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Analysis of corrections to the eikonal approximation
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Various corrections to the eikonal approximations are studied for two- and three-body nuclear collisions
with the goal to extend the range of validity of this approximation to beam energies of 10 MeV/nucleon.
Wallace’s correction does not improve much the elastic-scattering cross sections obtained at the usual eikonal
approximation. On the contrary, a semiclassical approximation that substitutes the impact parameter by a complex
distance of closest approach computed with the projectile-target optical potential efficiently corrects the eikonal
approximation. This opens the possibility to analyze data measured down to 10 MeV/nucleon within eikonal-like
reaction models.
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I. INTRODUCTION

The development of radioactive-ion beams (RIBs) has
enabled the study of nuclei away from stability, unearthing
unexpected nuclear structures. In particular, halo nuclei present
one of the most peculiar structures [1]. They exhibit a much
larger matter radius than stable nuclei, due to the presence
of one or two loosely bound valence nucleons. Owing to
their small binding energy, these nucleons tunnel far into the
classically-forbidden region and form a diffuse halo around
the core of the nucleus [2].

Being observed away from stability, halo nuclei are very
short lived, which makes the use of usual spectroscopic
techniques very difficult. Therefore, they are mostly studied
through indirect methods, such as reactions. To extract reliable
information about the structure of exotic nuclei from reaction
measurements, a precise reaction model coupled to a realistic
description of the nuclei is required. Various such models have
been developed to this aim (see Ref. [3] for a recent review). In
the continuum-discretized coupled channel method (CDCC),
the wave function that describes the reaction is expanded
onto the projectile eigenstates, including both its bound and
continuum spectra. For tractability, the latter is discretized
over energy “bins” [3–5]. Besides this discretization, the
method can be considered as exact and is often seen as the
state-of-the-art in nuclear-reaction theory involving loosely
bound systems. Since it treats the collision fully quantum
mechanically, CDCC exhibits a high computational cost. This
is why other approximations have been developed to reduce
that cost, while still including the relevant degrees of freedom
of the few-body reaction model [3].

The time-dependent approach relies on a semiclassical
approximation [3,6], in which the projectile-target relative
motion is modeled by a classical trajectory, while the internal
structure of the projectile is described quantum mechanically.
Thanks to this simplification, this approach is much less
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time consuming than CDCC. It has been successfully
applied to describe the breakup of one-neutron halo nuclei
[7–11]. Unfortunately, because of its classical description
of the projectile-target motion, it lacks fundamental quantal
effects [12].

The eikonal approximation [13] is another way to model
reactions involving halo nuclei at intermediate and high beam
energies [3,14–18]. It assumes that the projectile-target relative
motion does not differ much from the incoming plane wave,
which simplifies the Schrödinger equation to be solved without
resorting to the semiclassical hypothesis. This approximation
hence combines the short computational time of the time-
dependent approach with a quantal description of the collision
[12].

Nowadays, laboratories, like HIE-ISOLDE at CERN
or ReA12 at MSU, aim at providing RIB at about
10 MeV/nucleon. In this range of energy, CDCC exhibits
convergence issues. Unfortunately, this beam energy is too
low to apply eikonal-like models. However, since it provides
excellent results at intermediate energies [17–21], it would
be interesting to extend its domain of validity to lower
energies. A first step has been made in that direction when a
Coulomb correction [15,22] has been proved to successfully
correct the eikonal treatment of the projectile-target Coulomb
interaction at low energy [23]. In the present study, we analyze
several existing corrections to the eikonal approximation
to extend its domain of validity down to low energies for
nuclear-dominated reactions.

The first correction developed by Wallace [24–26] aims at
improving the treatment of the nuclear interaction within the
eikonal approximation. It is based on a perturbative expansion
of the T matrix built on the usual eikonal model. It has
already led to interesting results for high-energy collisions
[27], breakup [28], and elastic scattering involving halo nuclei
[29,30]. However, as noted in Refs. [28,29], this correction
fails below a certain energy as the perturbative approach is
no longer valid. In this article, we address this issue and
present a systematic method to ensure the convergence of
the correction, which enables us to use it at low energy
(viz. 10 MeV/nucleon).
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To obtain a model that corrects the eikonal treatment of
both the Coulomb and the nuclear interactions, we investigate
the interplay between Wallace’s correction and the aforemen-
tioned semiclassical correction of the Coulomb interaction
[15,22]. Since this combination of both corrections does not
provide a very consistent model, we study the extension of the
semiclassical correction to the nuclear interaction [29,31,32].
The encouraging results obtained in Ref. [29] for structureless
nuclei suggest that it can be generalized to collisions involving
more complex structures such as halo nuclei.

We first compare these different corrections on the elastic
scattering of a one-body projectile (10Be) off a light target
(12C) at 20 and 10 MeV/nucleon. In Sec. II, we present
the eikonal model and the aforementioned corrections in
that case. We then extend these corrections to a three-body
collision: a one-neutron halo nucleus (11Be seen as a neutron
loosely bound to a 10Be core) impinging on the same target
and at the same beam energies. The results of these tests
are summarized in Sec. III. We provide the conclusions and
prospects of this work in Sec. IV.

II. TWO-BODY COLLISION

A. Theoretical framework

1. Eikonal model

In the first part of this article, we study the elastic scattering
of a projectile P , of mass mP and charge ZP e, off a target
T , of mass mT and charge ZT e. We assume the nuclei to be
structureless and spinless, and their interaction to be modeled
by a potential V . Their relative motion is described by the
function �, solution of the following Schrödinger equation:[

P 2

2μ
+ V (R)

]
�(R) = E �(R), (1)

where R is the P -T relative coordinate, P is the corresponding
momentum, μ = mP mT /(mP + mT ) is the P -T reduced
mass, and E is the total energy in the center-of-mass rest frame.

Initially, the projectile propagates towards the target with
the momentum h̄K = h̄K Ẑ, where we choose the Z axis
along the incoming beam (see the coordinate system in Fig. 1).
Therefore, Eq. (1) has to be solved with the initial condition

�(R) −→
Z→−∞

exp(iKZ + · · · ), (2)

where the “· · · ” indicates that the interaction distorts the plane
wave even at large distances.

T

P
R

v

̂Z

Z

b

FIG. 1. Coordinate system: the projectile-target relative coordi-
nate R is expanded in its transverse b and longitudinal Z components,
relative to the initial P -T velocity v.

The eikonal approximation reflects the fact that, at suffi-
ciently high energy, the projectile is only slightly deflected by
the target and that the wave function does not differ much from
the initial plane wave. Mathematically, this can be expressed
by factorizing the plane wave of the initial condition (2) out of
the two-body wave function [3,13,15],

�(R) = exp(iKZ) �̂(R), (3)

and assuming that the new wave function �̂ varies smoothly
with R. Accordingly, the Schrödinger equation is simplified
by inserting Eq. (3) into Eq. (1) and by neglecting the second-
order derivatives of �̂ [3,13,15],

ih̄v
∂

∂Z
�̂(b,Z) = V (b,Z) �̂(b,Z), (4)

where v = h̄K/μ is the initial P -T relative velocity and b is
the P -T transverse coordinate (see Fig. 1).

The solutions of Eq. (4) read [3,13,15]

�̂(b,Z) = exp

[
− i

h̄v

∫ Z

−∞
V (b,Z′) dZ′

]
. (5)

These solutions have a simple semiclassical interpretation: the
projectile is seen as moving along a straight-line trajectory,
along which it accumulates a complex phase due to its
interaction with the target.

From these solutions, and for a central potential V , the
scattering amplitude from the initial momentum h̄K to the
final momentum h̄K ′ can be derived [3,13,15],

f (θ ) = − iK

2π

∫
T (b) exp(iq · b)d2b, (6)

where the scattering angle θ is related to the transferred
momentum h̄q = h̄(K ′ − K ) by ‖q‖ = 2K sin (θ/2). The
eikonal T matrix that appears in the integrand of Eq. (6) reads

T eik(b) = exp[iχ0(b)] − 1, (7)

with the eikonal phase

χ0(b) = − 1

h̄v

∫ +∞

−∞
V (b,Z) dZ. (8)

Since this phase diverges for a Coulomb potential, this
interaction is taken into account by adding to the eikonal phase
(6) computed from the nuclear part of the potential, the phase
χC , leading to the exact Coulomb scattering amplitude [15]

χC(b) = 2η ln(Kb), (9)

where η = ZP ZT e2/(4πε0h̄v) is the Sommerfeld parameter.
This model has two main advantages: it allows fast com-

putations and provides a simple interpretation of the collision.
Unfortunately, the eikonal approximation is not valid at low
energy: in that case, the assumption of a straight-line trajectory
for the projectile no longer holds because the deflection of the
projectile by the target has to be properly taken into account. In
the present paper, we study and compare two corrections that
aim at improving the relative motion between the projectile and
the target within the eikonal model [15,22,24,25,29,31,33].
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2. Wallace’s correction

The first correction, proposed by Wallace [24–26], focuses
on improving the eikonal treatment of the deflection of the
projectile due to its nuclear interaction with the target. This
correction results from an expansion of the T matrix around
the eikonal propagator.

In this expansion, the scattering amplitude at the mth order
reads [24–26]

f (m)(θ ) = − iK

2π

∫
T (m)(b) exp(iq · b)d2b, (10)

where the zeroth order T (0) = exp [iχ0(b)] − 1 corresponds to
the standard eikonal model [see Eq. (7)]. Wallace explicitly
derived the first three orders of the correction [24–26].
However, our analysis, like others [27–29], has shown that
only the first order is significant; it is given by

T (1)(b) = exp{i[χ0(b) + τ1(b)]} − 1, (11)

where

τ1(b) = − ε

2h̄v

∫ +∞

−∞

1

R

d

dR
[R2 V (R)]dZ (12)

is an additional phase with ε = 1/(h̄Kv) the expansion
parameter.

This correction applies only for the nuclear interaction
because all corrective terms vanish for potentials varying
in 1/r . Moreover, because this development is based on a
perturbative approach, it can fail if the additional phases
become too large. This can happen at low energies, at which ε
is no longer small, and, since τ1 contains the derivative of V ,
at places where the potential varies too sharply with R.

3. Semiclassical correction

As mentioned above, the semiclassical interpretation of the
eikonal approximation is that the projectile follows a straight-
line trajectory. In actual semiclassical models, the trajectory
differs from a straight line because the projectile is deflected
by its interaction with the target. At high enough energy, the
difference is negligible, and straight-line trajectories make
sense. However, at low energy, the deflection can no longer
be neglected. At the first order, this can be corrected by
replacing the impact parameter b by the actual distance of
closest approach b′ of the corresponding classical trajectory
[15,22,29,31]. For a collision dominated by the repulsive
Coulomb interaction, that distance will be larger than b. In the
case of a nuclear-dominated reaction, b′ can be lower than b.

This correction applied to the sole Coulomb interaction
has already given interesting results for Coulomb-dominated
reactions in Refs. [23,31]. In this case, the distance of closest
approach b′

C can be derived analytically [15,23],

b′
C = η +

√
η2 + (Kb)2

K
. (13)

This semiclassical correction can also be generalized
to both the nuclear and the Coulomb interactions [29,31].
Assuming that a real potential V is used to compute the
trajectory, we can obtain the distance of closest approach b′ by

solving the following equation [15,22]:

E − V (b′) − μv2

2

(
b

b′

)2

= 0. (14)

Since the optical potentials used to simulate the nuclear
interaction between two nuclei include an imaginary part, this
method has to be adapted. In a first attempt, we have considered
only the real part of the potential to compute b′. In Ref. [32], we
have seen that this approach does not improve significantly the
usual eikonal approximation. We have thus followed Ref. [29],
using a complex distance of closest approach. This b′′ can be
computed via the following perturbation calculation [33]:

b′′ = b′ − i

⎡
⎢⎢⎣ Im{V (R)}

d

dR

(
Re{V (R)} + E b2

R2

)
⎤
⎥⎥⎦

R=b′

, (15)

where b′ is the real distance of closest approach obtained from
the real part of the optical potential by solving Eq. (14). Further
analyses have demonstrated that the accuracy with which b′′
is computed has little impact on the quality of the correction.
The approximation (15) is thus amply sufficient.

To conserve the angular momentum, it has been suggested
to adjust the asymptotic velocity to the tangential velocity at
the turning point of the classical trajectory [29]. However, our
results indicate that, in the cases considered here, the accuracy
gain is negligible.

B. Results and discussion

1. Numerical aspects

To evaluate the efficiency of the corrections presented in
Sec. II A, we study the elastic scattering of 10Be off 12C at 20
and 10 MeV/nucleon. The nuclear interaction is described by
an optical Woods-Saxon potential,

VN (R) = −VRfWS(R,RR,aR) − iWIfWS(R,RI ,aI )

− i4aDWD

d

dR
fWS(R,RD,aD), (16)

where

fWS(R,RX,aX) = 1

1 + e(R−RX)/aX
. (17)

The parameters of the 10Be-12C potential considered in this
study are provided in the first line of Table I. As in Ref. [34],
they correspond to the potential developed in Ref. [35] to
reproduce 12C-12C elastic scattering at 25 MeV/nucleon.
To account for the change in the projectile mass number,
the radii are rescaled by (101/3 + 121/3)/(121/3 + 121/3).
The Coulomb interaction is described by the potential of a
uniformly charged sphere of radius RC = 5.777 fm. Since
the goal of this work is to compare the eikonal model with its
corrections, we use the same potential for all calculations and
neglect any energy dependence.

As in Refs. [28,29], we have observed that Wallace’s
correction has some convergence issues at low energy. These
are due to the failure of the perturbation treatment: at low
energies and small impact parameters, the expansion parameter
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TABLE I. Parameters of the Woods-Saxon optical potentials used to simulate the nuclear interaction between 10Be and 12C (Secs. II and
III) and between n and 12C (Sec. III). They are taken from Refs. [35,36], respectively.

Ref. VR (MeV) RR (fm) aR (fm) WI (MeV) RI (fm) aI (fm) WD (MeV) RD (fm) aD (fm)

10Be-12C [35] 250.0 3.053 0.788 247.9 2.982 0.709 0 0 0
n-12C [36] 46.9395 2.5798 0.676 1.8256 2.5798 0.676 28.6339 2.9903 0.5426

ε takes too large values to dampen the derivatives contained
in the corrective phase given in Eq. (12), which are thus no
longer small compared to the standard eikonal phase [see
Eq. (8)]. In the Appendix, we study these issues and derive a
systematic impact-parameter cutoff to solve them. The results
at 10 MeV/nucleon presented in this section are obtained with
this technique.

2. Analysis

In Fig. 2, we plot the Rutherford-normalized cross sections
at 20 MeV/nucleon (a) and 10 MeV/nucleon (b) as a function
of the scattering angle θ . We compare each correction to
the exact solution obtained from a partial-wave calculation
(solid line). These figures confirm that the eikonal model
(long-dashed line) tends to overestimate the cross sections
at large angles. Moreover, it does not reproduce the exact
oscillatory pattern: the oscillations are damped and shifted
towards forward angles. These differences with the exact cross
section increase at low energy.

Wallace’s correction (short-dashed line) slightly improves
the eikonal calculations: it reduces the cross sections at large
angle, which brings them a bit closer to their exact value, and it
better reproduces the magnitude of the oscillations. However,
the corrected cross sections still lie too high compared to the
exact solutions, suggesting that this scheme does not properly
account for the absorption from the elastic channel induced
by the optical potential. The results are also shifted to even
more forward angles, leading to oscillations out of phase with

the exact cross sections. Wallace’s correction acts only on
the nuclear interaction by introducing an additional phase in
Eq. (11). We therefore interpret this excessive shift by the fact
that the correction tends to increase the attraction between
the nuclei and, accordingly, to underestimate the scattering
angle.

To counter this shift, the Coulomb repulsion has to be
better accounted for. We therefore add to Wallace’s correction
the semiclassical Coulomb correction, in which the impact
parameter b is replaced by the distance of closest approach in
a Coulomb trajectory b′

C provided by Eq. (13) (dotted line).
The sole action of the Coulomb correction in this nuclear-
dominated reaction is to shift the results to larger angles. This
leads to cross sections that are in phase with the exact ones. Al-
though the oscillations are better reproduced, the cross sections
are still overestimated at large angles. Hence, the combination
of Wallace’s and the semiclassical Coulomb corrections
provides only a minor improvement of the eikonal model at low
energies. In addition to being inefficient, this hybrid solution,
mixing perturbation-expansion and semiclassical correction, is
inelegant.

To increase the absorption and to have one consistent
correction, we study the semiclassical correction which substi-
tutes the actual impact parameter by the complex distance of
closest approach b′′ computed with both the Coulomb and
the nuclear terms of the optical potential using Eq. (15).
The corresponding cross sections (dash-dotted lines) have the
same magnitude as the exact results and their oscillations are
better reproduced at forward angles. At larger angles, the
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FIG. 2. Elastic scattering of 10Be off 12C at 20 MeV/nucleon (a) and 10 MeV/nucleon (b). The cross sections are normalized to Rutherford
and plotted as a function of the scattering angle θ . The results are obtained with the partial-wave expansion (Exact, full lines), the standard eikonal
approximation (Eik., long dashed lines), its nuclear corrections at the first order without (Wal., short dashed lines) and with the semiclassical
Coulomb correction (Wal. + b′

C , dotted lines) and the complex semiclassical correction applied to both interactions (b′′, dash-dotted lines).
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oscillations have too large an amplitude. This correction is
very accurate up to 25◦ at 20 MeV/nucleon and up to 20◦ at
10 MeV/nucleon.

Our comparison of these different methods developed to
improve the eikonal model at low energy indicates that the
semiclassical correction, which introduces a complex distance
of closest approach, is the best way to both properly account
for the absorption from the elastic channel and reproduce the
correct oscillatory pattern. These findings are in full agreement
with those of Ref. [29]. These results being so encouraging,
we study in the next section their extension to a more difficult
case: the elastic scattering of a two-body projectile off a target.
If successful, this would open the door to an extension of the
range of validity of the eikonal approximation to analyze the
measurement of reactions performed with halo nuclei at low
energy.

III. THREE-BODY COLLISION

A. Theoretical framework

As explained in the Introduction, we focus on the elastic
scattering of a one-neutron halo nucleus off a target. The halo
nucleus is described as a two-body object, composed of a
compact core c to which a neutron n is loosely bound (see
Fig. 3). As in the previous case, we assume all potentials
to be central, all particles spinless, and neglect their internal
structure.

In this model, the structure of the projectile is described by
the two-body Hamiltonian

hcn = p2

2μcn

+ Vcn(r), (18)

where r is the c-n relative coordinate, p is the corresponding
momentum, μcn is the c-n reduced mass, and Vcn is a
phenomenological potential that simulates the interaction
between the valence neutron and the core. This potential is
adjusted to reproduce the known low-energy spectrum of the
halo nucleus. Our main focus being elastic scattering, we are
mostly interested in the description of the ground state of
the projectile. We denote by φ0 the corresponding c-n wave
function and call its eigenenergy ε0.

FIG. 3. Coordinates of the three-body system: the internal coordi-
nate of the projectile r , the relative coordinate between the projectile
center of mass and the target R and its transverse component b;
the core-target relative coordinate RcT , the fragment-target relative
coordinate RnT , and their transverse components bcT and bnT ,
respectively.

With this two-body model of the projectile, the Schrödinger
equation that describes the three-body collision reads[

P 2

2μ
+ hcn + VcT (RcT ) + VnT (RnT )

]
�(R,r) = E �(R,r),

(19)

where we have conserved the same notations as in Eq. (1)
for the coordinate and operators related to the P -T relative
motion; R, P , and μ being, respectively, the relative coordinate
between the projectile center of mass and the target, the
corresponding momentum, and the P -T reduced mass. Since
the projectile is now composed of two clusters, two optical po-
tentials appear in Eq. (19): one to simulate the c-T interaction
(VcT ) and another one to simulate the n-T interaction (VnT ).
These potentials depend on the distances between the core and
the target RcT and between the neutron and the target RnT ,
respectively. The Schrödinger equation of the system (19) has
to be solved with a similar asymptotic condition as Eq. (2),
that includes the initial bound state of the projectile,

�(R,r) −→
Z→−∞

exp(iKZ + · · · ) φ0(r). (20)

Accordingly, the total energy E in Eq. (19) is related to the
energy of the projectile ground state and the initial P -T
momentum h̄K ,

E = ε0 + h̄2K2

2μ
. (21)

Similarly to the two-body collision [see Eq. (3)], the wave
function is factorized into

�(R,r) = exp(iKZ) �̂(R,r). (22)

Using the same reasoning as in Sec. II A 1, we obtain a
simplified expression for the Schrödinger equation (19) [3,18],

ih̄v
∂

∂Z
�̂(b,Z,r)

= [(hcn − ε0) + VcT (RcT ) + VnT (RnT )]�̂(b,Z,r), (23)

where the dependence of the three-body wave function �̂ on
the transverse b and longitudinal Z components of R is made
explicit (see Fig. 3).

The usual eikonal model makes a subsequent approxima-
tion which assumes that the collision occurs in a very brief time
and considers that the internal coordinates of the projectile are
frozen during the collision. This assumption, known as the
adiabatic—or sudden—approximation, enables us to neglect
the term (hcn − ε0) in Eq. (23), which then becomes [3]

ih̄v
∂

∂Z
�̂(b,Z,r) = [VcT (RcT ) + VnT (RnT )]�̂(b,Z,r). (24)

The solutions of this equation compatible with the initial
condition (20) read [3]

�̂(b,Z,r) = exp

[
− i

h̄v

∫ Z

−∞
VcT (bcT ,Z′)dZ′

]

× exp

[
− i

h̄v

∫ Z

−∞
VnT (bnT ,Z′)dZ′

]
φ0(r).

(25)
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FIG. 4. Elastic scattering of 11Be off 12C at 20 MeV/nucleon (a) and 10 MeV/nucleon (b). We use the same line type as in Fig. 2, but
for the solid line, which corresponds to the CDCC calculations, and the short dashed line, which displays the semiclassical correction acting
separately on each fragment’s eikonal phase (b′′

cT & b′′
nT ; see Sec. III A).

They include two eikonal phases, one for each of the projectile
constituents, computed at impact parameters which correspond
to the transverse components of the c-T and n-T relative
coordinates (see Fig. 3). They can thus be interpreted from
a semiclassical viewpoint as in the two-body collision: the
core and the fragment propagate along straight-line trajecto-
ries while they accumulate a complex phase resulting from
their interaction with the target. The scattering amplitude is
then defined similarly to Eq. (6) considering both eikonal
phases [16].

To study the correction of the eikonal approximation at
low energy for a two-body projectile, we extend the different
corrections presented in Sec. II A to this three-body model of
reaction.

Wallace’s correction can be implemented by adding the
corrective phases τ1 [see Eq. (12)] computed for the nuclear
part of the c-T and n-T interactions to each of the eikonal
phases. Our analysis has shown that the corrections to the n-T
phase are negligible, we hence correct only the c-T phase.
As for the two-body collisions, we can add to this correction
the semiclassical Coulomb correction, which shifts the impact
parameter b for the projectile center of mass (see Fig. 3) to the
Coulomb distance of closest approach given by Eq. (13).

As for two-body collisions, the semiclassical correction
can also be generalized to both the Coulomb and the nuclear
interactions. However, in the three-body case, it can be
implemented in two different ways. In the first option, the
impact parameter b of the projectile center of mass is replaced
by the complex distance of closest approach b′′ computed
for the whole projectile. This distance is obtained through
Eq. (15) using the core-target optical potential VcT as deflecting
interaction. As for Wallace’s correction, additional tests have
shown that VnT has little influence in that calculation and that it
can be safely neglected in the calculation of b′′. In that option,
the impact parameters bcT and bnT are substituted by complex
distances computed from b′′ and r . In the second option,
we use the semiclassical correction for each of the eikonal
phases, replacing the core-target bcT and fragment-target bnT

impact parameters by their distances of closest approach b′′
cT

and b′′
nT obtained from VcT and VnT , respectively. The first

approach is more natural than the second one. First, it does not
violate the adiabatic assumption since the projectile keeps the
same spatial extension during the collision. Second, it could
be easily generalized to other eikonal-based models, such as
the eikonal-CDCC (E-CDCC) [17] or the dynamical eikonal
approximation (DEA) [18].

B. Results and discussion

1. Numerical aspects

The accuracy gains of each correction are evaluated through
the comparison of the differential cross sections for the elastic
scattering of 11Be off 12C at 20 and 10 MeV/nucleon. As usual,
we describe the archetypical one-neutron halo nucleus 11Be as
an inert 10Be core to which an s valence neutron is bound by
0.5 MeV. For the 10Be-n interaction [Vcn in Eq. (18)], we follow
Ref. [34] and use a simplified version of the real Woods-Saxon
potential developed in Ref. [37]. In the notations of Eq. (16),
its parameters are VR = 62.52 MeV, RR = 2.585 fm and aR =
0.6 fm; WI and WD being, of course, nil.

The nuclear interactions of the projectile constituents with
the target are modeled by optical Woods-Saxon potentials.
The 10Be-12C potential is the same as in Sec. II. We use for the
n-12C interaction the Koning-Delaroche global potential [36].
Its parameters are listed in the second line of Table I.

As in the two-body collision computations, Wallace’s
correction presents convergence issues at small impact pa-
rameters. They are addressed by the cutoff method presented
in the Appendix.

2. Analysis

In Fig. 4, the Rutherford-normalized cross sections for
the elastic scattering of 11Be off 12C at 20 MeV/nucleon
(a) and 10 MeV/nucleon (b) are plotted as a function of
the scattering angle. There are no exact solutions for these
three-body calculations. To study the quality of the various
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corrections in this case, we consider the CDCC method as the
reference reaction model (solid line). The calculations have
been performed with FRESCO [38], using the same model space
and numerical conditions as in Ref. [34].

Although the eikonal approximation (long-dashed line)
naturally includes the breakup channel, we still note that, as
in the two-body calculations, it remains larger than the CDCC
ones at large angles and that it fails to reproduce the oscillatory
pattern (the oscillations are shifted towards forward angles
and their magnitude is damped). The disagreement between
both models increases at low energy. This result suggests
that the problem observed in the two-body model extends
to three-body reactions and that the corrections described in
the previous section will lead to similar improvement of the
eikonal approximation at low energy.

At both energies, the combination of Wallace’s correction
with the semiclassical Coulomb shift in impact parameter
(dotted line) leads to a better reproduction of the CDCC
oscillations. However, as in the two-body case, this method
fails to reproduce the correct absorption from the elastic
channel, and the corresponding cross sections remain of the
same order as the usual eikonal ones.

Next, we study the two different implementations of the
complex semiclassical impact parameter (see Sec. III A): the
first shifts the impact parameter of the projectile center-of-
mass (b′′, dash-dotted line), while the second acts on the impact
parameter of each projectile constituent separately (b′′

cT & b′′
nT ,

short dashed line).
Both options improve substantially the accuracy of the

eikonal model. At both energies, the cross sections obtained
with the first option are nearly superimposed to the reference
CDCC calculations up to 15◦. At larger angles, although
they slightly overestimate the CDCC results, they provide a
significant improvement from the usual eikonal approxima-
tion. Unfortunately, this shift in the center-of-mass impact
parameter seems to slightly overcorrect the oscillatory pattern:
the oscillations obtained with this correction are shifted to
larger scattering angles and their amplitude is slightly too large
compared to the CDCC ones.

The second option is even more efficient than the first as
it is as precise as CDCC up to 25◦ at 20 MeV/nucleon and
up to 20◦ at 10 MeV/nucleon. At larger angles, it is also
closer to the reference calculation. However, here also, the
oscillations obtained with this correction above 20◦−25◦ do
not fully agree with the CDCC results. This second way to
implement the semiclassical correction within a three-body
model of the reaction provides the best results. Nevertheless,
since the first option provides also excellent results and will be
easier to implement within dynamical models, like E-CDCC
[17] or the DEA [18], this solution is worth noting. In addition,
the major differences between these semiclassical corrections
and the CDCC results are observed only at large angles, where
measurements with exotic nuclei are usually difficult because
of the low beam intensities achieved in RIB facilities.

IV. CONCLUSIONS

Valuable information about the structure of halo nuclei
is obtained from reaction measurements coupled with an

accurate model of reaction. In the near future, facilities like
HIE-ISOLDE at CERN or ReA12 at FRIB will be able to
deliver RIBs at about 10 MeV/nucleon. At such energies,
CDCC has convergence issues and is very time consuming.
The eikonal model is cheaper from a computational point of
view and provides a simpler interpretation of the collision.
Unfortunately, its range of validity impedes using it at such
beam energies. In this work, we investigate its extension to
that energy range through the study of two corrections.

Wallace’s correction [24–26] aims at improving the de-
scription of the deflection of the projectile due to its nuclear
interaction with the target. Our analysis of this correction
for one- and two-body projectiles have shown that it is not
efficient for optical potentials because it does not remove
enough strength from the elastic channel to correctly reproduce
the absorption induced by the imaginary part of the potential.
Accordingly it predicts too high cross sections at scattering
angles θ � 10◦−15◦.

On the contrary, the semiclassical correction that replaces
the impact parameter in the calculation of the eikonal phase by
a complex distance of closest approach is much more efficient.
It significantly reduces the elastic-scattering cross section
computed at the eikonal approximation, leading to values
close to the exact solution. This improvement is observed
for both one- and two-body projectiles indicating that the
range of validity of the eikonal approximation can be safely
extended down to 10 MeV/nucleon and up to 20◦. Albeit
not perfect at larger angles, this correction still provides a
significant improvement of the eikonal approximation, which
may prove sufficient for the analysis of reactions measured at
RIB facilities.

The present implementation of this correction for two-body
projectiles still includes the adiabatic approximation, which
is usually performed within the eikonal model of reactions.
This approximation is of course questionable at the beam
energies considered here. A proper extension of the range
of validity of the eikonal approximation should account for
the dynamics of the projectile. Our study has shown that the
semiclassical correction could be easily implemented within
the E-CDCC [17] or the DEA [18], two reaction models based
on the eikonal approximation that do not include the adiabatic
approximation. We plan to study this in future work and see
if other reaction observables, such as breakup cross sections,
can be efficiently computed in this manner. An extension of
the eikonal approximation down to 10 MeV/nucleon would
strongly ease the analysis of experiments performed at HIE-
ISOLDE and ReA12.
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APPENDIX: CONVERGENCE ISSUES IN
WALLACE’S CORRECTION

In this Appendix, we analyze the convergence issues of
Wallace’s correction arising at low energy (10 MeV/nucleon
in our computations), and which have already been observed in
Ref. [28]. To illustrate the source of these problems, we display
in Fig. 5 the T matrices computed for a 10Be projectile on 12C
as a function of the angular momentum L (bottom scale). The
exact value (solid line) is compared to the eikonal T matrix [see
Eq. (7); long-dashed line] using the semiclassical relationship
between L and the impact parameter b, which is provided on
the top scale of the figures. The T matrices obtained with
Wallace’s correction (short dashed line) and with Wallace’s
correction coupled with the semiclassical Coulomb correction
(dotted line) are displayed as well.

At small impact parameters (b � 1.5 fm), both the real
(a) and the imaginary (b) parts of the T matrix obtained with
Wallace’s correction diverge (with and without Coulomb cor-
rection). In that impact-parameter range, the collision is domi-
nated by deep inelastic processes leading to strong absorption
from the elastic channel. Accordingly, the T matrix should be
close to −1, as in the exact calculation and at the usual eikonal
approximation. A close analysis of the problem shows that it
is due to a small or negative imaginary part of the corrected

eikonal phase χ0 + τ1, which causes a sudden increase of
the modulus of the T matrix instead of the strong damping
expected. This erroneous behavior happens because of the
combination of two effects. First, the correction term to the
eikonal phase τ1 involves the derivative of the nuclear potential
[see Eq. (12)]. At places where the potential varies quickly, i.e.,
at short P -T distances, the integrant in Eq. (12) can become
quite large. Second, at low energy, the expansion parameter
ε is not small enough to dampen these large variations of the
integral.

To avoid the unrealistic values of the T matrices in the
small-b region, we introduce a cutoff in impact parameter
from which we compute the corrections. Below this cutoff,
the T matrices are set equal to −1. We have also shown that
replacing the corrected T matrix by the usual eikonal one in
that region, i.e., by setting τ1 = 0 below the cutoff, provides
equally good results [39]. Detailed analyses have shown that
the results are not very sensitive to the choice of the cutoff
and that a good rule of thumb is to take it slightly larger than
the radius RR of the real part of the optical potential [39].
At 10 MeV/nucleon, this cutoff can be taken between 1.7
and 4 fm for the two-body calculation since for these impact
parameters the T matrices are very close to −1. In particular,
the cross sections presented in Fig. 2(b) have been obtained
with a cutoff of 3.1 fm (RR = 3.053 fm; see Table I).

In the extension of this method to three-body collisions,
the cutoff is applied to the center-of-mass impact parameter.
It acts similarly as for two-body collisions and efficiently
eliminates the divergences observed in the T matrices. The
results displayed in Fig. 4(b) are obtained with a cutoff of
3.5 fm.
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