope). Poenaru et al. [25–27] presented a simple theoretical method to study ternary fission. All possible ternary fragmentation of ²⁵²Cf isotope have been investigated [28,29] by using three-cluster model (TCM) [30]. Gupta and his colleagues used the TCM to study the decay modes of different isotopes via exotic cluster emissions [31,32]. The effect of deformation and orientation on the ternary fragmentation potential of ⁴Heand ¹⁰Be-accompanied fission of ²⁵²Cf has been studied as well [33]. This approach has been used extensively to study the various aspects of ternary fission for different isotopes of californium, plutonium, and curium [9,34–39]. The liquid drop formalism via the Yukawa-plus-exponential nuclear potential along with nuclear shape parametrization are applied to obtain the ternary-to-binary ratio in collinear geometry for the ²⁵²Cf isotope [40]. Recently, various isotopes of helium, lithium, beryllium, boron, and carbon (LCPs) were observed in the spontaneous ternary fission of ²⁵²Cf [41,42]. In the present investigation, we attempt to apply the TCM

The probability of LCP-accompanied ternary fission decreases sharply upon increasing the mass number of the accompanying

fixed third particle. The first experimental evidence for LCP-

accompanied ternary fission was reported by Alverez et al.

[10]. Because of its importance in competition with binary

to study the ternary fission of the ²⁵⁰Cm isotope accompanied by ⁴He, ¹⁰Be, ¹⁴C, and ¹⁶O light charged particles as the fixed third fragment. In Sec. II, we present the theoretical aspects of the model. The driving potential and LCP-accompanied probability for each individual fragmentation are calculated by using the equatorial TCM for separate accompanied fixed third fragments in Sec. II. The results obtained are discussed in Sec. III. Finally, a brief summary of the present study along with the concluding remarks are provided in Sec. IV.

^{*}m.pahlavani@umz.ac.ir

[†]o.nghodsi@umz.ac.ir

[‡]m.zadehrafi@stu.umz.ac.ir

II. METHODOLOGY

As is well known, each reaction occurs spontaneously only if the Q value of the reaction becomes positive energetically. The Q value of cold ternary fission must satisfy the following condition:

$$Q = M - \sum_{i=1}^{3} m_i > 0, \tag{1}$$

where *M* is the mass excess of the parent nucleus undergoing ternary fission and m_i are the mass excesses of the three fragments expressed in energy units. Note that *Q* is the released energy in the reaction and can be defined by $Q = E_1 + E_2 + E_3$ with E_i (i = 1,2,3) being the kinetic energy carried by the three individual fragments.

For a heavy unstable parent nucleus that undergoes cold ternary fission, the interacting potential between the three nascent fragments is equal to sum of the total Coulomb and nuclear potential,

$$V = \sum_{i=1}^{3} \sum_{j>i}^{3} (V_{Cij} + V_{Pij}), \qquad (2)$$

where V_{Pij} and V_{Cij} are nuclear and Coulomb potential between each pair of fragments, respectively. The proximity type of potential is considered for the nuclear interaction of fragment pairs. The Coulomb potential V_{Cij} is related to the repulsion Coulomb force between each pair of fragments and is defined as

where $\xi = s/b$ is a straight function of distance between

fragments and $s_{ij} (= R_{ij} - R_i - R_j)$ is the distance between

near surfaces of the fragments. In the equatorial configuration, it is usual to consider $s = s_{12} = s_{13} = s_{23}$. It means the three

ternary fission products are separated from each other symmetrically with the same speed. In reality, the light fragment

goes away faster than the two heavier ones. For simplicity, as

a reliable approximation, one may consider equivalent speeds

for three fragments [28,29,33]. Also, s = 0, s < 0, and s > 0

correspond to the "touching configuration," "overlap region,"

Based on the TCM, the relative yields of all chargeminimized fragmentation channels are calculated as the ratio between the penetration probability of a given fragment over the sum of penetration probabilities of all possible

and "separated fragments" structure, respectively.

fragmentation:

$$V_{Cij} = \frac{Z_i Z_j e^2}{R_{ij}},\tag{3}$$

where Z_i and Z_j are the atomic numbers and R_{ij} is the center-to-center distance between two fragments *i* and *j*, respectively. R_x is the net radius of each fragment (x = 1,2,3 stands for the three fragments), which is evaluated by using the following semi-empirical formula in terms of fragments mass number A_x :

$$R_x = 1.28A_x^{1/3} - 0.76 + 0.8A_x^{-1/3}.$$
 (4)

The nuclear proximity potential V_{Pij} is defined as [36]

$$V_{Pij}(s) = 4\pi b\gamma \overline{R} \Phi\left(\frac{s}{b}\right).$$
⁽⁵⁾

Here, *b* is the nuclear surface diffuseness parameter, which is varied in the interval [0.5, 1]. b = 0.87 fm is considered here.

The coefficient of nuclear surface tension, γ , is defined through the Lysekil mass formula [43],

$$\gamma = 0.9517[1 - 1.7826(N - Z)^2/A^2] \text{ MeV/fm}^2,$$
 (6)

where N, Z, and A are the neutron, proton, and mass number of the parent nucleus, respectively.

R is the mean curvature radius, which is defined by

$$\overline{R} = \frac{R_i R_j}{R_i + R_j}.$$
(7)

Finally, $\Phi(\xi) = \Phi(\frac{s}{b})$ is the universal proximity potential function, which is a function of the distance between two interacting fragments [44],

$$\Phi(\xi) = \begin{cases} -\frac{1}{2}(\xi - 2.54)^2 - 0.0852(\xi - 2.54)^3 & \text{for } \xi < 1.2511 \\ -3.437 \exp\left(-\xi/0.75\right) & \text{for } \xi \ge 1.2511, \end{cases}$$
(8)

is obtained by using the one-dimensional Wentzel-Kramers-Brillouin (WKB) approximation,

$$P = \exp\left\{-\frac{2}{\hbar}\int_{s_1}^{s_2}\sqrt{2\mu(V-Q)}ds\right\},$$
 (10)

where V is interaction potential given by Eq. (2) and Q is the energy released in fission, which is defined by Eq. (1).

The first turning point $s_1 = 0$ represents the touchingfragments configuration and the second turning point s_2 satisfies the $V(s_2) = Q$ condition.

The reduced mass of the three fragments is defined as

$$\mu = m \left(\frac{A_1 A_2 A_3}{A_1 A_2 + A_1 A_3 + A_2 A_3} \right), \tag{11}$$

where *m* is the average mass of the nucleon and A_1 , A_2 , and A_3 are the mass numbers of the three fission products.

III. RESULTS AND DISCUSSIONS

The structure of the minima in the so-called driving potential is studied based on the concept of a cold reaction valley. The difference between the interaction potential V and

Here,
$$P(A_i, Z_i)$$
 is the probability in which fragment *i* crosses
the three-body potential barrier. The penetration probability

 $Y(A_i, Z_i) = \frac{P(A_i, Z_i)}{\sum P(A_i, Z_i)}.$

(9)

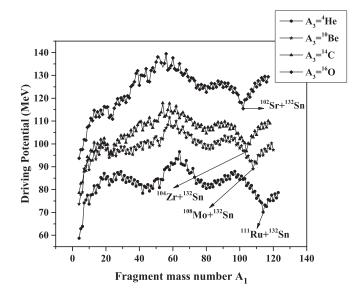


FIG. 1. Driving potential versus fragment mass number A_1 for four groups of accompanying light fragments.

the energy Q released in fission is called driving potential. Q values of individual fragmentation are calculated by using

the standard mass tabulated in Refs. [45-48] for the mass of parent and fragments. For ternary fission of the ²⁵⁰Cm isotope as a parent nucleus with a fixed light fragment A_3 , the driving potential (V - Q) is evaluated for all possible combinations in the collective coordinate of mass (and charge) asymmetry, $\eta_A = \frac{A_1 - A_2}{A_1 + A_2}$ and $\eta_Z = \frac{Z_1 - Z_2}{Z_1 + Z_2}$, at the touching configuration, respectively. The calculated driving potential as a function of fragment mass number A_1 is indicated in Fig. 1. Since the third fixed fragments considered here are light nuclei, the equatorial configuration is preferred over the collinear structure [36]. In the case where the accompanied third fixed fragment is a heavy nucleus, the collinear configuration is preferred over the equatorial configuration in ternary fission. All possible fragment combinations formed in the ternary fission of ²⁵⁰Cm accompanied with ⁴He, ¹⁰Be, ¹⁴C, and ¹⁶O light charged particles as fixed fragments have been studied. For example, with ¹⁰Be as the fixed third fragment A_3 , the remaining part is A = 240 which splits into two fragments A_1 and A_2 . The possible values for A_1 can change from 4 to 120 increasingly, and consequently A_2 changes from 236 to 120, decreasingly. For each mass pair (A_1, A_2) there is a pair of charges that minimize the driving potential. To obtain the minimized potential, it is necessary to sort out all the possible combinations of $A_1 + A_2$ and then calculate the interaction

TABLE I. Q values, driving potentials V, and relative yields of even-mass fragments for the ⁴He-accompanied ternary fission of the ²⁵⁰Cm isotope in equatorial touching configuration. (Yields less than 10^{-7} are denoted as "0.")

A_1	A_2	Q (MeV)	V (MeV)	Yield (% \times 10 ⁻³)	A_1	A_2	Q (MeV)	V (MeV)	Yield (% \times 10 ⁻³)
⁴ He	²⁴² U	9.520	58.688	0	⁶⁶ Cr	¹⁸⁰ Yb	139.705	90.880	0
⁸ Be	²³⁸ Th	12.993	75.419	0	⁶⁸ Mn	¹⁷⁸ Tm	142.985	92.745	0
¹⁰ Be	²³⁶ Th	11.703	73.622	0	⁷⁰ Fe	¹⁷⁶ Er	153.505	87.124	0.0045
¹² Be	²³⁴ Th	4.873	77.840	0	⁷² Co	¹⁷⁴ Ho	156.035	89.248	0.0021
^{14}C	²³² Ra	27.048	78.524	0	⁷⁴ Ni	¹⁷² Dy	167.035	82.658	0.5710
^{16}C	²³⁰ Ra	22.355	80.943	0	⁷⁶ Ni	¹⁷⁰ Dy	165.835	83.237	0.2830
^{18}C	²²⁸ Ra	16.703	84.572	0	⁷⁸ Zn	¹⁶⁸ Gd	176.408	81.382	4.2301
^{20}O	²²⁶ Rn	38.022	84.633	0	⁸⁰ Zn	¹⁶⁶ Gd	176.744	80.476	6.2100
²² O	²²⁴ Rn	38.840	81.965	0	⁸² Ge	¹⁶⁴ Sm	184.080	80.850	14.7102
²⁴ O	²²² Rn	35.691	83.426	0	⁸⁴ Ge	¹⁶² Sm	183.243	81.168	9.7703
²⁶ Ne	²²⁰ Po	54.823	84.276	0	⁸⁶ Se	¹⁶⁰ Nd	188.198	82.927	8.0911
²⁸ Ne	²¹⁸ Po	50.916	86.606	0	⁸⁸ Se	¹⁵⁸ Nd	188.509	82.147	11.2912
³⁰ Mg	²¹⁶ Pb	71.969	84.236	0	⁹⁰ Se	¹⁵⁶ Nd	186.835	83.384	4.2100
³² Mg	²¹⁴ Pb	71.575	83.152	0	⁹² Kr	¹⁵⁴ Ce	191.684	84.279	5.4013
³⁴ Mg	²¹² Pb	69.789	83.561	0	⁹⁴ Kr	¹⁵² Ce	190.973	84.603	3.7721
³⁶ Si	²¹⁰ Hg	88.325	82.451	0	⁹⁶ Sr	¹⁵⁰ Ba	193.745	86.593	2.0400
³⁸ Si	²⁰⁸ Hg	88.005	81.472	0	⁹⁸ Sr	¹⁴⁸ Ba	194.581	85.421	3.8598
⁴⁰ Si	²⁰⁶ Hg	86.080	82.179	0	¹⁰⁰ Sr	¹⁴⁶ Ba	195.335	84.361	6.6711
^{42}S	²⁰⁴ Pt	106.123	78.361	0.0002	102 Zr	¹⁴⁴ Xe	199.031	84.470	10.1743
⁴⁴ S	²⁰² Pt	102.461	80.870	0	104 Zr	¹⁴² Xe	201.525	81.720	50.5500
⁴⁶ Ar	²⁰⁰ Os	119.075	79.329	0.0024	¹⁰⁶ Zr	¹⁴⁰ Xe	202.462	80.556	93.9722
⁴⁸ Ar	¹⁹⁸ Os	116.845	80.471	0.0004	¹⁰⁸ Mo	¹³⁸ Te	207.023	78.849	370.6401
⁵⁰ Ar	¹⁹⁶ Os	111.765	84.524	0	¹¹⁰ Mo	¹³⁶ Te	209.540	76.154	1706.705
⁵² Ca	^{194}W	129.355	80.886	0.0051	112 Ru	¹³⁴ Sn	212.626	74.956	4201.904
⁵⁴ Ca	¹⁹² W	124.995	84.277	0.0001	114 Ru	¹³² Sn	217.331	70.122	49206.00
⁵⁶ Ca	^{190}W	118.845	89.512	0	¹¹⁶ Ru	¹³⁰ Sn	214.767	72.585	11189.00
⁵⁸ Ti	188 Hf	132.555	88.666	0	¹¹⁸ Pd	¹²⁸ Cd	213.196	75.098	3968.303
⁶⁰ Ti	¹⁸⁶ Hf	129.315	91.044	0	¹²⁰ Pd	¹²⁶ Cd	213.102	75.140	3815.902
^{62}V	¹⁸⁴ Lu	132.455	93.524	0	122 Pd	¹²⁴ Cd	211.883	76.335	1909.00
⁶⁴ V	¹⁸² Lu	128.615	96.575	0					

TABLE II. Q values, driving potentials V, and relative yields of even-mass fragments for the ¹⁰Be-accompanied ternary fission of the ²⁵⁰Cm isotope in equatorial touching configuration. (Yields less than 10^{-7} are denoted as "0.")

A_1	A_2	Q (MeV)	V (MeV)	Yield (% $\times 10^{-3}$)	A_1	A_2	Q (MeV)	V (MeV)	Yield (% \times 10 ⁻³)
⁴ He	²³⁶ Th	11.703	73.622	0	⁶⁴ Cr	¹⁷⁶ Er	140.473	104.7044	0
⁶ He	²³⁴ Th	2.177	78.797	0	⁶⁶ Cr	¹⁷⁴ Er	136.873	107.5428	0
⁸ Be	²³² Ra	14.945	90.206	0	⁶⁸ Fe	¹⁷² Dy	152.223	102.6534	0
¹⁰ Be	²³⁰ Ra	13.260	88.624	0	⁷⁰ Fe	¹⁷⁰ Dy	150.353	103.8155	0
¹² Be	²²⁸ Ra	6.363	92.767	0	⁷² Ni	¹⁶⁸ Gd	162.969	100.6122	0.0004
^{14}C	²²⁶ Rn	28.616	93.262	0	⁷⁴ Ni	¹⁶⁶ Gd	163.373	99.5543	0.0009
^{16}C	²²⁴ Rn	24.244	95.249	0	⁷⁶ Zn	¹⁶⁴ Sm	170.786	100.5191	0.0049
^{18}C	²²² Rn	19.089	98.288	0	⁷⁸ Zn	¹⁶² Sm	172.396	98.3093	0.0356
^{20}O	²²⁰ Po	41.324	97.306	0	⁸⁰ Zn	¹⁶⁰ Sm	172.267	97.8784	0.0359
^{22}O	²¹⁸ Po	42.744	93.959	0	⁸² Ge	¹⁵⁸ Nd	179.858	97.6557	0.4350
^{24}O	²¹⁶ Po	40.099	94.853	0	⁸⁴ Ge	¹⁵⁶ Nd	179.001	98.0053	0.1980
²⁶ Ne	²¹⁴ Pb	60.085	94.700	0	⁸⁶ Se	¹⁵⁴ Ce	183.236	100.1259	0.1231
²⁸ Ne	²¹² Pb	56.640	96.514	0	⁸⁸ Se	¹⁵² Ce	183.327	99.5802	0.1610
³⁰ Mg	²¹⁰ Hg	74.637	97.032	0	⁹⁰ Se	¹⁵⁰ Ce	181.03	101.4584	0.0148
³² Mg	²⁰⁸ Hg	74.482	95.662	0	⁹² Kr	¹⁴⁸ Ba	186.742	101.1140	0.1021
³⁴ Mg	²⁰⁶ Hg	73.005	95.724	0	⁹⁴ Kr	¹⁴⁶ Ba	186.671	100.8178	0.1050
³⁶ Si	²⁰⁴ Pt	90.693	95.273	0	⁹⁶ Sr	¹⁴⁴ Xe	190.185	101.6743	0.1442
³⁸ Si	²⁰² Pt	87.245	97.388	0	⁹⁸ Sr	¹⁴² Xe	192.038	99.5058	1.1301
40 S	²⁰⁰ Os	102.001	98.658	0	¹⁰⁰ Sr	¹⁴⁰ Xe	193.199	98.0628	3.9303
42 S	¹⁹⁸ Os	101.860	97.544	0	102 Zr	¹³⁸ Te	197.673	96.9856	27.9904
⁴⁴ S	¹⁹⁶ Os	97.867	100.362	0	104 Zr	¹³⁶ Te	200.539	93.8885	522.9112
⁴⁶ Ar	^{194}W	114.643	98.434	0	106 Zr	¹³⁴ Te	201.829	92.3999	1879.532
⁴⁸ Ar	¹⁹² W	112.473	99.496	0	¹⁰⁸ Mo	¹³² Sn	207.689	88.9681	82838.23
⁵⁰ Ar	¹⁹⁰ W	107.683	103.245	0	¹¹⁰ Mo	¹³⁰ Sn	205.065	91.4441	7379.230
⁵² Ca	¹⁸⁸ Hf	125.523	99.113	0	112 Ru	¹²⁸ Cd	203.254	94.6993	455.0322
⁵⁴ Ca	¹⁸⁶ Hf	121.583	102.073	0	¹¹⁴ Ru	¹²⁶ Cd	202.862	94.9939	30.3511
⁵⁶ Ca	¹⁸⁴ Hf	115.783	106.950	0	¹¹⁶ Ru	¹²⁴ Cd	201.1537	96.6362	63.5521
⁵⁸ Sc	¹⁸² Lu	117.143	111.588	0	¹¹⁸ Pd	¹²² Pd	200.3879	97.8831	19.9200
⁶⁰ Ti	¹⁸⁰ Yb	127.313	107.156	0	¹²⁰ Pd	¹²⁰ Pd	200.9434	97.3120	35.2801
^{62}V	¹⁷⁸ Tm	129.983	109.967	0					

potential between each conjugate pair. Finally, one may choose the minima of potentials as the most favored combination of $A_1 + A_2$.

As stated earlier, the separation distance between all three fragments is considered equal; however, in the actual situation the light charged particle (third fixed fragment) moves faster than the other two fragments. In other words, the distance of the surface separation between the first and second fragment, s_{12} , is much less than s_{13} and s_{23} , the distances between the light fixed fragment and the main fragments. Although it has been shown [29] that the trend does not change considerably overall the variation of yield for the various fragmentation channels when different distances between fragments are taken in to account. This fact implies that the assumption of equal distances between the fragments, i.e., $s_{12} = s_{13} = s_{23}$, is an acceptable approximation. The deformation and orientation degrees of freedom are not considered in this study. To reduce complexity, the spherical approximation is used for the fragment's shape, which reduces the calculation of potential and yield to a one-dimensional problem. The driving potentials for four groups of fixed light fragments are shown and compared together in Fig. 1. This figure indicates that the lightest charged particle, ⁴He, possesses the lowest barrier compared with the

other three groups. This means that, in the ternary fission of ²⁵⁰Cm, the accompanied ⁴He group is the most favored. Also, by increasing the mass of the fixed third fragments, the corresponding potential increases dramatically, as shown in Fig. 1. These diagrams imply that, according to the potential minimization with respect to the charge and mass asymmetry, the lighter third fixed fragment, the more favored ternary fission appears in the exit channel. The four most favored channels of the ternary fission of 250 Cm accompanied by ⁴He, ¹⁰Be, ¹⁴C, and ¹⁶O as fixed light fragments are ¹³²Sn + ¹¹¹Ru + ⁴He, ¹³²Sn + ¹⁰⁸Mo + ¹⁰Be, ¹³²Sn + ¹⁰⁴Zr + ¹⁴C, and ¹³²Sn + 102 Sr + 16 O, in order from the most to the least favorite. As is obvious, all these favored fragmentation channels include the doubly-closed-shell nucleus, 132 Sn (Z = 50, N = 82). Using Eq. (9), the relative yields of each combinations of fragments for the ¹⁶O-accompanied light fragment are calculated and indicated in Fig. 6 as a function of fragment mass number A_1 . As is clear from this figure, the odd-mass fragments have smaller relative yields compared with the even-mass neighbor fragments. The obtained Q values and driving potentials V - Q for various ternary fragmentations are shown in Tables I-IV. Generally, since the odd-mass fragments are less favored than the even-mass fragments, only even-mass-

TABLE III. Q values, driving potentials V, and relative yields of even-mass fragments for the ¹⁴C-accompanied ternary fission of the ²⁵⁰Cm isotope in equatorial touching configuration. (Yields less than 10^{-7} are denoted as "0.")

A_1	A_2	Q (MeV)	V (MeV)	Yield (% $\times 10^{-3}$)	A_1	A_2	Q (MeV)	V (MeV)	Yield (% $\times 10^{-3}$)
⁴ He	²³² Ra	27.0480	78.5237	0	⁶² V	¹⁷⁴ Ho	141.1401	116.4803	0
⁶ He	²³⁰ Ra	17.8620	83.2564	0	⁶⁴ Cr	¹⁷² Dy	151.4401	111.252	0
⁸ He	²²⁸ Ra	9.4180	88.2354	0	⁶⁶ Cr	¹⁷⁰ Dy	148.1701	113.7693	0
¹⁰ Be	²²⁶ Rn	28.6160	93.2627	0	⁶⁸ Fe	¹⁶⁸ Gd	162.1601	109.9096	0
¹² Be	²²⁴ Rn	22.4470	96.623	0	⁷⁰ Fe	¹⁶⁶ Gd	160.8101	110.5611	0
^{14}C	²²² Po	44.4601	97.2426	0	⁷² Ni	¹⁶⁴ Sm	172.2961	108.1429	0.0002
¹⁶ C	²²⁰ Po	41.0131	98.2603	0	⁷⁴ Ni	¹⁶² Sm	172.9601	106.8348	0.0005
¹⁸ C	²¹⁸ Po	36.6913	100.4338	0	⁷⁶ Ni	¹⁶⁰ Sm	171.8151	107.3799	0.0001
^{20}O	²¹⁶ Pb	58.6939	99.5355	0	⁷⁸ Zn	¹⁵⁸ Nd	181.5133	105.7104	0.0251
²² O	²¹⁴ Pb	60.8709	95.404	0	⁸⁰ Zn	¹⁵⁶ Nd	182.0887	104.5878	0.0588
²⁴ O	²¹² Pb	59.0173	95.4862	0	⁸² Ge	¹⁵⁴ Ce	187.7352	105.9337	0.1271
²⁶ Ne	²¹⁰ Hg	74.8611	99.2978	0	⁸⁴ Ge	¹⁵² Ce	187.1781	105.9964	0.0712
²⁸ Ne	²⁰⁸ Hg	71.9501	100.5605	0	⁸⁶ Ge	¹⁵⁰ Ce	184.5771	108.1427	0.0031
³⁰ Mg	²⁰⁶ Pt	88.4841	102.3412	0	⁸⁸ Se	¹⁴⁸ Ba	191.4441	107.2543	0.0731
³² Mg	²⁰⁴ Pt	88.7191	100.5661	0	⁹⁰ Se	¹⁴⁶ Ba	190.7101	107.5853	0.0330
³⁴ Si	²⁰² Os	103.0171	103.2998	0	⁹² Kr	¹⁴⁴ Xe	195.6111	107.645	0.1592
³⁶ Si	²⁰⁰ Os	101.1401	103.7345	0	⁹⁴ Kr	¹⁴² Xe	196.5477	106.3572	0.5468
³⁸ Si	¹⁹⁸ Os	97.9801	105.5535	0	⁹⁶ Kr	¹⁴⁰ Xe	196.0366	106.5537	0.3168
⁴⁰ Si	¹⁹⁶ Os	92.8201	109.4648	0	⁹⁸ Sr	¹³⁸ Te	202.0921	104.4625	012.42
42 S	^{194}W	112.1381	105.9189	0	¹⁰⁰ Sr	¹³⁶ Te	204.2259	102.0652	157.47
⁴⁴ S	^{192}W	108.8241	108.0543	0	102 Sr	¹³⁴ Te	204.8661	101.1969	344.72
⁴⁶ Cl	¹⁹⁰ Ta	112.2901	111.4642	0	104 Zr	¹³² Sn	212.244	96.7932	92595
⁴⁸ Ar	¹⁸⁸ Hf	123.2901	107.0646	0	¹⁰⁶ Zr	¹³⁰ Sn	209.013	99.8467	3005.7
⁵⁰ Ar	¹⁸⁶ Hf	119.3101	110.0048	0	¹⁰⁸ Mo	¹²⁸ Cd	207.9741	102.858	187.59
⁵² K	¹⁸⁴ Lu	122.9201	112.7541	0	¹¹⁰ Mo	¹²⁶ Cd	206.7759	103.9294	49.76
⁵⁴ K	¹⁸² Lu	116.8501	117.8783	0	¹¹² Mo	¹²⁴ Cd	204.1318	106.4808	2.48
⁵⁶ Ca	¹⁸⁰ Yb	128.4701	112.3772	0	114 Ru	¹²² Pd	204.8081	106.7942	2.33
⁵⁸ Sc	¹⁷⁸ Tm	128.9701	117.7304	0	¹¹⁶ Ru	¹²⁰ Pd	204.3193	107.2408	1.39
⁶⁰ Ti	¹⁷⁶ Er	138.9301	113.3606	0	¹¹⁸ Ru	¹¹⁸ Pd	202.619	108.9328	0.1872

fragment combinations are presented in these tables. As it turns out from the data of these tables, the relative yield of ternary fission is dramatically increased upon decreasing the mass difference between fragments A_1 and A_2 . In the following, the fragmentation with ⁴He, ¹⁰Be, ¹⁴C, and ¹⁶O as fixed third fragments are analyzed separately in different subsections.

A. ⁴He-accompanied ternary fission of ²⁵⁰Cm

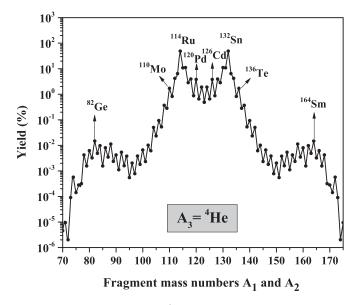
From Fig. 2, it is clear that the combination 114 Ru + 132 Sn + 4 He possess the highest yield due to the presence of the doubly magic nucleus 132 Sn (Z = 50, N = 82). The next-higher yield can be seen for the combination 116 Ru + 130 Sn + 4 He that is due to the even-even magic 130 Sn (Z = 50, N = 80) nucleus. By comparing the graphs of Figs. 1 and 2, it is easily understood that each cold reaction valley in the driving potential diagram is equivalent to a peak in the relative yield diagram. The other various peaks in the relative yield graph of Fig. 2 correspond to fragment combinations 82 Ge + 164 Sm + 4 He, 110 Mo + 136 Te + 4 He, 118 Pd + 128 Cd + 4 He, and 120 Pd + 126 Cd + 4 He. Among these combinations, the first one is attributed to the magic neutron shell N = 50of 82 Ge, and the second combination is due to the near doubly closed shell (Z = 52, N = 84) of 136 Te nucleus. The fragment combination with 128 Cd isotope is also favored due to the presence of an even-even, nearly closed shell (Z = 48, N = 80).

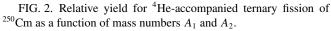
B. ¹⁰Be-accompanied ternary fission of ²⁵⁰Cm

With ¹⁰Be as the fixed third fragment, the deepest minimum in the cold reaction valley of driving potential belongs to ¹⁰⁸Mo + ¹³²Sn + ¹⁰Be fragmentation (Fig. 1). Therefore, the highest maximum of the yield graph is belongs to the fragment combination ¹⁰⁸Mo + ¹³²Sn + ¹⁰Be (Fig. 3). As mentioned earlier, this favorable channel is due to presence of the doubly magic closed-shell nucleus ¹³²Sn (Z = 50, N = 82). The next peak of the relative yield graph in Fig. 3 comes from the fragment combination of ¹¹⁰Mo + ¹³⁰Sn + ¹⁰Be, similarly due to the magic proton number (Z = 50) and nearly magic even neutron number (N = 80). The other notable peaks are also shown in the Fig. 3.

C. ¹⁴C-accompanied ternary fission of ²⁵⁰Cm

In the case of ¹⁴C as the fixed third fragment, the highest maximum of the yield belongs to the fragment combination 104 Zr + 132 Sn + 14 C, which happens just like the two previous cases due to the double magic number of protons and neutrons


TABLE IV. Q values, driving potentials V, and relative yields of even-mass fragments for the ¹⁶O-accompanied ternary fission of the ²⁵⁰Cm isotope in equatorial touching configuration. (Yields less than 10^{-7} are denoted as "0.")


$\overline{A_1}$	A_2	Q (MeV)	V (MeV)	Yield (% $\times 10^{-3}$)	A_1	A_2	Q (MeV)	V (MeV)	Yield (% $\times 10^{-3}$)
⁴ He	²³⁰ Rn	33.252	93.7180	0	⁶⁴ V	¹⁷⁰ Tb	140.617	135.1354	0
⁶ He	²²⁸ Rn	24.892	97.5882	0	⁶⁶ Cr	¹⁶⁸ Gd	150.627	130.0538	0
⁸ He	²²⁶ Rn	17.3703	101.6274	0	⁶⁸ Mn	¹⁶⁶ Eu	152.957	132.3927	0
10 Be	²²⁴ Po	35.2095	107.9348	0	⁷⁰ Fe	¹⁶⁴ Sm	162.137	127.6241	0
¹² Be	²²² Po	30.159	110.1594	0	⁷² Fe	¹⁶² Sm	160.357	128.7597	0
^{14}C	²²⁰ Pb	51.037	111.7901	0	⁷⁴ Ni	¹⁶⁰ Nd	173.317	124.5016	0.0004
^{16}C	²¹⁸ Pb	48.583	111.7979	0	⁷⁶ Ni	¹⁵⁸ Nd	173.397	123.8287	0.0005
^{18}C	²¹⁶ Pb	45.327	112.8966	0	⁷⁸ Ni	¹⁵⁶ Nd	172.327	124.3506	0.0001
^{20}C	²¹⁴ Pb	40.3478	115.9554	0	⁸⁰ Zn	¹⁵⁴ Ce	181.7256	122.600	0.0510
^{22}O	²¹² Hg	65.687	111.5111	0	⁸² Zn	¹⁵² Ce	179.397	124.4306	0.0019
^{24}O	²¹⁰ Hg	64.597	110.8260	0	⁸⁴ Ge	¹⁵⁰ Ba	186.125	124.3026	0.0451
^{26}O	²⁰⁸ Hg	56.267	117.5437	0	⁸⁶ Ge	¹⁴⁸ Ba	185.077	124.9032	0.0110
²⁸ Ne	²⁰⁶ Pt	76.067	117.1595	0	⁸⁸ Se	¹⁴⁶ Xe	189.566	125.9752	0.0265
³⁰ Ne	²⁰⁴ Pt	72.607	119.1046	0	⁹⁰ Se	¹⁴⁴ Xe	190.399	124.7454	0.0914
³² Mg	²⁰² Os	91.646	118.1279	0	⁹² Se	¹⁴² Xe	189.6766	125.1107	0.0363
³⁴ Mg	²⁰⁰ Os	88.184	120.1642	0	⁹⁴ Kr	¹⁴⁰ Te	195.432	123.8961	1.1900
³⁶ Mg	¹⁹⁸ Os	81.187	125.8429	0	⁹⁶ Kr	¹³⁸ Te	196.503	122.5178	5.3000
³⁸ Al	¹⁹⁶ Re	84.057	130.8699	0	⁹⁸ Kr	¹³⁶ Te	196.4628	122.2887	5.2900
⁴⁰ Si	^{194}W	96.827	125.6990	0	¹⁰⁰ Sr	¹³⁴ Sn	203.989	118.291	3257.10
^{42}P	¹⁹² Ta	99.877	129.9554	0	¹⁰² Sr	¹³² Sn	206.6309	115.4291	89535.00
⁴⁴ P	¹⁹⁰ Ta	95.797	132.9073	0	104 Zr	¹³⁰ Cd	204.987	119.5824	1290.900
⁴⁶ S	¹⁸⁸ Hf	108.567	127.1865	0	¹⁰⁶ Zr	¹²⁸ Cd	203.879	120.5199	324.490
⁴⁸ S	¹⁸⁶ Hf	101.387	133.3434	0	¹⁰⁸ Zr	¹²⁶ Cd	201.3338	122.9309	12.750
⁵⁰ Cl	¹⁸⁴ Lu	105.707	135.8164	0	¹¹⁰ Mo	¹²⁴ Pd	200.826	124.9454	1.6600
⁵⁶ K	¹⁷⁸ Tm	113.917	139.4794	0	¹¹² Mo	122 Pd	199.803	125.8834	0.4331
⁵⁸ Ca	¹⁷⁶ Er	126.277	133.1099	0	¹¹⁴ Mo	120 Pd	197.8172	127.8202	0.0311
⁶⁰ Sc	¹⁷⁴ Ho	127.467	137.6409	0	¹¹⁶ Ru	¹¹⁸ Ru	199.056	127.0878	0.1045
⁶² Ti	¹⁷² Dy	138.307	132.2552	0					

in 132 Sn (Z = 50, N = 82). The other remarkable peaks are also indicated in Fig. 4.

D. ¹⁶O-accompanied ternary fission of ²⁵⁰Cm

For ternary fission of $^{250}\mathrm{Cm}$ with $^{16}\mathrm{O}$ as the fixed third fragment, the deepest minimum in the cold reaction valley

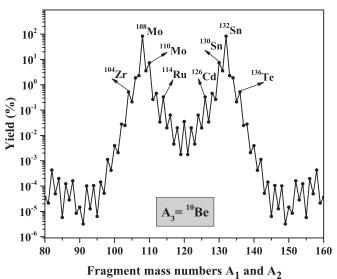


FIG. 3. Relative yield for ¹⁰Be-accompanied ternary fission of ²⁵⁰Cm as a function of mass numbers A_1 and A_2 .

¹⁰⁴Zr

¹³²Sn

Cd

 10^{3}

 10^{2}

10

10

 10^{-1}

10⁻²

10⁻³

10

 10^{-4}

80

90

100

Yield (%)

FIG. 4. Relative yield for ¹⁴C-accompanied ternary fission of ²⁵⁰Cm as a function of mass numbers A_1 and A_2 .

110

120

Fragment mass numbers A_1 and A_2

130

140

150

of the driving potential belongs to the ${}^{102}\text{Sr} + {}^{132}\text{Sn} + {}^{16}\text{O}$ fragmentation (Fig. 1). As is evident from Fig. 5, the highest maximum of the yield graph belongs to this combination. The next maximum in the relative yield graph for ${}^{16}\text{O}$ -accompanied ternary fission of ${}^{250}\text{Cm}$ comes from the fragment combination of ${}^{100}\text{Sr} + {}^{134}\text{Sn} + {}^{16}\text{O}$, which is likewise due to the presence of the magic proton number (Z = 50) and nearly magic even neutron number (N = 84) of ${}^{134}\text{Sn}$ nucleus. The other distinguished peaks of yield are also shown in Figs. 5 and 6.

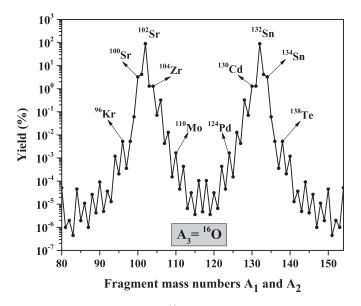


FIG. 5. Relative yield for ¹⁶O-accompanied ternary fission of ²⁵⁰Cm as a function of mass numbers A_1 and A_2 .

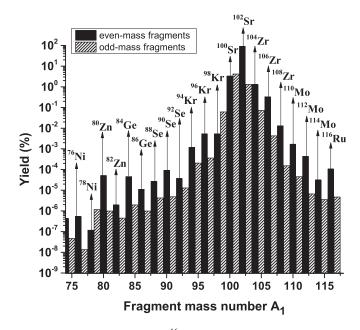


FIG. 6. Relative yield for 16 O-accompanied ternary fission of 250 Cm as a bar graph.

IV. CONCLUSION

The cold ternary fission of ²⁵⁰Cm accompanied by ⁴He, ¹⁰Be, ¹⁴C, and ¹⁶O as the fixed light fragments in the equatorial geometry configuration have been studied by using the threecluster model [38]. In each case, the driving potentials, Qvalues, and relative yields are calculated for all possible fragmentations. The results of the calculation indicate that the components with even mass numbers are more favored than the components with odd mass numbers. From the results, it can be concluded that, upon increasing the mass of the third fixed fragment in ternary fission, the probability of crossing over the potential barrier is considerably decreased due to growth in the height of potential barrier. Thus, the lighter third fixed fragment is more probable in ternary fragmentation. Comparison between relative yields for a variety of fragmentation in each group (with ⁴He, ¹⁰Be, ¹⁴C, and ¹⁶O as the fixed third fragment) reveals that the presence of a doubly magic closed shell or near-doubly-magic nuclei plays an important role in the cold ternary fission of ²⁵⁰Cm. In the first group with ⁴He as the third fragment, the maximum yield is obtained for the combination 114 Ru + 4 He + 132 Sn due to the presence of doubly magic nucleus 132 Sn (N = 82, Z = 50). Similarly, for the three other groups (¹⁰Be, ¹⁴C, and ¹⁶O as third fragment), fragmentations ¹⁰⁸Mo + ¹⁰Be + ¹³²Sn, ¹⁰⁴Zr + ¹⁴C + ¹³²Sn, and ¹⁰²Sr + ¹⁶O + ¹³²Sn are produced as the most favorable combinations, respectively. In addition, it can be found from Tables I-IV that, for a certain fixed fragment, the binary combinations with little mass difference are preferred, generally. This theoretical work can be developed to consider heavier third fixed fragments and for different parent nuclei to compare equatorial and collinear geometry of fragmentation.

- Tsien San-Tsiang, Ho Zah-Wei, R. Chastel, and L. Vigneron, J. Phys. Radium 8, 165 (1947).
- [2] Tsien San-Tsiang, Ho Zah-Wei, L. Vigneron, and R. Chastel, Nature (London) 159, 773 (1947).
- [3] D. N. Poenaru, M. Ivascu, and M. S. Ivasçu, in *Particle Emission from Nuclei* (CRC Press, Boca Raton, Florida, 1989), Vol. 3, Chap. 3, pp. 63–97.
- [4] D. N. Poenaru, in *Nuclear Decay Modes* (Institute of Physics Publishing, Bristol, UK, 1996), Vol. 27, Issue 17, Chap. 12.
- [5] D. N. Poenaru *et al.*, in *Clusters in Nuclei* (Springer, Berline, 2010), Vol. 1, Chap. 1, pp. 1–56.
- [6] O. Serot *et al.*, Proc. Int. Conf. Nuclear Data for Science and Technology (2007), doi:10.1051/ndata:07748.
- [7] E. L. Albenesius, Phys. Rev. Lett. 3, 274 (1959).
- [8] E. L. Albenesius and R. S. Ondrejcin, Nucleonics 18, 100 (1960).
- [9] W. von Oertzen and A. K. Nasirov, Phys. Lett. B 734, 234 (2014).
- [10] L. W. Alvarez, G. Farwell, E. Segrè, and C. Wiegand, Phys. Rev. 71, 327 (1947).
- [11] L. L. Green and D. L. Livesey, Nature (London) 159, 332 (1947).
- [12] T. P. Doan, C. Carles, and R. Chastel, Nucl. Phys. A 96, 588 (1967).
- [13] P. Fong, Phys. Rev. C 2, 735 (1970).
- [14] P. B. Vitta, Nucl. Phys. A 170, 417 (1971).
- [15] C. Wagemans and A. J. Deruytter, Nucl. Phys. A 194, 657 (1972).
- [16] J. P. Theobald, P. Heeg, and M. Mutterer, Nucl. Phys. A 502, 343 (1989).
- [17] G. Royer, F. Haddad, and J. Mignen, J. Phys. G 18, 2015 (1992).
- [18] A. Sándulescu, F. Carstoiu, I. Bulboaca, and W. Greiner, Phys. Rev. C 60, 044613 (1999).
- [19] D. N. Poenaru, W. Greiner, J. H. Hamilton, A. V. Ramayya, E. Hourany, and R. A. Gherghescu, Phys. Rev. C 59, 3457 (1999).
- [20] A. Florescu, A. Sándulescu, D. S. Delion, J. H. Hamilton, A. V. Ramayya, and W. Greiner, Phys. Rev. C 61, 051602(R) (2000).
- [21] F. Carstoiu, I. Bulboaca, A. Sándulescu, and W. Greiner, Phys. Rev. C 61, 044606 (2000).
- [22] S. Misicu, P. O. Hess, and W. Greiner, Phys. Rev. C 63, 054308 (2001).
- [23] D. S. Delion, A. Florescu, and A. Sándulescu, Phys. Rev. C 63, 044312 (2001).

- [24] L. Rosen and A. M. Hudson, Phys. Rev. 78, 533 (1950).
- [25] D. N. Poenaru, B. Dobrescu, W. Greiner, J. H. Hamilton, and A. V. Ramayya, J. Phys. G 26, L97 (2000).
- [26] D. N. Poenaru, R. A. Gherghescu, W. Greiner, Y. Nagame, J. H. Hamilton, and A. V. Ramayya, Rom. Rep. Phys. 55, 549 (2003).
- [27] D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Nucl. Phys. A 747, 182 (2005).
- [28] K. Manimaran and M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010).
- [29] K. Manimaran and M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011).
- [30] S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989).
- [31] R. K. Gupta, W. Scheid, and W. Greiner, J. Phys. G **17**, 1731 (1991).
- [32] S. Kumar and R. K. Gupta, Phys. Rev. C 49, 1922 (1994).
- [33] K. Manimaran and M. Balasubramaniam, J. Phys. G 37, 045104 (2010).
- [34] K. R. Vijayaraghavan, W. von Oertzen, and M. Balasubramaniam, Eur. Phys. J. A **48**, 27 (2012).
- [35] K. R. Vijayaraghavan, Ph.D. thesis, Bharathiar University, 2015 (unpublished).
- [36] K. R. Vijayaraghavan, M. Balasubramaniam, and W. von Oertzen, Phys. Rev. C 90, 024601 (2014).
- [37] M. Balasubramaniam, K. R. Vijayaraghavan, and K. Manimaran, Phys. Rev. C 93, 014601 (2016).
- [38] K. P. Santhosh, S. Krishnan, and B. Priyanka, Eur. Phys. J. A 50, 66 (2014).
- [39] K. P. Santhosh, S. Krishnan, and B. Priyanka, Int. J. Mod. Phys. E 23, 1450071 (2014).
- [40] V. Mirzaei and H. Miri-Hakimabad, Rom. Rep. Phys. 64, 50 (2012).
- [41] Yu. N. Kopatch, M. Mutterer, D. Schwalm, P. Thirolf, and F. Gonnenwein, Phys. Rev. C 65, 044614 (2002).
- [42] J. H. Hamilton et al., Phys. At. Nucl. 65, 645 (2002).
- [43] K. P. Santhosh and S. Krishnan, Eur. Phys. J. A 52, 108 (2016).
- [44] J. Blocki and W. J. Swiatecki, Ann. Phys. (NY) 132, 53 (1983).
- [45] G. Audi and A. H. Wapstra, Nucl. Phys. A 595, 409 (1995).
- [46] A. H. Wapstra, G. Audi, and C. Thibault, Nucl. Phys. A 729, 129 (2003).
- [47] G. Audi et al., Chin. Phys. C 36, 1603 (2012).
- [48] D. N. Poenaru, W. Greiner, and R. A. Gherghescu, At. Data Nucl. Data Tables 68, 91 (1998).