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Background: Coherent one-particle one-hole (1p1h) excitations have given us effective insights into general
nuclear excitations. However, the two-particle two-hole (2p2h) excitation beyond 1p1h is now recognized as
critical for the proper description of experimental data of various nuclear responses.
Purpose: The spin-flip charge-exchange reactions 48Ca(p,n)48Sc are investigated to clarify the role of the 2p2h
effect on their cross sections. The Fermi transition of 48Ca via the (p,n) reaction is also investigated in order to
demonstrate our framework.
Methods: The transition density is calculated microscopically with the second Tamm-Dancoff approximation,
and the distorted-wave Born approximation is employed to describe the reaction process. A phenomenological
one-range Gaussian interaction is used to prepare the form factor.
Results: For the Fermi transition, our approach describes the experimental behavior of the cross section better
than the Lane model, which is the conventional method. For spin-flip excitations including the GT transition, the
2p2h effect decreases the magnitude of the cross section and does not change the shape of the angular distribution.
The �l = 2 transition of the present reaction is found to play a negligible role.
Conclusions: The 2p2h effect will not change the angular-distributed cross section of spin-flip responses. This
is because the transition density of the Gamow-Teller response, the leading contribution to the cross section, is
not significantly varied by the 2p2h effect.
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I. INTRODUCTION

Several theories based on the picture of particle-hole
excitations have successfully described the nuclear spin-
isospin response. Not only the lowest-order one-particle
one-hole (1p1h) excitation but also many-particle many-hole
excitations have been observed to play a significant role.
For neutrino-nucleus quasielastic scattering, the inclusion of
the two-particle two-hole (2p2h) configuration enhances the
cross section to the point where a theoretical calculation
is consistent with the experimental data [1]. For a nuclear
spin-isospin response, the 2p2h-configuration mixing partly
explains the Gamow-Teller (GT) quenching problem, which
is known not to follow the Ikeda sum rule [2–4] and is one of
the long-standing problems in nuclear physics. Other reasons
for this quenching are the existence of the �-h excitation and
the coupling of the GT-1+ state to the spin-quadrupole (SQ)
1+ state mediated by the tensor force [5]. For a more detailed
review, see Ref. [6].

Recently the effect of 2p2h mixing on the GT-transition
strength B(GT) employing the fully self-consistent second
Tamm-Dancoff approximation (STDA) was investigated [7].
The calculated B(GT) distribution of 48Ca was compared
with its experimentally measured value [8], which was
derived through an analysis of the charge-exchange reaction
48Ca(p,n)48Sc by means of the distorted-wave impulse
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approximation (DWIA). It was shown that the STDA (where
the 2p2h model space was confined to seven single-particle
levels) described the experimental data better than the 1p1h
Tamm-Dancoff approximation (TDA). It was also confirmed
that the broadening of the B(GT) distribution by the 2p2h
effect was essential to account for the observed experimental
behavior, as preceding works have shown using different
models [9,10].

Charge exchange reactions such as (p,n) and (3He,t) excite
target nuclei through the one-body operator which populates
1p1h states in target nuclei. Therefore, the 2p2h configuration
is not directly involved in the above reactions. However, it
would have an indirect influence on the cross sections through
the transition from 1p1h states to 2p2h states. Even though
the importance of the 2p2h configuration in B(GT) has been
pointed out by many authors [6,9,11,12], a microscopic under-
standing of how such a higher-order configuration is involved
in the charge-exchange cross section is not so transparent. In
the present paper we therefore investigate the effect of the
2p2h configuration on the angular-distributed cross section,
which is directly comparable with experimental data. In order
to calculate the cross section of spin-flip transitions, we work
with the distorted-wave Born approximation (DWBA) with the
microscopic transition density obtained by the STDA.

The �l = 2 transition also generates 1+ resonance states
at excitation energies equal to that of GT-1+ states. When
the experimental B(GT) of 48Ca was evaluated [8], it was
assumed that the zero-degree charge-exchange cross section
is proportional to B(GT) and the �l = 2 transition plays a
negligible role. The assumption, however, was confirmed only
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for the 13C(p,n)13N reaction [13]. Therefore we investigate
whether the assumption is valid also for the present system,
48Ca(p,n)48Sc.

In this article both the spin-flip and non-spin-flip transitions
are surveyed. Note that, in the Fermi transition, the nucleus
populates the isobaric analog state (IAS), which has the same
isospin TA as that of the ground state of the parent nucleus. It
does not couple to other 1p1h states having TA ± 1; i.e., the
2p2h effect is expected to be small for the Fermi transition
as seen in outgoing neutron spectra of (p,n) reactions (see,
for example, Ref. [14]). Therefore we investigate the Fermi
transition just to demonstrate our theoretical framework.

This paper is organized as follows. Section II is dedicated
to the formulation of the structure and reaction models as
well as the form factor. In Sec. III, results on the non-spin-flip
(Fermi-type) transition are shown. The 2p2h effect on the cross
section of the spin-flip transition is also discussed. A summary
is given in Sec. IV.

II. THEORETICAL FRAMEWORK

Convolution of the DWBA and the random phase approx-
imation (which includes a correlation in ground states in
addition to the TDA) is widely used to analyze experimental
data at intermediate energies, as in the measurements of
charge-exchange cross sections at zero degree [13,15,16]
accompanied by the multipole decomposition technique [6].
Here we use DWBA+TDA/STDA based on the Skyrme energy
density functional [17] in order to discuss the effect of the 2p2h
configuration on charge-exchange cross sections. Because the
ground state correlation is expected to be small for the Fermi-
and GT-type charge-exchange reactions [18,19], the use of the
TDA will not affect our results. We briefly describe the STDA
as well as the TDA in Sec. II A and illustrate the formulations
of the form factor and the DWBA in Secs. II B and II C,
respectively.

A. Structure model

We consider the transition A → B induced by the charge-
exchange reaction A(p,n)B. To describe the GT and �l = 2
transitions as well as other 1+ multipole spin-flip transitions
relevant to the reaction studied, we adopt the STDA as
explained in Ref. [7]. In the STDA the many-body wave
function |Bα〉, which is a resonance state of B with respect
to the A’s ground state |A〉, is written as

|Bα〉 =
⎡
⎣∑

mi

Xmia
†
mai +

∑
mnij

Xmnij a
†
ma†

naiaj

⎤
⎦ |A〉

≡
∑
mi

Xmi |m(i)−1〉 +
∑
mnij

Xmnij |mn(ij )−1〉 , (1)

where a†
ν (aν) is the creation (annihilation) operator in the

single-particle state ν, and ν = m,n,p,q (ν = i,j,k,l) for the
particle (hole) states. We introduce the index α to express
the non-spin-flip transition (α = s0), the spin-flip transition
(α = s1), and the �l = 2 transition (α = l2). We work with
the Skyrme-Hartree-Fock model to obtain |A〉. The coefficients

Xmi and Xmnij are determined by solving the so-called STDA
equation [20], (

A A12

A21 A22

)(
X
X

)
= ε

(
X
X

)
. (2)

Here the matrix elements in Eq. (2) are given by Ref. [20] and
ε is the phonon energy.

A value of Xmnij = 0 corresponds to the standard TDA,
which does not include 2p2h-configuration mixing. In the
TDA, |Bα〉 is given by

|Bα〉 =
∑
mi

Xmia
†
mai |A〉. (3)

The coefficients Xmi are obtained from the so-called TDA
equation; see Refs. [21,22]. Since the 2p2h effect on the IAS
originating from the Fermi transition is known to be negligible
(see Sec. I), we describe |Bs0〉 by Eq. (3).

The transition density, which is employed to calculate the
form factor shown later, is given by

gα(rit ) = 1

ĵB

∑
mi

XmiRm(rit )Ri(rit )〈jmlm||Gα||ji li〉, (4)

where Rm (Ri) is the radial part of the single-particle
wave function and jm = lm ± 1/2 (ji = li ± 1/2) with the
magnitude of the orbital angular momentum lm (li) of state
m (i). The coordinate of the it th nucleon in the target is r it and
jB is the magnitude of the spin of B. We use the abbreviation
ĵB = √

2jB + 1. The transition operator for the non-spin-flip
transition is

Gs0 = τYl=0,0(r̂ it ), (5)

and those of the spin-flip and �l = 2 transitions are, respec-
tively,

Gs1 = τYl=0,0(r̂ it )σ , (6)

Gl2 = τ [Yl=2(r̂ it ) ⊗ σ ]1M, (7)

where σ (τ ) is the Pauli spin (isospin) operator. Here l
corresponds to the orbital angular momentum transfer of the
relative motion [see Eq. (14)], and M = 0, ± 1.

B. Form factor

The form factor is expressed by

Fα(R) = 〈nB|vα|pA〉, (8)

where R is the relative coordinate of the p-A and n-B system.
The ket (bra) vector represents the product of the spin-wave
function of the projectile (ejectile) and the many-body wave
function of A (B). The transitions of non-spin-flip (the spin
transfer �s = 0), spin-flip (�s = 1), and �l = 2 components
are respectively caused by the interactions

vs0 =
∑
ipit

Vs0(ρ)τ ip · τ it , (9)

vs1 =
∑
ipit

Vs1(ρ)
(
σ ip · σ it

)(
τ ip · τ it

)
, (10)

vl2 =
∑
ipit

Vl2(ρ)
([

σ ipY2
]

1 · [
σ it Y2

]
1

)(
τ ip · τ it

)
, (11)
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where ρ = |rip − rit | and the sums over ip (it ) represent the
nucleon number of the projectile (target nucleus) running up
to its mass number.

We assume that the radial parts Vs0, Vs1, and Vl2 are the
one-range Gaussian functions given by

Vs0(ρ) = V̄0e
−( ρ

ρ0
)2

, Vs1(ρ) = Vl2(ρ) = V̄1e
−( ρ

ρ1
)2

, (12)

the parameters of which are determined phenomenologically.
Since the present work focuses on the investigation of the 2p2h
effect, we use this phenomenological interaction rather than a
microscopic one.

Following the formalism of Refs. [23,24], the form factor is
obtained through the partial-wave expansion. The radial part
of Fα is calculated as

Fα
lsj (R) = il

π2
ĵ

∫
Ṽα(K)g̃α(K)jl(KR)K2dK, (13)

where s and j are the transferred angular momenta defined by

j = jB − jA, s = jp − jn, l = j − s, (14)

with the spin jx of the particle x (= p, n, A, and B).
The interaction and transition density in momentum space,
regarding K associated with R, are respectively defined by

Ṽα(K) = 4π

∫
dρρ2 sin(Kρ)

Kρ
Vα(ρ), (15)

g̃α(K) = 4π

∫
drit r

2
it
jl(Krit )gα(rit ), (16)

with the spherical Bessel function jl (l = 0 for the non-spin-
flip and spin-flip transitions, and l = 2 for the �l = 2 case).

Expanding the spherical Bessel function of Eq. (16) in terms
of K , we obtain the integrands proportional to gα,r2

it
gα , and

so on. The lowest-order terms for α = s1 and l2 correspond to
the GT- and SQ-1+ transitions, respectively. Incidentally, the
first order for α = s1 is the spin-monopole transition, which is
difficult to distinguish from the GT transition experimentally
[8]. Higher-order contributions can be safely ignored, as they
are negligibly small in excitation energies studied in this
work.

C. Reaction model

The following expression is based on the formalism in
Ref. [24] but now generalized to include the spin-orbit
interaction regarding the coupling between the projectile’s
(ejectile’s) spin and the p-A (n-B) orbital angular mo-
mentum in the initial (final) channel. The transition ma-
trix with the DWBA under the partial-wave expansion is
given by

T (DWBA)
α;mpmnmAmB

= 4π

KpKn

(−)jn+mn ĵn

×
∑
jmj

(jAmAjmj |jBmB)Smpmn

α;jmj
, (17)

where mj and mx respectively correspond to the z-projections
of j and jx . The magnitude of the wave number of the
projectile (ejectile) is expressed by Kp (Kn). The function

Smpmn

α;jmj
is defined by

Smpmn

α;jmj
= (4π )−

1
2

∑
Ji Jf
LiLf

ls

iLi−Lf −l ŝĴi Ĵf L̂2
i L̂

2
f I

α;lsj
JiJf LiLf

×(Li0Lf 0|l0)

⎧⎨
⎩

Lf Li l
jn jp s
Jf Ji j

⎫⎬
⎭f

mj mpmn

jjpjnLiLf
(cos θ ),

(18)

where Li (Lf ) is the magnitude of the orbital angular
momentum regarding the relative p-A (n-B) motion, and
its coupled spin with jp (jn) is expressed by Ji (Jf ). The
conservation of the total angular momentum is given by

[[ jp ⊗ Li]J i
⊗ jA] = [[ jn ⊗ Lf ]Jf

⊗ jB]. (19)

The overlap integral I
α;lsj
JiJf LiLf

and the function f
mj mpmn

jjpjnLiLf
are

respectively defined as

I
α;lsj
JiJf LiLf

=
∫

dRξ̃n;Jf Lf
(Kf ,R)Fα

lsj (R)ξ̃p;JiLi
(Ki,R),(20)

f
mj mpmn

jjpjnLiLf
(cos θ )

= (JimpJf ,mj − mp|jmj )(jpmpLi0|Jimp)

× (jn, − mnLf ,mj − mp + mn|Jf ,mj − mp)

×
[

(Lf − |mj − mp + mn|)!
(Lf + |mj − mp + mn|)!

] 1
2

×PLf ,mj −mp+mn
(cos θ ), (21)

with the Legendre function PLf ,mj −mp+mn
as a function of the

emitting angle θ .
The partial wave ξ̃γ ;JL = P

(γ )
NL ξγ ;JL (γ = p or n) is given

as the solution of the Schrödinger equation,

[
d2

dR2
+ Kγ − L(L + 1)

R2
− 2μγ

h̄2 Uγ (R)

]
ξγ ;JL(Kγ ,R) = 0,

(22)

where the reduced mass is represented by μγ and the distorting
potential Uγ involves the central, spin-orbit, and Coulomb
terms. Here, in order to take into account the nonlocality of
the nucleon optical potential, we multiply the distorted wave
ξγ ;JL by the so-called Perey factor P

(γ )
NL [25],

P
(γ )
NL (R) =

[
1 − μpβ2

2h̄2 U (N)
γ (R)

]− 1
2

, (23)

with the nonlocal parameter β and the nuclear part U (N)
γ of the

distorting potential.

054608-3



TOKURO FUKUI AND FUTOSHI MINATO PHYSICAL REVIEW C 96, 054608 (2017)

The cross section is calculated as

dσα

d
= μpμn(

2πh̄2
)2

Kn

Kp

1

(ĵpĵA)2

∑
mpmn
mAmB

∣∣T (DWBA)
α;mpmnmAmB

∣∣2

= 1

EpEn

Kn

Kp

(
ĵnĵB

ĵpĵA

)2 ∑
jmj

1

ĵ 2

∑
mpmn

∣∣Smpmn

α;jmj

∣∣2
, (24)

with Eγ = (h̄Kγ )2/(2μγ ).

III. RESULTS AND DISCUSSION

A. Model setting

The ground state wave function of 48Ca is calculated by the
Skyrme-Hartree-Fock approach [17] with the SGII effective
interaction [26]. To obtain the non-spin-flip 0+ and spin-flip
1+ excited states, we solve the STDA and TDA equations with
the same force in a self-consistent manner, and the transition
density given by Eq. (4) is calculated for each state. The model
space of the STDA and TDA calculations consists of single-
particle orbits up to 100 MeV for the 1p1h configuration and
1d5/2, 1d3/2, 2s1/2, 1f7/2, 2p3/2, 2p1/2, and 1f5/2 orbits for the
2p2h configuration as performed in Ref. [7]. The neutron and
proton orbits are assumed to be fully occupied up to 1f7/2 and
2s1/2, respectively.

To calculate the form factor, we adjust the strengths V̄0

and V̄1, while keeping the range parameter fixed at ρ0 =
ρ1 = 1.484 fm [27]. For the non-spin-flip transition, we let
V̄0 = −712.1 MeV in order to fit the calculated cross section
to the measured data at forward angle. For the spin-flip
transitions, we use V̄1 = −275.8 and −153.9 MeV for the
low-lying and giant resonances respectively, to make the
calculated cross section with the STDA transition density
identical to the measured data at 0.2◦. The same parameters
V̄1 and ρ1 are used in the calculation of the form factor with
the TDA transition density.

For U (N)
γ , we adopt the phenomenological optical potential

[28] and the “Fit 1” parameter set of the Dirac phenomenol-
ogy [29], for the non-spin-flip and the spin-flip transitions,
respectively. We also include the prescription [30] that the
incident energy dependence of the optical potential for the
Fermi transition should be adjusted as Elab − Q/2, where Elab

is the incident energy in the laboratory frame and Q stands
for the Q value. The nonlocal range parameter is β = 0.85 fm
[25], and the Coulomb potential is chosen to be a uniformly
charged sphere with the charge radius of 4.61 fm [28]. The
partial wave ξγ is calculated up to J = 20.5 (J = 100.5) for
the non-spin-flip (spin-flip) transition. For each transition the
integration in Eq. (20) is performed up to 20 fm; our work
assumes the relativistic kinematics.

B. Non-spin-flip transitions

To demonstrate our model, we first discuss the Fermi
transition measured from the 48Ca(p,n)48Sc(IAS) reaction.
Figure 1 shows the strength functions of the Fermi and GT
transitions of 48Ca calculated with the STDA and TDA.
The corresponding excitation energies of the resonance states
in question are written explicitly in Fig. 1(a). The TDA
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FIG. 1. (a) Strength functions of the GT and IAS resonances of
48Ca calculated with the STDA and TDA. The filled and slash-shaded
bars are the results of the GT transition calculated with the TDA
and STDA, respectively, and the cross-shaded bars are for the IAS
resonance. (b) Strength functions of the SQ-1+ transition.

calculation gives the 0+ IAS of 48Sc at ε = 7.0 MeV. In
the reaction calculation the Q value is calculated with the
experimental excitation energy 6.7 MeV [31] of the IAS. Note
that it is confirmed numerically that the excitation energies of
both the TDA and experiment produce identical cross sections.

In addition to the TDA form factor given in Eq. (13),
we carry out a phenomenological calculation using the Lane
model [32], which is conventionally adopted to compare
theoretical charge-exchange cross section values for the Fermi
transition with experimental data. In the Lane model the radial
form factor F

s0(Lane)
000 is given as the difference of the optical

potentials between the final and initial channels:

F
s0(Lane)
000 (R) = A

2(2TA − 1)

[
U (N)

n (R) − U (N)
p (R)

]
, (25)

where the phenomenological optical potential [28] is used.
In Fig. 2, the calculated cross sections of the charge-

exchange reaction 48Ca(p,n)48Sc(IAS) at incident proton
energies Elab = 25, 35, and 45 MeV as a function of the
n emitting angle θ are compared with experimental data
[33,34]. The cross sections calculated by the TDA (Lane) form
factor are shown by the solid (dashed) lines. Note that the
theoretical results and experimental data at 35 and 45 MeV are
multiplied by 10−2 and 10−4, respectively, in order to make
them distinguishable from the cross section at 25 MeV.

One finds that, in Fig. 2, the results using the TDA form
factor reasonably coincide with the experimental angular
distribution for 35 and 45 MeV. Although at 25 MeV the
TDA result underestimates the data at θ � 30◦, it appears to
be better than the Lane model in accounting for the measured
behavior. While the Lane model is able to roughly describe the
experimental data, it is not as good as the TDA result in the
sense of being able to predict the data. It should be mentioned
that a different choice of optical potential for the Lane model
may improve the prediction of the calculation because its
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FIG. 2. The cross sections of the 48Ca(p,n)48Sc(IAS) reaction at
Elab = 25, 35, and 45 MeV. The solid lines are the calculated results
from the TDA form factor, while the dashed lines are ones from the
Lane form factor. The measured data are taken from Refs. [33,34].
The lines and the dots are multiplied by 10−2 (10−4) at 35 (45) MeV.

form factor strongly depends on the optical potential used,
as reported in Ref. [35], for example.

C. Spin-flip transitions

We have shown that our framework adequately describes
the differential cross section of the 48Ca(p,n)48Sc(IAS) reac-
tion. Now we switch gears and investigate the 2p2h effect of
the 48Ca(p,n)48Sc(1+) reaction.

As seen in Fig. 1(a), the GT strengths manifest themselves
in two distant regions: one is around 3 MeV, which we
refer to as the low-lying resonance, and the other is around
11 MeV, which is nothing but the giant GT resonance. In the
STDA, the GT resonance distributes widely due to the 2p2h
effect as discussed in Ref. [7]. Note that we choose the most
prominent strength from each region of the low-lying and
giant GT resonances when calculating the differential cross
sections. The strengths of the SQ-1+ transition B(SQ), which
are the leading part of the �l = 2 transition, are shown in
Fig. 1(b). When we compare cross sections calculated with
the STDA and TDA transition densities, the experimental
resonance energy of ε = 2.6 MeV (11.0 MeV) [8] is used for
the low-lying (giant) resonance. As in the case of the Fermi
transition, this slight shift of the Q value from the theoretical
one does not vary the calculated cross section significantly;
the effect on the cross section at θ = 0◦ is less than 1%.

Let us first focus on the low-lying resonance. Figure 3 shows
the differential cross section of the 48Ca(p,n)48Sc reaction at
Elab = 295 MeV for the low-lying 1+ resonance as a function
of θ up to 40◦. The cross section calculated by the DWBA
with the STDA-transition density is indicated by the solid
line, whereas the cross section calculated with the TDA is
represented by the dashed line. Here the theoretical cross
section includes both the GT-type and �l = 2 transitions.

Our calculation reproduces the diffraction pattern of the
measured cross section reasonably well for both the STDA

0 5 10 15 20 25 30 35 4010-4

10-3

10-2

10-1

100

101

102

STDA
TDA

Exp.

FIG. 3. The differential cross section of the 48Ca(p,n)48Sc(GT)
reaction at Elab = 295 MeV for the low-lying 1+ resonance state. The
calculated result with (without) the 2p2h configuration shown by the
solid (dashed) line is compared with the experimental data (open
circle) taken from Ref. [8].

and TDA. A difference can be observed only in terms of the
magnitude between them. Using the same value of V̄1 for the
TDA and STDA, the cross sections at θ = 0◦ of the TDA
are higher than those of the STDA by about 20%, and the
difference remains almost the same for other angles.

The reductions of the cross section by the 2p2h config-
uration within the STDA are associated with the reduction
of B(GT), B(SQ), and so on. We obtained B(GT) = 4.726
for the STDA and 5.681 for the TDA as shown in Fig. 1(a).
The missing strength is brought to a higher energy region
[7]. The difference of B(GT) between the TDA and STDA
is approximately 20% and is equivalent to the reduction due
to the 2p2h effect on the cross section. This proportionality
is consistent with the conclusion by Taddeucci et al. [13]
although they neglect the �l = 2 transition. This fact implies
that these contributions are negligibly small (this point will be
addressed later).

We plot the transition density gα in Fig. 4 to investigate
the difference in the calculated cross sections of the TDA and
STDA in detail. The thick (thin) solid and thick (thin) dashed
lines are respectively the results of the STDA and TDA for
l = 0 (l = 2) corresponding to the GT (�l = 2) transition.
One finds the difference in the amplitudes of the transition
density between the STDA and TDA. Taking the ratio of the
STDA amplitude for l = 0 at the peak around rit ∼ 4 fm with
the similar amplitude calculated from the TDA, we obtain
0.156/0.173 ∼ 0.902. Because B(GT) is proportional to g2

α ,
one obtains (0.902)2 = 0.814, which is consistent with the
reduction of B(GT).

The diffraction pattern of the cross section has a sensitivity
to the shape of the transition density rather than its amplitude
because the angular distribution is determined by the region
where the incident proton interacts with the target nucleus.
In Fig. 4, the STDA and TDA lines have a similar rit

dependence for each l. Inclusion of the 2p2h configuration
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FIG. 4. The transition density of the low-lying 1+ resonance state
of 48Sc calculated with the STDA (thick solid line for l = 0, thin solid
line for l = 2) and TDA (thick dashed line for l = 0, thin dashed line
for l = 2).

does not significantly change the shape of the transition density
although the amplitudes are about 10% (7%) smaller for the
TDA for l = 0 (l = 2). In Table I, the 1p1h configurations
contributing to the low-lying GT resonance and its amplitude
defined by X2

mi are listed. The main configurations are
π (1f7/2)ν(1f7/2)−1 and π (1f5/2)ν(1f7/2)−1 for both the TDA
and STDA. While the amplitude of π (1f5/2)ν(1f7/2)−1 is
almost the same for both, the amplitude of π (1f7/2)ν(1f7/2)−1

for the STDA is about 0.1 smaller than that for the TDA. This
difference might change the shape of the transition density
if the radial dependences of the wave functions of π (1f7/2)
and π (1f5/2) are different. However, they are almost the same
because they are spin-orbit partners. Therefore, unless another
configuration intervenes, the shape of the transition density
will not change significantly. As a consequence, we obtained
differential cross sections of similar shape for the STDA and
TDA.

Figure 5 shows the cross sections calculated with gs1 and
gl2 (solid line), only with gs1 (dashed line), and only with gl2

(dotted line) by means of the STDA, as well as experimental

TABLE I. Leading configurations of the 1+ resonance and its
amplitude defined by X2

mi of the 1p1h states calculated by the TDA
and STDA are listed. The 2p2h amplitude P2p2h is calculated by
P2p2h = ∑

mnij X 2
mnij .

Configuration TDA STDA

Low-lying GT π (1f7/2)ν(1f7/2)−1 0.954 0.858
π (1f5/2)ν(1f7/2)−1 0.043 0.047
π (2f7/2)ν(1f7/2)−1 0.001 0.001

P2p2h 0.000 0.091
Giant GT π (1f7/2)ν(1f7/2)−1 0.042 0.043

π (1f5/2)ν(1f7/2)−1 0.950 0.483
π (2f5/2)ν(1f7/2)−1 0.004 0.002

P2p2h 0.000 0.470
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FIG. 5. The cross section of 48Ca(p,n)48Sc at 295 MeV for the
low-lying 1+ resonance state calculated with the STDA transition
density of the GT and �l = 2 transitions (solid line), the GT transition
only (dashed line), and �l = 2 transition only (dotted line).

data [8] (open circle). Throughout the observed region of θ , the
result including only the �l = 2 transition is about two orders
smaller than the others. At θ = 0◦, in particular, it is about
five orders smaller than that of GT alone even though r2

it
gl2

has a peak amplitude about 36% smaller than that of r2
it
gs1

(see Fig. 4). It indicates that there are dynamical processes,
such as angular-momentum coupling coefficients and coherent
summation in Eq. (18), which hinder the �l = 2 components,
and thus the effect of the �l = 2 transition on the transition
density does not coincide quantitatively with that observed on
the cross section.

Next we discuss the 2p2h effect on the giant GT resonance.
In Fig. 6 the lines and open circles are defined in the same
way as in Fig. 3 but for the giant resonance with θ up to 20◦.
The result of the STDA reasonably traces the first two points
of the experimental data, but fails for the third one. By the
2p2h effect, the cross section of the STDA is smaller than

0 5 10 15 2010-1

100

101

102

STDA
TDA

Exp.

FIG. 6. Same as Fig. 3 but for the giant resonance.
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FIG. 7. Same as Fig. 4 but for the giant resonance.

that of the TDA by about 43% at θ = 0◦ but does not change
its shape significantly. Again, comparing B(GT) of the STDA
and TDA shown in Fig. 1(a), the 2p2h effect on B(GT) of the
giant resonance is about a 42% reduction, which agrees with
the value of its effect on the cross section.

Figure 7 shows the transition density of the giant resonance.
From the difference between the STDA and TDA, we find
that the 2p2h configuration reduces the amplitude of r2

it
gα

at the peak position around rit = 4 fm by about 25% (43%)
for l = 0 (l = 2). As we did in the low-lying resonance,
calculating the squared ratio of the amplitude of the STDA to
that of the TDA, one obtains (0.211/0.281)2 ∼ 0.564, which
is almost consistent with the reductions of B(GT) and the
cross section. From Table I, the 1p1h configurations mainly
contributing to the giant GT resonance are π (1f7/2)ν(1f7/2)−1

and π (1f5/2)ν(1f7/2)−1 both for the TDA and STDA, as in
the case of the low-lying resonance. While the amplitude
of π (1f7/2)ν(1f7/2)−1 almost remains the same for both the
TDA and STDA, that of π (1f5/2)ν(1f7/2)−1 for the STDA
is half of that for the TDA. However, this difference does
not make a significant change in the shape of the transition
density and accordingly in the diffraction pattern of the
cross section, similar to the low-lying resonance, as seen in
Fig. 6.

Figure 8 shows the cross section at the giant GT resonance.
The result of �l = 2 transition only is negligibly small as
compared to the others. It is about two orders smaller than the
GT transition in θ > 0, and the ratio of their cross sections
at θ = 0◦ is approximately 10−5, similar to the result of the
low-lying resonance.

As a consequence, qualitatively the 2p2h effect reduces
the amplitude of the cross section but does not change the
diffraction pattern. The values of the decrease on the cross
section due to the 2p2h configuration are essentially consistent
with those obtained from the structural calculation.

Last, we comment on the tensor-force contribution, which
was reported [7] to change the excitation energy of the spin-
flip resonance states and the corresponding B(GT) values.
However, we have confirmed numerically that the inclusion of
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FIG. 8. Same as Fig. 5 but for the giant resonance.

the tensor force does not change the diffraction pattern of the
cross section.

IV. SUMMARY

The charge-exchange reaction 48Ca(p,n)48Sc has been
investigated theoretically to clarify the effect of 2p2h-
configuration mixing on the GT-resonance states. We have
carried out the STDA calculation in order to prepare the
transition density, and the form factor has been obtained by em-
ploying the phenomenological nucleon-nucleon interaction.
The angular-distributed cross section has been computed by
means of the DWBA with the microscopic form factor.

The Fermi transition has also been calculated to demon-
strate the effectiveness of our framework. The calculated
cross sections of the Fermi transition caused by the
48Ca(p,n)48Sc(IAS) reaction at Elab = 25, 35, and 45 MeV
coincide well with the measured data [33,34].

It has been found that the 2p2h effect on the cross section
of the 48Ca(p,n)48Sc reaction at 295 MeV decreases the
amplitude of the cross section and does not change the angular
distribution for either the low-lying or giant resonances. This
feature is consistent with the result of the structural calculation.
However, the 2p2h effect on the angular distribution may
become important for other multipole transitions because it
was reported that the transition densities of the isovector
monopole and the quadrupole of 16O were changed signifi-
cantly [36]. Quantitatively, the reduction of the cross section
due to the 2p2h effect can be explained by that of B(GT) and
the corresponding transition density.

The role of the �l = 2 transition on 1+-resonance states
has also been surveyed and found to give a negligibly
small contribution. It supports the proportion relation [13]
between B(GT) and the charge-exchange cross section at
zero degree. Note that, in our model, the form factor of
the �l = 2 transition has been calculated using the same
nucleon-nucleon interaction as that of the GT transition. A
different nucleon-nucleon interaction should be tested, for
example, the t matrix of Franey and Love [37] or the g matrix
of Jeukenne-Lejeune-Mahaux [38], as adopted in previous
studies [13,35,39,40].
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A systematic comparison of the reaction models such as the
DWBA, DWIA, and coupled-channels method for the charge-
exchange reaction at several incident energies with several
target nuclei will provide important guidance for analyses of
experimental data.
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