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The dynamics of fermionic many-body systems is investigated in the framework of Boltzmann–Langevin
(BL) stochastic one-body approaches. Within the recently introduced Boltzmann–Langevin one-body (BLOB)
model, we examine the interplay between mean-field effects and two-body correlations, of stochastic nature, for
nuclear matter at moderate temperature and in several density conditions, corresponding to stable or mechanically
unstable situations. Numerical results are compared with analytic expectations for the fluctuation amplitude of
isoscalar and isovector densities, probing the link to the properties of the employed effective interaction; namely,
symmetry energy (for isovector modes) and incompressibility (for isoscalar modes). For unstable systems,
clusterization is observed. The associated features are compared with analytical results for the typical length
and timescales characterizing the growth of unstable modes in nuclear matter and for the isotopic variance of
the emerging fragments. We show that the BLOB model is generally better suited than simplified approaches
previously introduced to solve the BL equation, and it is therefore more advantageous in applications to open
systems, such as heavy-ion collisions.
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I. INTRODUCTION

The dynamics of many-body interacting systems is a
long-standing investigation embracing various domains at the
boundary between collective and chaotic processes.

From a one-body modeling perspective, the dynamics
of fermionic systems [1,2] is efficiently described within
the time-dependent Hartree–Fock (TDHF) framework, or
time-dependent local density approximation (TDLDA), in
condense-matter applications [3,4], as far as the variance of
the involved observables is small and can be neglected. If
this is not the case, additional beyond-mean-field correlations
should be included, depending on the degree of excitation [5–
7]. At low energy, as far as the system can be described
in the small-amplitude limit, a scheme of coherent-state
propagation within the time-dependent generator coordinate
method (TDGCM) [8,9], or a variational approach à la
Balian–Vénéroni [10,11] is well suited. On the contrary, when
the system experiences a violent dynamics, large fluctuations
would spontaneously drive the system far away from the one-
body TDHF evolution along many different directions, thus
determining the shortcoming of the TDHF approximation (and
the above-mentioned extensions). To address large-amplitude
regimes, solutions beyond the single-particle picture may be
needed; for instance, by propagating noncorrelated states [12].
When even the low-energy regime is exceeded, dissipative
behavior results also from in-medium collisions, which are
no longer hindered by Pauli blocking. An extension to treat
two-body degrees of freedom is to follow explicitly two-body
correlations in time and neglect higher orders like in the time-
dependent density-matrix (TDDM) approach. Applications of
TDDM have been addressed so far to collective vibrations [13]
and two-body dissipation in nuclear collisions [14], but they
remain numerically very challenging with respect to the
one-body approach we follow.

In the presence of mean-field instabilities, the collective
dynamics may be driven to a chaotic regime; in a nuclear

system, this would result in a highly nonlinear process, leading
to clusterization from one-body density fluctuations, and
oscillation of the neutron and proton fraction. The splitting of
a composite system into fragments under violent perturbations
signals the occurrence of the most catastrophic effect produced
by large-amplitude fluctuations of the neutron and proton
content. Such phenomenology, which is common in heavy-
ion collisions at Fermi energies [15,16], also characterizes
other fields, such as solid-state physics (examples are metal
clusters [17,18] or electrons in nanosystems [19]), ultracold
atomic gases [20,21], or some areas of astrophysics [22–25].
The description of the fragmentation process can only be
afforded within approaches beyond the mean-field approxima-
tion, incorporating the effect of many-body correlations, which
induce fluctuations in the evolution of the one-body density.
Adapted to such a situation, stochastic approaches typically
propagate a bunch of mean-field trajectories within various
orders of approximations, such as stochastic TDHF (STDHF)
formulations [26–29], or analog semiclassical schemes within
the Boltzmann–Langevin (BL) transport equation [30,31].

In the following we exploit the last-mentioned BL approach
in the form of the recently introduced Boltzmann–Langevin
one-body (BLOB) model [32,33] to undertake an exhaustive
analysis of the interplay between mean-field and many-body
correlations in nuclear matter. We focus thereafter on crucial
modeling issues, looking in particular at the dynamics of
fluctuations, both in stable systems and in unstable conditions,
leading to the disassembly of the system. The purpose is to
examine the virtues and limits of the BLOB approach, where
the BL equation is solved in full phase space, and of corre-
sponding approximations by carrying out a quantitative study
of fluctuation amplitudes, and comparing with some analytic
expectations which characterize Fermi liquids. This analysis
is important also in the spirit of preparing reliable applications
to heavy-ion collisions. Indeed a good reproduction of the
fluctuation dynamics is crucial for the predictions of features,
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such as size and isotopic variances, of the products formed in
nuclear reactions and to probe their link to the properties of
the nuclear effective interaction.

In Sec. II we survey some basic steps leading from
a stochastic beyond-mean-field framework to the BLOB
method, and related approximations. In Sec. III the dynamics
of fluctuations of the one-body density, as given by the lin-
earized BL equation, is discussed for nuclear matter initialized
at moderate temperature and in several density conditions.
Owing to the presence of two components (neutrons and
protons), one observes isovector fluctuation modes, where
neutrons and protons oscillate out of phase, and isoscalar
modes, with neutrons and protons moving together. Isovector
fluctuations are of stable nature, reflecting the properties of
the nuclear effective interaction in the isovector channel. The
performance of the BLOB model in reproducing analytic
expectations for the isovector variance and, in particular, its
link to the nuclear symmetry energy is discussed in Sec. IV. For
nuclear matter at suitable density and temperature conditions,
isoscalar fluctuations may become unstable, yielding a growth
of the (isoscalar) fluctuation variance, which triggers a process
of clusterization. Such a situation is tested in Sec. V. In
the spirit of connecting nuclear matter to open systems,
Sec. VI explores fluctuation observables related to blobs of
matter, which correspond to emerging fragments in open
systems. Conclusive statements from reviewing the results
form Sec. VII.

II. THEORETICAL SURVEY

A. N-body correlations in a stochastic one-body
framework in dissipative regimes

It is usual to describe the evolution of an N -body system by
replacing the Liouville–von Neumann equation with the equiv-
alent Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)
hierarchy which, for a two-body interaction Vij , yields the
following chain of coupled equations:

ih̄
∂ρ1

∂t
= [k1,ρ1] + Tr2[V12,ρ12],

ih̄
∂ρ12

∂t
= [k1 + k2 + V12,ρ12] + Tr3[V13 + V23,ρ123],

...

ih̄
∂ρ1...k

∂t
=

k∑
i=1

⎡⎣ki +
k∑

j<i

Vij ,ρ1...k

⎤⎦
+

k∑
i=1

Trk+1[Vik+1,ρ1...k+1],

... , (1)

where Trk is a partial trace involving the many-body density
matrix ρ1...k (compact notation where the order corresponds
to the number of indexes) and ki are kinetic-energy operators.
This is the avenue for constructing beyond-mean-field approxi-
mations, obtained through custom truncations of the hierarchy,

or by reducing the complexity of the involved contributions at
given orders. For instance, the inclusion of interactions beyond
two bodies would be necessary to account for additional
nuclear-structure features [34], or cluster correlations, and the
explicit inclusion of correlations beyond the order k = 2 would
be necessary to describe high-coupling regimes [35].

If, on the other hand, a suited stochastic approach is
adopted, simplified higher-order contributions can be in-
troduced even though not explicitly implemented. Already
in a first-order-truncation scheme (k = 1) in a low-energy
framework, it was found that a stochastic approach can be used
to restore all the BBGKY missing orders approximately [36]
and generate large-amplitude fluctuations; in this case, a
coherent ensemble of mean-field states is propagated along
different trajectories from an initial stochastic distribution.
Such a scheme,however, is insufficient for our purpose, which
is addressing dissipative regimes. In this case, it is necessary
to introduce in-medium collisions in a second-order scheme
(k = 2) explicitly, i.e., the first two lines of the set (1), from
which kinetic equations are obtained [37–40]. If structure
effects are neglected, it is then possible to propagate an
incoherent ensemble of mean-field states, supplemented by a
fluctuating term, in order to obtain a highly nonlinear character
of the dynamics. The stochastic treatment is not obtained from
exploiting a distribution of initial states but, progressing from a
single initial state. It acts intermittently all along the temporal
evolution, producing successive splits of a given mean-field
trajectory ρ1 into subensembles ρ

(n)
1 :

ρ1 −→ {
ρ

(n)
1 ; n = 1, . . . ,subens.

}
. (2)

This pattern then repeats for each element of the subensemble
ρ

(n)
1 until eventually yielding trajectories ordered in bifurcating

bundles, each one exhibiting a small variance around the mean
trajectory of the corresponding envelope. In particular, in the
time interval between two successive splits, when fluctuations
are built up, the system propagates, keeping the mean trajectory
unchanged within each envelope. Thus, this time τ has to be
shorter than the timescales associated with the global effect of
the collision integral and with the mean-field propagation.

B. Collisional correlations

This stochastic scheme is equivalent to imposing that
ρ

(n)
1 and ρ

(n)
2 , i.e., the probabilities to find two nucleons,

1 and 2, at two configuration points, are not all the time
decorrelated, so that the two-body density matrix ρ

(n)
12 recovers

some correlations of the upper orders of the BBGKY sequence
in addition to the standard product of independent one-body
densities which builds up the mean-field term. We can write
the following at a time t :

ρ
(n)
12 (t) = �̃12A12

(
ρ

(n)
1 (t)ρ(n)

2 (t)
)
�̃+

12 + δρ
(n)
12 (t),

(3)〈
δρ

(n)
12 (t)

〉
τ

= 0, (4)〈
δρ

(n)
12 (t)δρ(n)

12 (t)
〉
τ

= gain + loss, (5)

where �̃12 is the Møller wave operator [41,42] describing the
diffusion of a particle with respect to another particle in the
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nuclear medium, related to a diffusion matrix G12 = V12�̃12,
which is, in turn, related to the nucleon-nucleon differential
cross section |G12|2 ∼ dσ/d�. In this respect, the first term
on the fight-hand side (r.h.s.) of Eq. (3) contains collisional
correlations, while the second term introduces a fluctuation
of vanishing first moment around the collision integral [5].
It should be noticed that the average in Eqs. (4) and (5)
refers to an ensemble of one-body trajectories fluctuating,
over the time τ , around a mean trajectory which follows
the Boltzmann equation. Setting δρ

(n)
12 (t) = 0 would then

reduce to the (quantum) Boltzmann kinetic equation, which
corresponds to a second-order truncation of the hierarchy
without a fluctuation contribution.

Finally, the description associated with one single mean-
field trajectory ρ

(n)
1 yields the following form of the BL

equation containing an average collision contribution Ī
(n)
coll and

a continuous source of fluctuation seeds δI
(n)
coll:

ih̄
∂ρ

(n)
1

∂t
≈ [

k
(n)
1 + V

(n)
1 ,ρ

(n)
1

] + Ī
(n)
coll + δI

(n)
coll. (6)

It may be noted that Eq. (6) is similar to STDHF [26], and it
transforms into an extended TDHF (ETDHF) theory [43–45]
if the fluctuating term δI

(n)
coll is suppressed; ETDHF can in fact

efficiently describe the behavior of some observable related to
dissipative processes, but it cannot follow possible bifurcation
paths deviating from the mean trajectory. Through a Wigner
transform we can then replace Eq. (6) by a corresponding set
of semiclassical BL trajectories:

∂f (n)

∂t
= {

h(n),f (n)
} + I

(n)
UU + δI

(n)
UU, (7)

where the evolution of a statistical ensemble of Slater de-
terminants is replaced by the evolution of an ensemble of
distribution functions f (n), which at equilibrium correspond
to a Fermi statistics. h(n) is the effective Hamiltonian acting
on f (n). The residual average and fluctuating contributions
of Eq. (6) are replaced by Uehling–Uhlenbeck (UU) analog
terms. I (n)

UU is related to the mean number of transitions within a
single phase-space cell �Vf . While conserving single-particle
energies, δI

(n)
UU acts as a Markovian contribution expressed

through its correlation [46],〈
δI

(n)
UU(r,p,t)δI (n)

UU(r′,p′,t ′)
〉 = gain + loss

= 2D(r,p; r′,p′,t ′)δ(t − t ′), (8)

where D is a diffusion coefficient [30].

C. Obtaining the BLOB description: Fluctuations
in full phase space

From Eq. (4) and from the procedure detailed in Ref. [47],
we assume that the fluctuating term δI

(n)
UU in Eq. (7) should

involve the same contributions composing the average colli-
sion term I

(n)
UU, i.e., the transition and the Pauli-blocking terms.

This implies that also δI
(n)
UU should be expressed in terms of

one-body distribution functions. This latter possibility can be
exploited by replacing the residual terms (I (n)

UU + δI
(n)
UU) by

a similar UU-like term which respects the Fermi statistics

both for the occupancy mean value and for the occupancy
variance. In this case, for a free Fermi gas, the occupancy
variance at equilibrium should be equal to f (n)(1 − f (n)) in
a phase-space cell h3 and correspond to the movement of
extended portions of phase space which have the size of
a nucleon, i.e., the residual term (I (n)

UU + δI
(n)
UU) should carry

nucleon-nucleon correlations [48].
A natural solution to satisfy such a requirement is to rewrite

the residual contribution in the form of a rescaled UU collision
term where a single binary collision involves extended phase-
space portions of equal isospin A, B to simulate wave packets,
and Pauli-blocking factors act on the corresponding final states
C, D, also treated as extended phase-space portions. The
choice of defining each phase-space portion A, B, C, and
D so that its isospin content is either 1 or −1 is necessary
to preserve the Fermi statistics for both neutrons and protons,
and it imposes that blocking factors are defined accordingly
in phase-space cells for the given isospin species. The above
conditions lead to the BLOB equations [32]:

∂f (n)

∂t
− {

h(n),f (n)} = I
(n)
UU + δI

(n)
UU

= g

∫
dpb

h3

∫
W (AB↔CD)F (AB→CD)d�,

(9)

where g is the degeneracy factor. W is the transition rate,
in terms of relative velocity between the two colliding
phase-space portions and differential nucleon-nucleon cross
section

W (AB↔CD) = |vA − vB| dσ

d�
. (10)

F contains the products of occupancies and vacancies of initial
and final states over their full phase-space extensions,

F (AB→CD) = [(1 − fA)(1 − fB)fCfD

− fAfB(1 − fC)(1 − fD)]. (11)

Details on the implementation of BLOB are given in Ap-
pendix A. In practice, if the test-particle method is employed,
so that the system is sampled by Ntest test particles per
nucleon, the phase-space portions A, B, C, and D should
be agglomerates of Ntest test particles each, and the nucleon-
nucleon cross section used in Eq. (10) should be scaled by
the same amount Ntest [Eq. (A1)]. Finally, the stochastic
approach exploits the correlations carried in Eq. (9), recovering
higher order than the k = 2 truncation, and inducing the BL
fluctuations-bifurcation scheme.

D. Simplification through stochastic mean-field description:
Fluctuations projected

At variance with the above description, the stochastic term
in Eq. (7) can be kept separate and treated as a stochastic force
related to an external potential U ′, like in the corresponding
semiclassical stochastic mean-field (SMF) model [49]. This
leads to treatments where fluctuations are implemented only
in the coordinate space, i.e., they are projected on the spatial
density. The difference between Eq. (9) and usual stochastic
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FIG. 1. (left) Mean-value and (right) variance of the number of
effective in-medium collisions per nucleon and per unit time δt =
1 fm/c for SMF (full black circles) and BLOB, as a function of
density. The different open symbols correspond to BLOB calculations
with different numbers of test particles. The dashed lines in the left
panel represent fits to mean-value spectra and are replotted identically
in the right panel for comparison. The crosses in the right panel
correspond to the SMF variance (black dots) multiplied by Ntest.
An asy-stiff parametrization is used for the symmetry energy (the
characteristics of the interactions are defined in Sec. IV).

mean-field approaches is that the latter build fluctuations from
introducing a well-adapted external force or a distribution
of initial conditions which should be accurately prepared in
advance. On the contrary, Eq. (9) introduces fluctuations in
full phase space and lets them develop spontaneously and
continuously over time in a dynamical process.

Figure 1 illustrates how this difference affects the statistics
of effective in-medium collisions (i.e., not Pauli blocked); it
compares SMF and BLOB calculations performed in nuclear
matter at 3 MeV temperature and at different densities in
stable conditions, i.e., keeping the system uniform, and at
equilibrium, i.e., when the average collision rate is constant
in time (these conditions are described in detail in Sec. IV).
As a general trend, larger densities provide a larger number of
collision candidates, so that, even if the difficulty in relocating
collision partners also increases due to Pauli blocking, the
resulting number of effective collisions per nucleon grows
significantly with density. Despite the use of the same nucleon-
nucleon cross section (which produces equal rates of attempted
collisions per nucleon for all the employed approaches, not
shown), the number of effective collisions per nucleon differs
in the two models due to the different treatment of the Pauli
blocking, which is more severe in BLOB, owing to the nucleon
wave-packet extension (for instance, at ρ0 = 0.16 fm3, large
Pauli rejection rates, equal to 98% in BLOB and to 95% in
SMF, result in different effective collision rates; see discussion
in Appendix A). The main difference emerging from the
comparison in Fig. 1 is that the variance of the number of
effective collisions per nucleon amounts to the mean value
reduced by a factor Ntest in the SMF case, whereas it equals
the mean without any dependence on Ntest in the BLOB case

(several values of Ntest produce equal results). Such study
confirms that, while in SMF fluctuations are strongly reduced
in proportion to the quantity Ntest, in BLOB fluctuations have
large amplitude and exactly equal the mean value, according
to the Poisson statistics [50]. The quantification of such
amplitude is the subject of the following sections.

III. STRATEGY: COMPARING BOLTZMANN–LANGEVIN
APPROACHES IN NUCLEAR MATTER TO

FERMI-LIQUID BEHAVIOR

The purpose of stochastic one-body approaches with colli-
sional correlations like SMF or BLOB is introducing aspects
of the Fermi liquid behavior, including fluctuations [51,52], in
the description of heavy-ion collisions [53].

In the following, we check how Eq. (9) handles isoscalar and
isovector fluctuations of the one-body density, in equilibrated
nuclear matter, with the aim of demonstrating that its imple-
mentation is better suited than approximate methods, like SMF,
to sample the development of inhomogeneities (equivalent
process to fragment formation in finite open systems) and the
related observables. We therefore compare results obtained
with BLOB and SMF.

A. Fluctuations in nuclear matter: Analytic estimate

Let us consider nuclear matter at low temperature. Either
from the stochastic fluctuating residual term of the BLOB
treatment or from an external stochastic force in the SMF
approach, we introduce a small disturbance in uniform matter
δf (r,p,t) = f (r,p,t) − f 0(p,t), which lets fluctuations de-
velop in time around the mean trajectory f 0.

By considering neutron and proton distribution functions,
we can further decompose fluctuations in isoscalar modes δf s

and isovector modes δf v:

δf s = (
fn − f 0

n

) + (
fp − f 0

p

)
, (12)

δf v = (
fn − f 0

n

) − (
fp − f 0

p

)
, (13)

corresponding to phase-space density modes where neutrons
and protons oscillate in phase or out of phase, respectively.
The temporal evolution of both those modes is obtained by
applying the BL equation (7) to the phase-space fluctuations.
For symmetric matter, and retaining only first-order terms in
δf q, one obtains

∂δf q

∂t
+ p

m
· ∇rδf

q − ∂f 0

∂ε

∂δU q

∂ρq

p
m

· ∇rδρ
q = ∂f 0

∂ε

p
m

·∇rU
′,

(14)

where the index q stands either for isoscalar (q = s) or
isovector (q = v) modes, f 0 = f 0

n + f 0
p , Uq is the mean-field

potential in the q channel and U ′ is an external stochastic
force (SMF) or a fluctuating stochastic field (BLOB). We
dropped the average collision term IUU because we consider
small temperatures.

To build our stochastic descriptions we assumed that,
at least locally, fluctuations have a small amplitude around
their mean trajectory so that δf q � f q. When the system is
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described as a periodic box, collective modes are associated
with plane waves of wave number k. In this case, by expanding
on plane waves expressed in Fourier components, we can study
the evolution in time of phase-space density fluctuations,

δf q(r,p,t) =
∑

k

e(ik·r)f
q
k (p,t) =

∑
k

e(ik·r)e(iωkt)f
q
k (p), (15)

and undulations in the density landscape δρq(r,t) =∑
k e(ik·r)ρ

q
k (t). Rewritten in Fourier components, Eq. (14)

takes the form

iωkf
q
k + ik · p

m
f

q
k − i

∂f 0

∂ε

∂U
q
k

∂ρq
k · p

m
ρ

q
k = i

∂f 0

∂ε
k · p

m
Fq

k ,

(16)

where U
q
k and Fq

k are Fourier components of the potential U
and of the stochastic fluctuating field U ′, respectively.

When the fluctuation modes are of stable nature, the
response of the system to the action of the stochastic fluctuating
field F q

k determines the equilibrium variance (σ q
k )2 associated

with the fluctuation ρ
q
k. The inverse Fourier transform of (σ q

k )2

gives the equilibrium variance of spatial density correlations

(σρq )2 ≡ 〈[δρq(r)]2〉 = (2π )−3
∑

k

(
σ

q
k

)2
dk (17)

in a cell of volume �V at temperature T . At equilibrium, when
the level densityN ≡ (g/h3)

∫
∂εf

0dp for a degeneracy g can
be defined, these variances are related to the curvature of the
free-energy density F q(k) through the fluctuation-dissipation
theorem [54] so that(

σ
q
k

)2 = T

F q(k)
, (σρq )2 = T

�V

〈
1

F q(k)

〉
k
, (18)

where F q(k) = ∂ρqU
q
k + 1/N , and for an average 〈·〉k extend-

ing over all k modes.
On the other hand, for unstable modes, the diffusion

coefficient D, or rather its projection on a given unstable mode
k, Dk , determines the following evolution for the intensity of
response (σ q

k )2 for the wave number k [46,55]:(
σ

q
k

)2
(t) ≈ Dkτk(e2t/τk − 1) + (

σ
q
k

)2
(t = 0)e2t/τk , (19)

where both the initial fluctuation seeds (σ q
k )2(t = 0) and

the fluctuation continuously introduced by the collisional
correlations contribute to an exponential amplification of the
disturbance, characterized by the growth time τk .

B. Scenarios for isovector and isoscalar fluctuations

In the following, starting from Eq. (16), we concentrate on
the propagation of isovector modes, which are always of stable
nature, and isoscalar modes, with a special focus on unstable
conditions.

Isovector fluctuations, based on Eq. (18) and studied in
Sec. IV for nuclear matter at several density values, define how
isospin distributes among different phases and portions of the
system. On the other hand, isoscalar fluctuations developing in
mechanically unstable nuclear matter, which rely on Eq. (19),
studied in Sec. V, coincide with the process of separation of
those portions of the system into fragments. The latter scenario

has been intensively investigated [6] foremost because, in open
dissipative systems, like heavy-ion collisions, it corresponds
to a catastrophic process which can lead to the formation of
nuclear fragments [56,57]. The size distribution of fragments
and their formation time are ruled by the dispersion relation for
wavelengths related to unstable k modes so that, when unstable
modes succeed to get amplified, inhomogeneities develop and
eventually lead to mottling patterns at later times. Then, in
this case, isovector fluctuations define the isotopic features of
fragments and their connection to the symmetry energy [58].

IV. RESULTS ON ISOVECTOR FLUCTUATIONS

Isovector effects in nuclear processes may arise from
different mechanisms [59,60], like the interplay of isospin and
density gradients in the reaction dynamics, or nuclear cluster
formation, or the decay scheme of a compound nucleus. In
systems undergoing a nuclear liquid-gas phase transition, a
role is played also by isospin distillation [6,61], a mechanism
which consists in producing a less symmetric nucleon fraction
in the more volatile phase of the system along the direction of
phase separation in a ρn-ρp space, as an effect of the potential
term in the symmetry energy [62,63].

Along with these analyses, it is particularly instructive to
investigate the developing of isovector fluctuations, around the
mean trajectory, in two-component nuclear matter.

A. Preparation of a stable and uniform system

We consider nuclear matter with periodic boundary con-
ditions. We refer the reader to the Appendix B for details on
the parameters chosen for the calculations in the following
sections.

Selecting isovector modes (q → v) in Eq. (16), the phase-
space density corresponds to f v = fn − fp. To select the
isovector behavior, we keep only the isovector contribution in
the nuclear potential. Indeed, in absence of isoscalar terms, the
system is stable at all density values ρ0 and one can investigate
how isovector fluctuations depend on ρ0:

U q → U v = 2[(ρn − ρp)/ρ0]Epot
sym, (20)

where ρ0 is the uniform-matter density and E
pot
sym is the poten-

tial term in the symmetry energy. Following the procedure
of Ref. [58], U v

k is obtained from the above quantity by
introducing an interaction range through a Gaussian smearing
gσ of width σ , and by taking the Fourier transform; its
derivative with respect to (ρn − ρp) yields

F v(k) = (2/ρ0)Epot
sym(ρ0)gσ (k) + 1/N . (21)

Thus, from Eq. (18), we obtain the relation

F v
eff = T

2�V

ρ0

(σρv )2
= T

2�V

ρ0

〈[δρn(r) − δρp(r)]2〉 , (22)

where F v
eff can be assimilated to an effective symmetry free

energy which, at zero temperature and neglecting surface
effects, coincides with the symmetry energy Esym(ρ0).

In conventional Boltzmann–Uehling–Uhlenbeck (BUU)
calculations, however, the smearing effect of the test
particles introduces a corresponding scaling factor [46], so that
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FIG. 2. The effective symmetry energy, scaled by Ntest, as
extracted from SMF simulations, using Eq. (22), for nuclear matter at
temperature T = 3 MeV and at several density values. The different
symbols correspond to the three edge sizes l of the cells over which
the isovector variance is evaluated. Two parametrizations of the
symmetry energy are considered in the calculations: asy-soft (left
panel) and asy-stiff (right panel). In both panels, the dot-dashed line
represents the analytical expression of the symmetry energy. For the
asy-stiff case (right panel), a SMF calculation where the collision
term is suppressed is also shown for the edge size l = 2.05 fm (full
violet line). Error bars indicate the standard deviation of the F v

eff/Ntest

distribution obtained considering several time instants within a large
interval at equilibrium.

F v
eff ≈ NtestEsym. Such scaling actually reduces drastically the

isovector fluctuation variance produced by the UU collision
term. In the following, we investigate how the collision term
used in the BLOB approach differs from the UU treatment.
Since the former is not an average contribution and acts
independently of the number of test particles, we expect a
larger isovector fluctuation variance.

To prepare a transport calculation, the system is initialized
with a Fermi–Dirac distribution at a temperature T = 3 MeV;
it is then sampled for several values of ρ0 and the potential,
restricted to the only isovector contribution, is tested for a stiff
and a soft density dependence of the symmetry energy for
symmetric matter (see Appendix B).

B. Isovector fluctuation variance and symmetry energy

From a set of calculations for different densities ranging
from ρ0 = 0.02 to ρ0 = 0.2 fm−3 we obtain a numerical
solution of the r.h.s. of Eq. (22) for SMF. We use Ntest = 40. We
consider an equilibrium temperature extracted for each density
bin from the slope of the Fermi–Dirac distribution evolved in
time. The isovector variance (σρv )2, calculated in cells of edge
size l = 1, l = 2.05, and l = 3.55 fm, is multiplied by Ntest,
in order to extract F v

eff and to compare it with the symmetry
energy Esym. The comparison, shown in Fig. 2, is satisfactory
and is the closest in shape to Esym for cells larger than l = 1 fm,
but the large scaling factor Ntest has to be taken into account.
The better agreement in larger cells reflects the decreasing

FIG. 3. Isovector variance as a function of time calculated, in a
single event, with (left) SMF and (right) BLOB, for different values of
the system density, corresponding to the different colors and ranging
from 0.02 fm−3 (blue line) to 0.2 fm−3 (red line). Cells of different
size l are considered in the calculations: (top) l = 1 fm, (middle)
l = 2.05 fm, and (bottom) l = 3.55 fm. An asy-stiff form of the
symmetry energy is considered.

importance of surface effects, so that the calculation gets close
to the (volume) symmetry energy.

We notice that an equivalent calculation where the collision
term is suppressed yields identical distributions; such a colli-
sionless calculation corresponds to switching off the collision
term. The need of scaling by Ntest to recover the expected
fluctuation value reflects the fact that isovector fluctuations
are not correctly implemented in SMF. Indeed, much attention
is paid in the model to a good reproduction of isoscalar
fluctuations and amplification of mean-field unstable modes
by introducing an appropriate external field [49]. On the other
hand, explicit fluctuation terms are not injected in the isovector
channel in SMF. In this case, one just obtains the fluctuations
related to the use of a finite number of test particles which, as
far as the Fermi statistics is preserved, amount to the physical
ones divided by Ntest. These results completes the study of
Ref. [58] concerning SMF.

We now turn to BLOB calculations. Figure 3 shows that
the isovector variance in BLOB are larger than in SMF. Such a
difference is therefore the effect of the treatment of collisional
correlations in BLOB, which displays a dependence with the
system density. In particular, the low-density limit of the
spectrum corresponds to a situation where the collision rate
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FIG. 4. The isovector variance, at equilibrium, as a function of
the system density, calculated with SMF (full circles) and BLOB
(open circles), for two parametrizations of the symmetry energy: (left)
asy-soft and (right) asy-stif. Cells of different size l are considered in
the calculations: (top) l = 1 fm, (middle) l = 2.05 fm, and (bottom)
l = 3.55 fm. For one case (asystiff, l = 2.05 fm) other calculations are
shown: SMF with the collision term suppressed (full violet line), and
BLOB calculations for different constant values of σNN (green lines).
Error bars indicate the standard deviation of the isovector variance
distribution obtained considering several time instants within a large
interval at equilibrium.

is vanishing. In this case, the BLOB procedure is practically
ineffective (see also the discussion in Sec. V A) and all
approaches converge to the same isovector variance, just
related to the finite number of test particles employed. At
larger density than saturation (ρ � 0.18 fm−3), BLOB displays
a longer path to convergence which is due to the difficulty of
relocating large portions of phase space in binary collisions
without violating Pauli blocking.

Figure 4 condenses and extends the information of Fig. 3
by displaying the density evolution of the isovector variance
attained at equilibrium as evaluated in cells of different size
l, for asy-stiff and asy-soft forms of the symmetry energy.
The SMF data correspond to those analyzed in Fig. 2. The
BLOB spectra progressively deviate from SMF data for
increasing density. Such deviation increases for larger cell
sizes, indicating that the isovector fluctuations are better
built in large volumes [33]. This is related to the variety
of configurations, concerning shape and extension of the
nucleon wave packet, which occur in the implementation of

the fluctuating collision integral. This introduces a smearing
of fluctuations on a scale comparable to the wave-packet
extension in phase space. However, the gain in isovector
variance exhibited by the BLOB approach indicates that the
dependence on Ntest is partially reduced with respect to the
SMF scheme.

C. Interference between mean-field propagation, collisional,
and numerical correlations

According to Eq. (9), the BLOB approach should intro-
duce and revive fluctuations continuously. The agglomeration
procedure employed in BLOB is actually able to construct
agglomerates of test particles of the same isospin species and
which are located around local density maxima in random
selected phase-space cells: this technique should preserve
at least partially the isovector correlations in the system,
contrarily to the usual BUU technique which smears them
out. This advance with respect to BUU is, however, not
sufficient because of the concurrent effects associated with
the mean-field dissipation. Indeed, fluctuations are propagated
according to a total inverse relaxation time,

1/τ ′
k = 1/τ coll

k + 1/τm.f.
k , (23)

so that, if the collisional rate is too small, they are damped
by the mean-field dynamics before they can reach a sizable
amplitude.

Moreover, even in absence of any explicit fluctuation
seed, the dynamics is actually affected by numerical noise,
due to the use of a finite number of test particles in the
numerical resolution of the transport equations; such a spurious
contribution imposes the dependence of (σρq )2 on Ntest [55].
If this latter effect may be negligible with respect to the large
isoscalar fluctuations developing in the presence of mean-field
instabilities (see next section), it becomes a highly interfering
contribution for the isovector modes. In other words, the
numerical noise leads to an effective diffusion coefficient
D′

k = Dk + Dnoise
k . If a small number of test particles is

considered, and two-body collisions are not so frequent, then
Dnoise

k prevails over Dk , causing a deviation of the fluctuation
amplitude from the correct value.

For these reasons, although in principle the fluctuation
equilibrium value, as deduced from BLOB, should not depend
on the details of the nucleon-nucleon cross section σNN and
on the number of test particle employed, our results depend
significantly on both ingredients.

Two ways can be tested to get a deeper insight into this
problem: either the collision term should be considerably
enhanced, or fluctuations generated by test particles should
be prevented.

The first solution can be achieved by simply multiplying
σNN by a large factor, with the drawback of then handling
incorrect collision rates. Of course, this is not a problem if
one is interested in equilibrated matter, as in the present case,
but it would be crucial when dealing with nonequilibrium
processes, such as nuclear reactions. Some tests in the first
direction are proposed in Fig. 4, by employing a constant σNN

with progressively larger values, showing that the isovector
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FIG. 5. (left) The isovector variance, at equilibrium, as a function
of the number of test particles, Ntest, as obtained in SMF simulations
(open circles) and in BLOB calculations (open squares), using a
constant σNN = 50 mb, for nuclear matter at density ρ0 = 0.08 fm−3

and temperature T = 3 MeV. BLOB calculations are also shown
for σNN = 100 mb (green full circles). Cells of different size l are
considered, as indicated in the figure. Dashed lines represent a fit of
SMF simulations, assuming a trend proportional to the inverse of the
test particle number. (right) Time evolution of the isovector variance,
as obtained in a single event, for BLOB calculations with constant
σNN = 100 mb and l = 2.0 fm. The different curves correspond to
different number of test particles employed in the simulations. The
asy-stiff form of the symmetry energy is considered.

variance grows with the collision rate, as we expect on the
basis of the arguments discussed above.

The second check would consist of employing the largest
possible number of test particles per nucleon. In this case,
the collisionless transport model would ideally correspond
to the Vlasov approach and, when collisional correlations
are introduced, interferences with spurious stochastic sources
can be highly reduced. However, interference effects with
the mean-field propagation can still be important, depending
on the collision rate. As far as numerical complexity can
be handled, Fig. 5 (left) illustrates such a situation: SMF
calculations show a behavior ∝1/Ntest, independently of σNN.
On the other hand, in the BLOB case one observes that,
especially in the largest cells, where fluctuations are more
effective, the corresponding variance deviates more and more,
for large test particle numbers, from the SMF results, reaching
a kind of saturation value. The latter depends on the cell size l
and on the cross section employed (see also the discussion
above). Figure 5 (right) shows the time evolution of the
fluctuation variance. It appears that, for a small number of
test particles (up to 100), the variance oscillates around its
initial value, which is essentially associated with the numerical
noise and scales as 1/Ntest. Increasing the number of test
particles, the numerical noise gets smaller and the BLOB
fluctuation source prevails upon it, building up a fluctuation
variance which is larger than the initial value. However, since
we are considering systems at low temperature, the number of

nucleon-nucleon collisions is extremely low and insufficient to
rapidly introduce a pattern of isovector correlations, unless one
employs very high values for the cross section: the isovector
variance shows in fact a very gentle growth.

In conclusion, the BLOB fluctuation source term works
well in conditions where the collision rate is large enough,
as compared with the mean-field propagation and to the
spurious dissipative terms associated with the finite number
of test particles. These conditions are likely reached in the
first, nonequilibrated stages of heavy-ion collisions, but not
necessarily for equilibrated nuclear matter at low temperature.
In the latter case, the variance associated with the fluctuating
collision integral can be recovered by artificially increasing
the employed σNN. Indeed, as shown in Figs. 4 and 5, we
observe that the fluctuation variance built by BLOB may
deviate significantly from the SMF results, being up to a factor
ten larger, especially when considering fluctuations in larger
cells (l ≈ 2 to 3 fm).

V. RESULTS ON ISOSCALAR FLUCTUATIONS

If fluctuation seeds are introduced in homogeneous neutral
nuclear matter at low temperature, Landau zero-sound [64]
collective modes should stand out and propagate in the system.
In the present section we analyze whether the BLOB approach
is able to develop, as aimed, isoscalar fluctuations of correct
amplitude in nuclear matter spontaneously, and not from
an external contribution, when the system is placed in a
dynamically unstable region of the equation of state [65], like
the spinodal zone. In this circumstance, as soon as fluctuation
seeds are generated, unstable zero-sound waves should be
amplified in time. In the opposite situation, in conditions
of mechanical stability, undamped stable zero-sound waves
propagate. Then, for stable configurations, the same arguments
of Sec. IV hold and, in this case, the fluctuation variance is
linked to matter incompressibility.

A. Sampling zero-sound propagation in mechanically stable
and unstable nuclear matter

The propagation of fluctuations in nuclear matter can be
described in a linear-response approximation [46] as far as
deviations from the average dynamical path are small. In
Eq. (16), by selecting isoscalar modes (q → s, we drop the
s index in the following), and setting residual contributions
to zero, we obtain a linearized Vlasov equation in terms
of frequencies ωk to describe stable matter with isoscalar
contributions:

ωkfk + k · p
m

fk − ∂f 0

∂ε

∂Uk

∂ρ
k · p

m
ρk = 0. (24)

Different wave numbers k are decoupled, each linked to
a collective solution fk given by the Fourier-transformed
equation of motion. By applying the self-consistency condition
ρk = (g/h3)

∫
fk(p)dp, we obtain the dispersion relation for

the propagation of density waves in Fermi liquids at T = 0:

1 = g

h3

∂Uk

∂ρ

∫
∂f 0

∂ε

k · p/m

ωk + k · p/m
dp, (25)
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FIG. 6. (a) The isoscalar mean-field potential as a function of the
density. The dots indicate the two density values considered in SMF
and BLOB simulations. (b) The Landau parameter F0 as a function
of the density. (c) Real (for F0 > 0) and imaginary (for F0 < 0) roots
of the dispersion relation; the spinodal region corresponds to F0 <

−1, the region for −1 < F0 < 0 corresponds to Landau damping and
positive values of F0 define stable modes. Blue dots indicate the γ

values corresponding to the density ρ0 = 0.053 fm−3. The γ value
corresponding to ρ0 = 0.14 fm−3 is beyond the interval shown in the
figure (in the direction of the green arrow). (d) The chemical potential,
divided by the Fermi energy, as a function of temperature T for the
two density values considered in the calculations: ρ0 = 0.053 fm−3

(blue line) and ρ0 = 0.14 fm−3 (green line). The dots correspond to
the temperature (T = 3 MeV) considered in the simulations.

where ωk and −ωk are pair solutions due to the invariance p ↔
−p. As well documented in the literature, at T = 0 eigenmodes
fk depend only on states near the Fermi level. Indeed, the
momentum integral is restricted to the Fermi surface because
∂εf

0 ≈ −δ(ε − εF), εF being the Fermi energy. The dispersion
relation reduces to an expression where solutions correspond
to sound velocities s = ωk/(kvF) in units of Fermi velocity
vF = pF/m. In this case, introducing the Landau parameter

F0(k) = N0∂ρUk = (3/2)(ρ0/εF)∂ρUk, (26)

where N0 = N (T = 0) is linked to the number of levels at
Fermi energy εF, the dispersion relation takes the form [66]

1 + 1

F0
= L(s) = s

2
ln

(
s + 1

s − 1

)
, (27)

where the Lindhard function, L(s) has been introduced. In
correspondence to the effective interaction employed, reflected
in the potential shown in Fig. 6(a), the Landau parameter is
illustrated in Fig. 6(b), while Fig. 6(c) presents the roots of the
dispersion relation, corresponding to the effective interaction.

B. Warm systems and interaction range

Equation (27) is only valid at zero temperature. When the
temperature is significant, two-body collision rates become
prominent and these mean-field dominated zero-sound waves
are absorbed and taken over by hydrodynamical first-sound

collective modes. Since our approach exploits two-body
collisions to introduce fluctuations in a self-consistent mean
field, we expect the possible occurrence of a zero-to-first-sound
transition which, at variance with other Fermi liquids [67],
should be even smeared out due to the small values taken
by the Landau parameter F0 in nuclear matter. It was found
that, depending on how the system is prepared and on the
type of collective motion, such a transition should arise in a
range of temperature from 4 to 5 MeV and occur as late as
200 fm/c [68,69]. In practice, zero-sound modes associated
with wave vectors k characterize the system as long as the
corresponding phase velocity exceeds the velocity of a particle
on the Fermi surface vF or, equivalently, as long as the
corresponding frequency ωk is much higher then the two-body
collision frequency ν. These premises imply that, after defining
a homogeneous initial configuration at a suited finite and
not-so-large temperature, we should study early intervals of
time to extract properties of the response function which can
be compared with zero-sound conditions.

Temperature effects can be included, in an approximate
manner, considering the low-temperature Sommerfeld expan-
sion of the chemical potential μ(T ):

μ(T )

εF
≈ 1 − π2

12

(
T

εF

)2

, (28)

which is illustrated in Fig. 6(d).
As a further modification, we consider that zero-sound

conditions also present a strong dependence on the interaction
range. This latter can be included in the dispersion relation
by applying a Gaussian smearing factor of the mean-field
potential which is related to the nuclear interaction range in
configuration space [70,71],

U → U ⊗ g(k), with g(k) = e− 1
2 (kσ )2

, (29)

From Eqs. (28) and (29), the dispersion relation (27)
involves an effective Landau parameter [70],

F̃0(k,T ) = μ(T )

εF
F0g(k). (30)

Mechanically unstable conditions are experienced when the
evolution of local density ρ and pressure P implies that the
incompressibility is negative. This situation is reflected by an
effective Landau parameter F̃0(k = 0,T ) smaller than −1, so
that

∂P

∂ρ
≈ 2

3
εF[1 + F̃0(k = 0,T )] < 0, (31)

and it corresponds to imaginary solutions of the dispersion
relation [72]. By replacing s → iγ , the relation yielding
imaginary solutions can be put in the form

1 + 1

F̃0(k,T )
= γ arctan

1

γ
. (32)

The growth rate �k = 1/τk is obtained from the solutions
of the dispersion relation

|γ | = |ωk|
kvF

= 1

τkkvF
. (33)
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As far as the Fermi statistics is kept in a sufficiently large
periodic portion of mechanically unstable nuclear matter, and
a fluctuation source term is acting, the expectation is that the
intensity of the response should be amplified with the growth
rate �k imposed by the mean-field potential U as a function of
the unstable mode k.

C. Obtaining the dispersion relation

To check such expectation numerically through a BL
transport approach we keep the same scheme for the definition
of the box metrics as in Sec. IV; the isoscalar density variance
is calculated over cells of edge size l = 1 fm. We now use the
full parametrization of the energy potential per nucleon (B1),
where we use a stiff density dependence of the symmetry
energy (the same parametrization was analyzed in Ref. [73]).
Nuclear matter is isospin symmetric and is initially uniform
and prepared at a temperature T = 3 MeV and at densities
equal to ρ0 = 0.053 and 0.14 fm−3. Figure 6 illustrates the
values taken by the potential and by the dispersion relation
related to these choices. The collision term involves the usual
isospin- and energy-dependent free nucleon-nucleon cross
section with an upper cutoff at σNN = 50 mb.

Within the dynamical calculation we should register at each
interval of time t the density in all cells of edge size l of
the lattice which constitutes the periodic system of edge size
L. A specific cell can be identified by the vector n′. Having
introduced such a lattice, the perturbation wave number k can
be expressed as k = 2πn/L, where n is the modulus of a vector
ranging from 1 to nmax = L/l along each of the three spatial
directions. Then the amplitude of the isoscalar fluctuation of
a mode k is obtained from the Fourier transform, Fk, of the
space density,

σ 2
k (t) = 〈

F 2
k (t)

〉 = 1

l3

〈[∑
n′

ρn′(t)exp(ian · n′)

]2〉

∝
〈[∑

n′
ρn′(t)cos(an · n′)

]2

+
[∑

n′
ρn′(t)sin(an · n′)

]2〉
, (34)

where a = 2πl/L and the average is extended over all
orientations of k.

The distribution of ratios σ̃ 2
k (t) = σ 2

k (t)/σ 2
k (t = 0), aver-

aged over several dynamical paths, is shown at different time
intervals in Fig. 7 for the two density choices. It should be
noticed that the initial fluctuation amplitude is due to the
finite number of test particles employed in the calculations.
However, as soon as the BLOB term starts to act, fluctuations
of larger amplitude are built up (see also the discussion in
Sec. V A) and further amplified by the unstable mean field.
The system prepared at ρ0 = 0.053 fm−3, inside the spinodal
region, exhibits a clear growth of instabilities as a function
of time for some k waves, while the system prepared at
ρ0 = 0.14 fm−3, outside the spinodal region, presents an
evolution of the response intensity corresponding to a more
gentle growth in a Landau-damping regime. However, even
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FIG. 7. BLOB calculation. Response intensity σ̃ 2
k (t) =

σ 2
k (t)/σ 2

k (t = 0), averaged over 100 dynamical paths, as a function of
the wave number k. The different curves correspond to different time
instants, as indicated on the figure. (left) Results for ρ0 = 0.053 fm−3

(spinodal). (right) Results for ρ0 = 0.14 fm−3 (Landau damping).

in this latter case, fluctuations reach a significant amplitude,
owing to the small compressibility value in the density region
considered, but cluster formation is not observed.

Correspondingly, the early evolution in time of σ̃ 2
k (t) is

analyzed in Fig. 8 for the two density choices. For the leading
modes, one can consider a linear fit of the quantity plotted
in Fig. 8(a), in intervals ranging from around 20 fm/c to
time instants close to saturation [see Eq. (19)]. The very
initial path is excluded from the fit because, as previously
mentioned, the fluctuation mechanism sets in spontaneously
after a sufficient number of collisions has occurred and does
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FIG. 8. Early time evolution of the response intensity σ̃ 2
k (t) for

several modes. n = j stands for all k modes within 2π (j − 1)/L �
k < 2πj/L. (a) BLOB calculations for ρ0 = 0.053 fm−3 (spinodal).
(b) SMF calculations for ρ0 = 0.053 fm−3. (c) BLOB calculations
for ρ0 = 0.14 fm−3 (Landau damping).

054609-10



INHOMOGENEITY GROWTH IN TWO-COMPONENT . . . PHYSICAL REVIEW C 96, 054609 (2017)

not emerge from suited initial conditions. Differences from
the ideal linear response in the growing side of single modes
indicate a more complex behavior, resulting from the coupling
of different wavelengths and the tendency toward a chaotic
evolution [74]. A SMF calculation is also presented for the
unstable system, where the linear growth of the leading modes
is initially comparable to the BLOB approach and deviates
at later times. This behavior is due to the efficiency of the
collision term in the BLOB model in reviving fluctuations of
correct amplitude, compared with SMF, where fluctuations are
not introduced by the collision term. As a consequence, in SMF
fluctuations decay by the combination of small wavelengths
into larger ones, while in BLOB higher fluctuation amplitudes
can be attained before reaching the saturation regime. We may
remark that, as the variance relaxes towards its equilibrium
value, an initial exponential growth (or decrease, depending
on the initial value) of fluctuations is observed even when
the system is stable. The same effects also characterize
the Landau damped regime, associated with an imaginary
solution of the dispersion relation with a negative growth
rate (damping). Within the linear approximation to the Vlasov
dynamics, unstable conditions present on the other hand an
exponential amplification of fluctuations over all times, due
to a positive growth rate. However, also in the latter case
fluctuations saturate because the Vlasov equation is nonlinear.
This explains the qualitative similarity between Figs. 8(a)
and 8(c), even though the final fluctuations that the unstable
system entertains are much larger and correspond to clustered
matter.

The numerical extraction of the growth rate �k , i.e., of
the quantity given by the analytic relation of Eq. (33), is
obtained from the time derivative (at early time instants) of
the amplitude of the isoscalar fluctuation for a given mode k
as

�k = 1

2

∂

∂t
ln ≺ σ̃ 2

k (t) � , (35)

where the average ≺ · � is taken over several stochastic
dynamical trajectories. Such an analysis is presented in Fig. 9,
where the numerical calculation, averaged over 100 events,
is compared with the analytic result of Eq. (33). The range
of the interaction, as an effect of the implemented surface
term, would correspond to a Gaussian smearing of around
σ = 0.8 fm to σ = 0.9 fm (see Appendix B for details
on the surface term in the numerical approach). We infer
that BLOB reproduces consistently the expected dispersion
relation within the uncertainties of the linear regression.
Another calculation, also based on the same mean field, but
which employs the earlier approach of Ref. [33], also solved in
three dimensions but with fluctuations developing along one
axis of configuration space, produces a similar result. While
BLOB keeps the different unstable modes decoupled for a
more extended interval of time during their early growth, also
resulting into a larger ultraviolet cutoff, the other approach
(green points) presents some alterations due to the combining
of unstable modes, where small wavelengths (n > 7) are
gradually absorbed by large wavelengths (n = 0,n = 1). The
effect in this case is an increase of the growth rate for
small k and it signals the entrance of the chaotic behavior
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681012
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σ=  0.9 0.8     0.7fm

FIG. 9. BLOB calculations for nuclear matter at ρ0 = 0.053 fm−3

and temperature T = 3 MeV: The growth rate �k , as extracted from
the simulations [see Eq. (35)], is plotted as a function of the wave
number k (full line with dots). Uncertainties are evaluated from
the linear-response fit. The dashed lines correspond to analytical
predictions, obtained by solving Eq. (32) with different values of
the width σ of the Gaussian smearing factor. For comparison, a
calculation in one dimension within the approach of Ref. [33] is
also shown (green diamonds).

which characterizes larger times [75]. The largest k modes,
corresponding to wavelengths which drop below the Gaussian
smearing width σ are meaningless. As a final result of this
study, the leading modes are found in a wavelength range
from 8 to 9 fm, and for a growth time τk of around 30 fm/c.

VI. CONNECTING NUCLEAR MATTER
TO OPEN SYSTEMS

The aim of this work is studying the effect of isovector and
isoscalar fluctuations. The ultimate purpose of the transport
approaches discussed therein is describing the formation of
nuclear fragments in a fermionic system and their properties
through the combination of these two types of fluctuating
modes, as will be detailed more diffusely in forthcoming
works. In particular, isovector fluctuations, on top of other
isospin transport effects, impose that the isospin content is
distributed through a density-dependent process of distillation,
supplemented by an isotopic variance. The onset of isoscalar
modes is then responsible for breaking the uniformity of the
density landscape and eventually partitioning it into nuclear
fragments, where the isospin properties of the initial nesting
sites are preserved. The isoscalar and isovector mechanisms
should therefore be intimately connected in order to describe
fragment formation.

A. Fragment formation: Patterns and time scales

Qualitatively, we may underline some connection between
the wavelengths involved in the dispersion relation analyzed
in Fig. 9, and fragment formation [76], considering that,
at the system density ρ0, the leading modes correspond to
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fragments of mass A ≈ ρ0λ3; for the leading wavelengths,
this corresponds to a distribution of sizes peaked around
neon. These results are also in agreement with other previous
studies where quantum effects were taken into considerations
explicitly [77–81] despite a more schematic treatment of
fluctuations, or of the whole dynamics (two-dimensional treat-
ments, fluctuations propagated from an initial state, spherical
geometries). In this respect, BLOB extends these previous
attempts to a model that can be applied at the same time to
nuclear matter and, rather successfully, to heavy-ion collisions
in three dimensions and without any preliminary initialization
of fluctuation seeds [32,82].

From the growth time of the leading modes in Fig. 9, we
infer that the corresponding process of fragment formation
would be rather short, progressing from when the system
has been largely diluted. This suggests that the scenario
studied in nuclear matter can be quite directly translated to the
phenomenology of open systems [6]. In particular, eigenmodes
of the density oscillations are plane waves in a box (see
Sec. III A) and they may be expressed in terms of spherical
harmonics in a finite (spherical) nucleus. The two scenarios
can be connected: indeed the instability growth times appear
to be associated with the features of the nuclear effective
interaction and the distance between density bumps [83]. As
an example, Fig. 10 illustrates the correspondence between
a portion of nuclear matter (simulated for T = 3 MeV and
ρ0 = 0.053 fm−3 for an interaction defined as in Eq. (B1) and
a hot system formed in the collision 136Xe + 124Sn at 32A MeV
for a central impact parameter b = 0 (such a system was
studied in an experimental campaign [84,85]). In particular,
we observe some analogy between the early time when
inhomogeneities emerge in nuclear matter (20 fm/c) and when
fragments start forming in an open system (around 100 fm/c)
right after accessing low-density spinodal conditions (around
80 fm/c). In both systems, a spinodal signal stands out by
exhibiting equal-size inhomogeneities in configuration space
within a similar timescale [32], and it is smeared out by
fragment recombination later on. At even later times, the
evolution is different, in the box calculation clusters continue
interacting with each other while in the open system they split
apart.

Experimental investigations of heavy-ion collisions at
Fermi energies already pointed out that the range of masses
given by the dispersion relation of Fig. 9 is actually favored in
multifragmentation mechanisms; the kinematics of the process
was also found to be rather explosive. The spinodal mechanism
was therefore proposed as a suitable description [86,87];
BLOB has already been adapted successfully to nuclear
collisions and tested over various systems which experience
spinodal instability [32,82,88].

B. Isospin content in fragments

Figure 11 completes the survey, investigating the isospin
content in potential ripples containing N ′ neutrons and Z′
protons for the system 136Xe + 124Sn at 32A MeV. Distribu-
tions of isotopic variances are calculated for the most probable
mass range around a forming carbon and a forming neon (two
upper rows). The distributions are studied in an early time span

FIG. 10. (left) Density-landscape at several time instants for
nuclear matter in a periodic box at ρ0 = 0.053 fm−3 and T = 3 MeV
and (right) in a hot open nuclear system formed in a head-on
136Xe + 124Sn collision at 32A MeV. Arrows indicate the beam
direction. Both simulations employ the BLOB approach with the same
mean-field properties. The big arrow proposes an analogy between
nuclear matter and the open system in correspondence with the rise
of the spinodal instability.

(before that fragments are clearly formed, around 130 fm/c)
and in a late time interval (during fragment formation around
200 fm/c). They are compared with the analytic distributions
obtained at a temperature T = 5.5 MeV, as extracted from the
calculation, and at the local density ρ. The isotopic variance
[see Eq. (18)] can be studied as the probability of variation δ
around the mean value of N ′ − Z′ and for a given A′ yielding
the distribution

Y ≈ exp[−(δ2/A′)Csym(ρ)/T ]. (36)

The local density is evaluated either in the (denser) centroid of
the potential ripples, ρcentroid, or averaged all over the volume
of the emerging fragments, ρ̃, or, more significantly, corre-
sponding to the matter contained in the volume of the potential
ripples, ρwell. We deduce that, as expected from the calculation
for stable nuclear matter discussed above, the isotopic width
results underestimated with respect to the analytic prediction of
Eq. (18). The difference is still acceptable due to the following
two effects: First of all, fluctuations are built out of equilibrium:
this implies that the collision rate is higher, generally leading to
larger variances. Second, in open systems, particle evaporation
may contribute to widening the isotopic spectra.
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FIG. 11. BLOB simulation of head-on 136Xe + 124Sn collisions
at 32A MeV. (upper row) Isotopic distribution (full dots) in potential
ripples containing N ′ neutrons and Z′ protons for cluster-forming
configurations with masses around A′ = 15 (left) and A′ = 24 (right)
at t = 130 fm/c. The lines correspond to analytic distributions [see
Eq. (36)], corresponding to the density extracted from different
portions of potential ripples (see text). (middle row) The same as in
the upper row, but at t = 200 fm/c. (bottom) Average isospin content
measured in potential ripples at two different times, as indicated on
the figure, as a function of ρwell. Larger density values correspond
to prefragments of larger mass. The dot-dashed line with an arrow
indicates the asymmetry of the projectile-target composite system.

The bottom row of Fig. 11 investigates the average isospin
content measured in potential ripples in the corresponding
early and late time intervals as a function of ρwell. The mass A′
grows with the density and the corresponding isospin content
decreases, signaling a process of isospin distillation.

C. Extent of different clusterization processes
in heavy-ion collisions

The processes discussed in this work, related to phase-
space fluctuations and mechanical instabilities, involve a rich
phenomenology of phase transitions and thresholds between
very different reaction mechanisms. They may therefore also
present some similarities in their outcome with other rather
different processes and, in some situations, combine with them.
For instance, the onset of instabilities of a Rayleigh type is
a common process in macroscopic hydrodynamic systems,
like classical fluids with a non-negligible surface tension [89],

which has also been proposed as a possible additional scenario
for nuclear multifragmentation in heavy-ion collisions [90,91],
in some specific situations. Such a process occurs in systems
where a dilute core expands into a denser shell (Rayleigh–
Taylor instability), or it acts on very deformed systems
involving cohesional forces which respond to external per-
turbations (Plateau–Rayleigh instability). The system in such
hydrodynamic scenario develops hole nucleation, evolving
into a sponge-like or a filamented configurations which then
relax into compact droplets. The mechanism is faster than
ordinary fission and density variations of bound matter along
the process do not need to be significant.

On the other hand, the spinodal process described above
can only occur if the system traverses a specific region of the
equation of state, characterized by negative incompressibility
where nucleation progresses from a dilute phase, letting blobs
of larger density gradually emerge. From a microscopic point
of view, it is rather associated with the nuclear liquid-gas phase
transition and it requires a time comparable to the equilibration
time of the system in reactions at Fermi energies. We point
out that, in simulations of heavy-ion collisions, the BLOB
approach is actually able to describe the interplay between
spinodal processes and the above-mentioned hydrodynamic
effects [92].

Heavy-ion collisions and nuclear matter also involve
processes of nuclear cluster formation, from light charged
particles to heavier nuclear molecules, but those products
emerge from even different mechanisms [93], which would
require the explicit inclusion of additional correlations in
the hierarchy of Eq. (1). Light charged particles related to
nuclear clustering are too small, exceeding the ultraviolet
cutoff of the dispersion relation, so that they cannot belong
to the unstable multipole modes which characterize spinodal
fragmentation. Solutions for an explicit treatment of cluster
formation are proposed in Refs. [94–96]. Connections between
nuclear clustering and (spinodal) multifragmentation might
be proposed, considering that multifragmentation might act
on defining nuclear sources with rather complex shapes from
which clustered structures might eventually emerge.

VII. CONCLUSIONS

This work presents crucial steps to validate BL transport
models applied to a fermionic system, both in stable and
mechanically unstable conditions, as far as the development
of isoscalar and isovector fluctuations at various densities
is concerned. In particular, the amplitude of fluctuations is
investigated in relation with the corresponding properties of
the nuclear effective interaction. A transport approach based
on a full treatment of the BL approach proves to be more
efficient than other approximate strategies in building up the
analytical fluctuation amplitude for equilibrated systems (like
Fermi liquids) and to induce and revive larger fluctuations in
unstable cases, favoring clusterization. In the present study we
reached such a conclusion by comparing the BLOB approach
(full treatment of the BLE) and SMF (simplified treatment
of the BLE), and we could therefore explain why the first
approach is more efficient in preserving fluctuations of larger
amplitude, leading to a more reliable description of the onset
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of multifragmentation in heavy-ion collisions (as shown in
Ref. [32]).

In practice, even though technically demanding, the BLOB
approach constitutes a conceptually straightforward solution
of the BLE in three dimensions. Through a simple renormal-
ization of the collision term, the Fermi statistics is in fact
preserved for a long time and a correct isoscalar fluctuation
amplitude is obtained independently of the ingredients of the
numerical implementation (like the number of test particles),
just associated with the collision rate and the growth time
of the unstable modes. Also the fluctuation variance of
isovector observables are better treated than in conventional
semiclassical approaches, even though the expected vari-
ance is still not achieved. Indeed, in the implementation
of the fluctuating collision integral, different configurations,
varying in shape and extension, are possible to represent
the nucleon wave packet. This induces smearing effects on
the fluctuation amplitude. Moreover, if the collision rate is
very low, the characteristic timescales associated with the
construction of collisional two-body correlations are larger
than the typical mean-field timescale and the fluctuations are
damped by the propagation in the stable mean field. This
explains why, even for equilibrated nuclear matter, the model
yields a dependence of the isovector fluctuation amplitude
on the nucleon-nucleon cross section. It is also observed
that, if two-body collisions are too rare, the numerical noise
dominates the dynamics and one obtains a fluctuation variance
reduced by a factor 1/Ntest with respect to the expected
value, as obtained in standard transport approaches where
fluctuations are neglected [40]. On the other hand, if the
collision rate is large enough, the fluctuation amplitude does
not depend on the number of test particles employed in the
simulations.

It is worth noting that the dynamical approach presented
in this work does not imply any thermodynamic hypothesis
(equilibration for instance) in the implementation of the
fluctuation source, so that the characteristic thermodynamic
features of multifragmentation, like the occurrence of a
nuclear liquid-gas phase transition, are obtained as a result
of the transport dynamics [32]: this finding makes the present
dynamical description and alternative statistical approaches for
multifragmentation mutually consistent. Finally, this approach
can easily connect nuclear matter to heavy-ion collisions in the
same framework.
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APPENDIX A: EXPLOITING FLUCTUATIONS IN BLOB:
HANDLING METRICS AND NUCLEON-NUCLEON

COLLISION STATISTICS

In Sec. II C the BLOB scheme, Eq. (9), is introduced
to generate stochastic dynamical paths in phase space. The

system is sampled through the usual test-particle method,
often adopted for the numerical resolution of transport
equations [97] with the difference that, in the case of the
BLOB implementation, the phase-space portions A and B
involved in single two-body collisions are not two individual
test particles but rather agglomerates of Ntest test particles
of equal isospin, where Ntest is the number of test particles
per nucleon used in the simulations. In a binary nucleon-
nucleon collision, the initial states A and B are constructed by
agglomeration around two phase-space sites, which are sorted
at random, inside a phase-space cell of volume h3, according
to the method proposed in Ref. [32] and further improved in
Ref. [82]. At successive intervals of time, by scanning all phase
space in search of collisions, all test-particle agglomerates
are redefined accordingly in h3 cells, so as to continuously
restore nucleon-nucleon correlations. Since test particles could
be sorted again in new agglomerates to attempt new collisions
in the same interval of time, the nucleon-nucleon cross section
σNN contained in the transition rate W should be divided by
Ntest:

σ = σNN/Ntest. (A1)

Boltzmann–Langevin solutions, where an ensemble of Ntest

test particles are moved in one bunch and the nucleon-nucleon
cross section is scaled by Ntest, were already followed in the
early approach by Bauer and Bertsch [48], or in more recent
implementations [98]. There is, however, a very fundamental
difference: in the Bauer-and-Bertsch approach the Pauli-
blocking term is not applied to the involved portions of phase
space which are actually interested by the scattering at a given
time t , as imposed by Eq. (11), but it is applied only to the
centroids of the two colliding packets. Such an approximation
makes the Pauli blocking satisfied only approximately, with the
drawback of loosing the Fermi statistics [99]. In the direction of
BLOB, to prevent the above problem, a first practical solution
was proposed in Ref. [33].

Moreover, in BLOB, special attention is paid to the
metrics when defining the test-particle agglomeration: the
agglomerates are searched requiring that they are the most
compact configurations in the phase space metrics which
neither violate Pauli blocking in the initial and in the final
states, nor energy conservation in the scattering. For this
purpose, when a collision is successful, its configuration is
further optimized by modifying the shape and the width of
the initial and final states [100]. Figure 12 illustrates the
paths of a collision configuration which by a procedure of
successive modulations is brought to a situation which strictly
respects Pauli blocking. If such modulation procedures are
unsuccessful, the collision is rejected. The rate of rejections
due to unsuccessful modulation of the collision configuration
is close to zero in open systems (heavy-ion reactions) so
that the correlation between attempted and effective collision
number is identical if a UU or a BLOB collision term is
applied, provided that the same nucleon-nucleon cross section
is used. On the other hand, in uniform nuclear matter at
equilibrium, where only nucleons close to the Fermi surface
can be involved in two-body collisions, the occurrence of such
rejections becomes non-negligible when the temperature T
considered is very low compared with the Fermi momentum.

054609-14



INHOMOGENEITY GROWTH IN TWO-COMPONENT . . . PHYSICAL REVIEW C 96, 054609 (2017)

FIG. 12. (a) Schematic representation of the definition of test-
particle agglomerates in their initial (A,B) and final (C,D) states
in momentum space in a h3 volume. (b) Convergence of a binary
nucleon-nucleon collision configuration towards a situation where
Pauli blocking is strictly satisfied. The path in the plane determined
by the occupancy numbers, fC and fD , of the final states collects
the sequence of modulations in phase space of the test-particle
clouds where the occupancy of the destination regions is iteratively
optimized. (c) Examples of possible shape modulations for the
packets associated with nucleons in the final state.

In this case, the exact correspondence between attempted and
effective collision rates in BUU (or SMF) and BLOB is lost.

A remarkable advantage of the renormalized form of the
residual contribution in Eq. (9) is to connect directly the
fluctuation variance to the physical properties of the system,
regardless of the number of test particles. Such an aspect has a
general relevance because it makes the dynamics independent
from many aspects of the numerical implementation. The
dependence on Ntest persists on the other hand in the mean-
field representation, therefore when the physical fluctuation
amplitude is small, the global fluctuation phenomenology may
suffer from noise effects produced by the use of a finite
number of test particles in the numerical implementation of
the transport equation. This remark should be kept in mind
for the study of fluctuations of relatively small amplitude, like
isovector fluctuations, as discussed in Sec. IV C.

APPENDIX B: MODEL PARAMETERS
FOR NUCLEAR MATTER

In this work, for comparison purposes, both BLOB and
SMF models are prepared relying on a strictly identical
implementation of the mean field, so that they differ only for
the residual contribution. A simplified Skyrme-like (SKM∗)
effective interaction [61,83], where momentum-dependent
terms are omitted, is employed in the propagation of the
one-body distribution function, corresponding to the following
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FIG. 13. (top) Energy distribution for ρ0 = 0.08 and (bottom)
0.16 fm−3, as obtained in SMF (dashed line) and BLOB (full line)
calculations at t = 80 fm/c. The colored band connects the Fermi–
Dirac distributions corresponding to T = 3 and T = 5 MeV.

definition of the potential energy per nucleon:

Epot

A
(ρ) = A

2
u + B

σ + 1
uσ + Csurf

2ρ
(∇ρ)2 + 1

2
Csym(ρ)uβ2,

(B1)

with u = ρ/ρsat, ρsat being the saturation density, and β =
(ρn − ρp)/ρ. This parametrization, with A = −356 MeV, B =
303 MeV, and σ = 7/6, corresponds to a soft isoscalar equa-
tion of state with a compressibility modulus K = 200 MeV. An
additional term as a function of the density-gradient introduces
a finite range of the nuclear interaction and accounts for some
contribution from the zero-point motion of nucleons [83].
Triangular functions are associated with test particles in paving
the density landscape. Their employment produces large
surface effects which should be compensated by Csurf; this
latter carries therefore a negative contribution. Csurf is related to
various properties of the interaction range: the surface energy
of ground-state nuclei (the best fit imposing a value of −6/ρsat

MeV fm5), the surface tension (light-fragment emission, in
comparison with available data is better described for a smaller
range given by −7/ρsat MeV fm5 in BLOB), and the ultraviolet
cutoff in the dispersion relation for wavelengths in the spinodal
instability (larger spectrum for a smaller range) [77]. In
this work, a value of Csurf = −7/ρ0 MeV fm5 is chosen
for the surface term. A linear (asy-stiff) density dependence
of the potential part of the symmetry energy coefficient,
E

pot
sym, is obtained by setting Csym(ρ) = constant = 32 MeV

and a quadratic-like (asy-soft) dependence is obtained for
Csym(ρ) = ρsat(482 − 1638ρ) MeV [101].

Ntest = 40 test particles per nucleon are employed if not
otherwise specified. In this work the collision term involves
an isospin- and energy-dependent free nucleon-nucleon cross
section with an upper cutoff at σNN = 50 mb [32]. In some
cases, when indicated, these prescriptions may have been
modified. In the SMF approach we adopt the quite short time
interval of 2 fm/c to inject fluctuations. In unstable conditions,
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like the spinodal region studied in Sec. V, the choice of a
short time interval as compared with the typical growth time
of unstable modes leads to convergent results on isoscalar
fluctuations. We note that the growth time of unstable modes
amounts to about 30 fm/c, quite independently of the density
conditions (see Sec. V C). Concerning isovector fluctuations,
they are only induced by the finite number of test particles.
Indeed, in the SMF model there are no explicit fluctuation
terms injected in the isovector channel.

To simulate nuclear matter, we prepare the system in a
cubic periodic box of edge size L = 39 fm, and we subdivide
it in a lattice of cubic cells of edge size l where we calculate
density variances. For the sake of simplicity, we consider
symmetric nuclear matter, i.e., with equal number of neutrons
and protons. We initially define the system by imposing a
uniform-matter effective field U 0(ρ) whose amplitude only

depends on the density considered, and a corresponding
effective Hamiltonian ε(p) = h0(p) = p2/(2m) + U 0(ρ). Ac-
cordingly, the phase-space distribution function f 0(p) = {1 +
exp[ε(p) − μ]/T }−1, not depending on configuration space
(because the system is homogeneous), is the Fermi–Dirac
equilibrium distribution at the temperature T and chemical
potential μ.

The system is initialized with a Fermi–Dirac distribution
at a temperature T = 3 MeV. As shown in Fig. 13, both SMF
and BLOB transport dynamics succeed to preserve the initial
distribution quite efficiently as a function of time, even though
a flattening of the spectrum around an effective equilibrium
temperature Teq should be accounted for, due to the fact that
the Fermi statistics is not perfectly preserved. This temperature
modification depends on the parameters of the calculation and
is larger for larger densities.
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