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Yrast band of 109Ag described by tilted axis cranking covariant density functional theory with a
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A separable form of the Gogny pairing force is implemented in tilted axis cranking covariant density
functional theory for the description of rotational bands in open shell nuclei. The developed method is used
to investigate the yrast sequence of 109Ag for an example. The experimental energy spectrum, angular momenta,
and electromagnetic transition probabilities are well reproduced by taking into account pairing correlations with
the separable pairing force. An abrupt transition of the rotational axis from the long-intermediate plane to the
long-short one is obtained and discussed in detail.
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I. INTRODUCTION

The most common rotational bands in nuclei are built
on states with a substantial quadrupole deformation and
axial symmetry. They show strong electric quadrupole (E2)
transitions between the rotational states. Such bands are
usually well interpreted as a coherent collective rotation of
many nucleons around an axis perpendicular to the symmetry
axis of the deformed density distribution. However, since
the discovery of many rotational-like sequences in weakly
deformed nuclei in the 1990s [1], the rotation of nuclei around a
tilted axis has attracted a lot of attention in both theoretical and
experimental studies [2]. In this case the rotational axis is tilted
with respect to the principal axes of the density distribution in
order to account for the fact that the nucleus is composed of
a deformed core and nucleons carrying a quantized amount of
angular momentum. Several typical examples of the tilted axis
rotation in nuclei include the high-K bands that give rise to K

isomerism [3] in axially deformed nuclei, magnetic rotation
in weakly deformed nuclei [2,4,5], chiral rotation in triaxial
nuclei [2,6–8], etc.

The tilted axis rotation was first proposed within the tilted
axis cranking (TAC) model based on a Nilsson mean field [9].
Later on, the quality of the TAC approximation was examined
in comparison with the quantum particle rotor model (PRM)
[10]. Since then, the TAC model has become a powerful tool to
describe nuclear tilted axis rotations. Moreover, in this model
it is relatively easy to construct the vector diagrams of angular
momentum composition, because this approach is based on a
classical picture of rotation. However, due to the numerical
complexity of the TAC model, most of the applications are
based on the pairing-plus-quadrupole model and the Strutinsky
shell-correction model [2,11].

In recent years, the TAC approaches based on relativistic
[12–14] and nonrelativistic [15–17] density functional theories
have been developed and achieved great successes [5,18],
similar to the principal axis cranking density functional theory
[19,20]. These self-consistent methods are based on more
realistic two-body interactions and, thus, can be used to study
the nuclear rotational excitations on a more fundamental level
by including all important effects, such as core polarization
and nuclear currents [5,16,21]. In particular, the tilted axis

cranking covariant density functional theory (TAC-CDFT)
provides a consistent description of currents and time-odd
fields, and the included nuclear magnetism [22] plays an
important role in the description of nuclear rotations [23–26].
So far, the two-dimensional TAC-CDFT has been successfully
used to describe the magnetic rotational bands [14,27,28],
antimagnetic rotational bands [21,28,29], linear α cluster
bands [30], etc., and has demonstrated high predictive power
[5,18].

Very recently, pairing correlations have been considered
self-consistently in the TAC-CDFT by solving the correspond-
ing relativistic Hartree-Bogoliubov (RHB) equations with
a monopole pairing force [31,32]. It is found that pairing
correlations improve the description of the experimental
spectrum and transition probabilities for the yrast band of
135Nd by considering additional admixtures in the single-
particle orbits and altering the orientation of the rotational
axis.

The main focus of the present work is to implement the
separable form of the Gogny pairing force [33,34] in the
TAC-CDFT. In comparison with the zero-range monopole
pairing force adopted in Ref. [31], the separable pairing
force is finite range and, thus, the problem of an ultraviolet
divergence that requires the introduction of a cutoff at large
momenta or energies can be avoided. Meanwhile, due to its
separable form, this force requires less cost in the form of
computational time in the practical calculations as compared
to other finite-range pairing forces, such as the Gogny force
[35]. The developed method of TAC-CDFT with separable
force is applied to investigate the yrast band of 109Ag.
The energy spectra, the relation between spin and rotational
frequency, and reduced M1 and E2 transition probabilities
are calculated and compared with the available data [36]. In
particular, the evolution of the rotational axis is discussed in
detail.

The paper is organized as follows: after establishing the
formalism of the TAC-CDFT with the separable force in
Sec. II, I discuss in Sec. III the numerical details of the
method. In Sec. IV, I compare the calculated results of the
yrast band of 109Ag with corresponding data and discuss
the evolution of the rotational axis. Finally, a summary is given
in Sec. V.
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II. THEORETICAL FRAMEWORK

The starting point of the point-coupling density functional
theory is an effective Lagrangian density of the form

L = Lfree + L4f + Lhot + Lder + Lem, (1)

including the Lagrangian density for free nucleons, Lfree,
the four-fermion point-coupling terms L4f , the higher order
terms Lhot accounting for the medium effects, the derivative
terms Lder to simulate the finite-range effects that are crucial
for a quantitative description of nuclear density distributions,
and the electromagnetic interaction terms Lem. The detailed
formalism of the point-coupling density functional can be
seen, e.g., in Refs. [37–39], and the formalism can be easily
extended to a meson exchange version of the covariant density
functional theory [32,40].

To describe the tilted axis rotation of nuclei, as in Ref. [14],
the Lagrangian is transformed into a frame rotating with a
constant frequency in the xz plane,

ω = (ωx,0,ωz) = (ω cos θω,0,ω sin θω), (2)

where θω is the tilted angle between the cranking axis and the
x axis. From the rotating Lagrangian, the equation of motion
for nucleons can be derived, which has the form of a Dirac
equation:

[α · ( p − V ) + β(m + S) + V − ω · Ĵ]ψk = εkψk, (3)

where Ĵ = L̂ + 1
2 �̂ is the total angular momentum, and S(r)

and V μ(r) are the relativistic scalar and vector mean fields,
respectively.

For the consideration of pairing correlations, as in Ref. [31],
one needs to solve the tilted axis cranking RHB equation
for quasiparticles instead of the Dirac equation for nucleons
[Eq. (3)]:(

h − ω · Ĵ �

−�∗ −h∗ + ω · Ĵ
∗
)(

Uk

Vk

)
= Ek

(
Uk

Vk

)
, (4)

where h is the single-nucleon Dirac Hamiltonian

hD = α · ( p − V ) + β(m + S) + V (5)

minus the chemical potential λ, and � is the pairing field. Here,
the pairing field � and the mean fields S and V μ in Eq. (4)
are treated in a unified and self-consistent way. The scalar and
vector fields S(r) and V μ(r) are determined by

S(r) = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS,

V μ(r) = αV j
μ
V + γV

(
j

μ
V

)3 + δV �j
μ
V + τ3αT V j

μ
T V

+ τ3δT V �j
μ
T V + eAμ, (6)

with the densities and currents

ρS =
∑
k>0

V
†
k γ 0Vk, (7)

j
μ
V =

∑
k>0

V̄kγ
μVk, (8)

j
μ
T V =

∑
k>0

V̄kγ
μ�τVk, (9)

and the electromagnetic field eAμ. Here, the sum over k > 0
corresponds to the well known “no-sea approximation” [41],
and e is the electric charge unit vanishing for neutrons.

The matrix element of the pairing field � is

�ab = 1

2

∑
c,d

〈ab|V pp|cd〉aκcd, (10)

where V pp is the pairing force, and κ is the pairing tensor κ =
V ∗UT determined by the quasiparticle (qp) wave functions. In
the present work, the separable pairing force is adopted, which
reads, in the coordinate space,

V pp(r1,r2,r ′
1,r

′
2) = Gδ(R − R′)P (r)P (r ′) 1

2 (1 − P σ ).

(11)

Here, R = 1
2 (r1 + r2) and r = r1 − r2 denote the center of

mass and the relative coordinates, respectively, and P (r) has
a Gaussian expression

P (r) = 1

(4πa2)3/2
e−r2/4a2

. (12)

The projector 1
2 (1 − P σ ) allows only the states with the total

spin S = 0. The two parameters G and a were determined in
Ref. [33] by fitting to the density dependence of pairing gaps at
the Fermi surface for nuclear matter obtained with the Gogny
forces.

By solving Eq. (4) iteratively, one can obtain the total
energy:

Etot = Ekin + Eint + Ecou + Epair + Ec.m., (13)

which includes a kinetic part,

Ekin =
∫

d3r
∑
k>0

V
†
k [α · p + βm]Vk, (14)

an interaction part,

Eint =
∫

d3r
{

1

2
αSρ

2
S + 1

3
βSρ

3
S + 1

4
γSρ

4
S + 1

2
δSρS�ρS

+ 1

2
αV j

μ
V (jV )μ + 1

2
αT V j

μ
T V (jT V )μ

+ 1

4
γV

(
j

μ
V (jV )μ

)2 + 1

2
δV �j

μ
V (jV )μ

+ 1

2
δT V j

μ
T V �(jT V )μ

}
, (15)

an electromagnetic part,

Ecou =
∫

d3r
1

2
eA0j

0
p, (16)

a pairing energy part,

Epair = 1
2 Tr[�κ], (17)

and the center-of-mass (c.m.) correction energy Ec.m. account-
ing for the treatment of center-of-mass motion,

Ec.m. = − 1

2mA

〈
P̂

2
c.m.

〉
, (18)
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where A is the mass number and P̂c.m. = ∑A
i p̂i is the total

momentum in the center-of-mass frame.
The angular momentum components J = (Jx,Jy,Jz) in the

intrinsic frame at a certain rotational frequency h̄ω are given by

Jx = 〈Ĵx〉 =
∑
k>0

j (k)
x , (19)

Jy = 0, (20)

Jz = 〈Ĵz〉 =
∑
k>0

j (k)
z , (21)

and the magnitude of the angular velocity ω is connected to the
angular momentum quantum number I by the semiclassical
relation 〈 Ĵ〉 · 〈 Ĵ〉 = I (I + 1).

The quadrupole moments Q20 and Q22 are calculated by

Q20 =
√

5

16π
〈3z2 − r2〉, (22)

Q22 =
√

15

32π
〈x2 − y2〉. (23)

The nuclear magnetic moment in units of the nuclear
magneton is given by

μ =
∑
k>0

∫
d3r

[
mc2

h̄c
qV

†
k (r)r × αVk + κV

†
k (r)β�Vk

]
,

(24)

where the charge q (qp = 1 for protons and qn = 0 for
neutrons) is given in units of e, and κ is the free anomalous
gyromagnetic ratio of the nucleon (κp = 1.793 and κn =
−1.913). In a semiclassical approximation, the values of the
transition probabilities B(M1) and B(E2) can be derived as

B(M1) = 3

8π
μ2

⊥ = 3

8π
(μx sin θJ − μz cos θJ ), (25)

B(E2) = 3

8

[
Q

p
20 cos2 θJ +

√
2

3
Q

p
22(1 + sin2 θJ )

]2

, (26)

where Q
p
20 and Q

p
22 correspond to the quadrupole moments of

protons.

III. NUMERICAL DETAILS

In the present work, the observed yrast band of the odd-A
nucleus 109Ag [36] is investigated. The ground state of 109Ag
is associated with the one quasiproton configuration πg−1

9/2.
However, above I = 21/2h̄, two h11/2 neutrons are aligned,
and this leads to the 3-qp configuration πg−1

9/2 ⊗ νh2
11/2.

In the following, I apply the developed TAC-CDFT with
separable pairing force to both the 1-qp and 3-qp configura-
tions. The point-coupling density functional PC-PK1 [37] is
adopted in the particle-hole channel and the separable pairing
force with G = −738 MeV fm3 and a = 0.636 fm [33] is used
in the particle-particle channel. The RHB equation (4) is solved
in a three-dimensional harmonic oscillator basis in Cartesian
coordinates with 12 major shells. By increasing the number of
major shells from 12 to 14, the changes of total energy and total
angular momentum at the rotational frequency 0.35 MeV are

FIG. 1. Rotational excitation energy as a function of the angular
momentum in comparison with the data [36] (solid dots). The solid
and dashed lines represent the results calculated by TAC-CDFT with
and without pairing correlations, respectively. Here, the excitation
energies are the energy differences with respect to the ground state.

within 0.021% and 0.020%, respectively. In the calculations, I
follow the method proposed in Ref. [31] to trace and block the
right qp orbitals to keep the multi-qp configurations unchanged
while solving Eq. (4) iteratively with different λ and ω values.

It should be noted that in the present TAC-CDFT with
separable pairing force, the time reversal symmetry as well
as signature is broken and parity is the only good quantum
number. Therefore, the space of the current Hamiltonian matrix
is twice as large as for the corresponding noncranking RHB
theory [32,41]. Furthermore, there are more nonzero matrix
elements for pairing field that must be be calculated (see
Appendix A for details).

IV. RESULTS AND DISCUSSION

In Fig. 1, the calculated rotational excitation energies
for both the 1-qp (lower spin part) and 3-qp (high spin
part) configurations are shown in comparison with the data
available [36]. It is seen that the experimental data are
reproduced satisfactorily without any artificial renormalization
of the bandhead. In particular, the description of the energy
differences between the bandheads of the 1-qp and 3-qp
configurations is improved significantly with the inclusion
of pairing correlations. This feature is very similar to that
found in the previous work for the yrast band of 135Nd [31],
where the TAC-CDFT calculations were carried out with an
adjusted constant pairing force. Quantitatively, it seems that
the current separable pairing force is not strong enough to
reproduce the energy differences between the two bandheads
exactly. However, it is worthwhile to mention that the particle
number is not conserved in the present calculations due to
the Bogoliubov transformation. Further consideration of the
particle-number restoration could bring more correlations for
the 1-qp configuration than the 3-qp one, because the 1-qp
configuration has larger pairing gaps. This would enlarge
the energy differences between the two bandheads and, thus,
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FIG. 2. (a) The neutron pairing energy as well as (b) the pairing
gap as a function of rotational frequency. The solid and dashed lines
represent the cases of 1-qp and 3-qp configurations, respectively.

may lead to an improved description of the data. Further
work along this direction is in progress. An additional reason
for the discrepancy in the energy differences of 1-qp and
3-qp configurations could be the missing accuracy of the
description of single-particle energies in self-consistent mean
field theories. The transition from the 1-qp and the 3-qp
configuration involves a particle-hole excitation. A reduced
particle-hole energy in the transition to the two h11/2 neutrons
could also cause the deviation from the experiment in the
energy spectra observed in Fig. 1.

For a better understanding of the results shown in Fig. 1,
the neutron pairing energy and pairing gap for 1-qp and
3-qp bands are shown in Fig. 2. Owing to the odd proton
in 109Ag blocking the orbital close to the major shell Z = 50,
the pairing correlations for protons vanish. As one sees from
Fig. 2, the pairing effects of the 3-qp configuration are much
weaker than those of the 1-qp configuration. Moreover, for
both configurations, the pairing energy and the pairing gap
are decreasing with the rotational frequency, which indicates
weaker pairing correlations at high rotational frequency.

Converged results cannot be obtained from I ∼ 7.5h̄ to
I ∼ 11.5h̄ in Fig. 1 because of the back-bending phenomenon
observed in this region, where the rotational frequency drops
drastically while the angular momentum increases. This can
be clearly seen in Fig. 3, which depicts the calculated angular
momenta as a function of the rotational frequency compared
with the data. It is well known that such a back-bending
phenomenon is beyond the scope of a cranking calculation
[42]. Apart from the back-bending region, the angular mo-
menta are reproduced well by the calculations with pairing
correlations. In comparison with the calculated results without
pairing correlations, it is clear that the pairing effects tend to
slow down the total spin alignments and, thus, bring the results
closer to the data for a given rotation frequency. Moreover, for

FIG. 3. Angular momenta as a function of rotational frequency
in comparison with the data [36] (solid dots). The solid and dashed
lines represent the results calculated by TAC-CDFT with and without
pairing correlations, respectively.

the 1-qp configuration, converged results can be obtained up to
h̄ω 
 0.5 MeV by taking into account the pairing correlations.

To have a better understanding of the dynamics of the
rotational band, it is interesting to study the evolution of the
orientation of the rotational axis and the angular momentum
vectors of neutrons and protons. The orientation of the
rotational axis can be represented by the so-called tilt angle,
which is defined here as the angle between the rotational axis
and the long axis, and is determined in a self-consistent way
by minimizing the total Routhian along the band. In Fig. 4, the
tilt angles for the 1-qp and 3-qp configurations are shown as a
function of the rotational frequency. The positive and negative
values denote a tilt towards the short and the intermediate axes,
respectively. For the 1-qp band, the tilt angles are negative
and, thus, the rotational axis is in the long-intermediate (l-i)
plane. In particular, the orientation of the axis coincides with

FIG. 4. Tilt angles for the 1-qp and 3-qp configurations as a
function of the rotational frequency. The solid and open circles
represent the results calculated by TAC-CDFT with and without
pairing correlations, respectively.
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No Pairing

Pairing

0.25 MeV
0.42 MeV

0.15 MeV
0.34 MeV

Φ Φ

(a)

(c)

(b)

(d)

FIG. 5. Neutron J ν and proton Jπ angular momentum vectors
for the 1-qp and 3-qp bands with and without pairing correlations.
The solid and dashed lines represent the results with different values
of rotational frequency. Note that J ν for the 1-qp band is negligible
at h̄ω = 0.15 MeV.

the l axis at the bandhead because of the quasiproton in the
g9/2 shell, and is changing gradually towards the i axis when
the frequency increases. For the 3-qp configuration, however,
the tilt angles are positive and the axis of rotation lies in the
long-short (l-s) plane. Moreover, the orientation is close to the
s axis due to the appearance of the two aligned quasineutrons
in the h11/2 shell and does not change much with the increasing
frequency.

It is clear in Fig. 4 that pairing correlations influence
significantly the orientation of the rotational axis, equivalently
the direction of total angular momentum, for the 1-qp band,
while having a relatively small impact on the 3-qp band. This
is mainly due to the fact that pairing effects are considerably
suppressed by the two aligned quasineutrons in the 3-qp band.
To investigate the effect of pairing correlations on the total
spin, the magnitudes and directions of the angular momenta
for protons and neutrons are studied in detail.

The angular momentum vectors for both the 1-qp and
3-qp bands are depicted in Fig. 5 with and without pairing
correlations. For the 1-qp configuration, the proton angular
momentum aligns with the l axis and the neutron one
essentially vanishes at the bandhead; i.e., the total spin is
dominated by the unpaired quasiproton in the g9/2 shell. Along
the band, the i-axis components of the angular momenta
for protons and neutrons are increasing due to the coherent
collective motion of the nucleons in low-j orbits. Thus,
the proton angular momentum tilts towards the i axis and the
neutron one has a nonvanishing contribution. As a result, the
total spin composed by the angular momenta of protons and
neutrons also changes away from the l axis to the i axis due to
the collective rotation.

However, this effect is mitigated after the pairing correla-
tions are included, because the pairing correlations provide a
remarkable suppression of the angular momentum alignment
due to the collective rotation. This also explains, as depicted
in Fig. 4, the late onset of the decline of the tilt angle with
rotational frequencies by the inclusion of pairing correlations.
Note that, in cases both with and without pairing correlations,
the l-axis projections of the proton angular momenta are nearly

(a) (b)

FIG. 6. The angle φ between the proton and neutron angular
momenta as a function of the total angular momentum for 1-qp and 3-
qp configurations calculated by TAC-CDFT with and without pairing
correlations.

constant along the band, since they are determined mainly by
the unpaired πg9/2 quasiproton.

For the 3-qp band, at the bandhead, the proton angular
momenta are mainly from the unpaired πg9/2 quasiproton nd
align roughly along the l axis, while the neutron ones mainly
align with the s axis because of the two νh11/2 quasineutrons.
As the rotational frequency increases, the neutron and proton
angular momenta align towards each other and generate the
total angular momenta whose directions are nearly unchanged.
The inclusion of pairing correlations reduces the magnitudes
of the neutron angular momenta, which has little influence on
the angular momenta of protons. Consequently, the pairing
effects are observed in both the magnitudes (see Fig. 3) and
the directions of the total angular momentum (see Fig. 4).

One can define the angle between the proton and neutron
angular momenta, i.e., the angle φ in Fig. 5, for a clearer picture
of the impact of pairing correlations. Figure 6 compares its
evolution with respect to the total angular momentum for the
cases with and without pairing correlations. It is clearly seen
that this angle φ is reduced, at each spin, by the inclusion of
pairing correlations for both the 1-qp and 3-qp configurations.
A similar phenomenon has also been found in the previous
TAC-CDFT calculations for 135Nd with a monopole pairing
force [31].

To trace the microscopic reason for the pairing effects, it is
quite helpful to transform from the qp basis to the canonical
basis using Bogoliubov transformation [43]. In a microscopic
picture, the angular momentum comes from all the individual
particles. Here, in Fig. 7, the neutron angular momentum
alignments Jx along the x axis [see Eq. (19)], i.e., the i axis for
the 1-qp band and the s axis for the 3-qp one, are presented as
an example. I do not show the proton angular momenta here
because the pairing correlations for the protons are actually
very weak for 109Ag (see below).

For the 62 neutrons in the nucleus 109Ag, the angular
momentum is mainly contributed by the 12 neutron particles
above the closed N = 50 shell. For the 1-qp configuration, all
12 neutrons are in the (g7/2d5/2) shell with low j values. Pairing
correlations can provide a strong influence on these orbitals
and, as a result, the angular momentum alignments along the
x axis are significantly reduced. For the 3-qp configuration,
however, there are two neutrons sitting at the high-j orbitals
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(a) (b) (c)

FIG. 7. Alignments of the neutron angular momenta on the
x axis for both the 1-qp and 3-qp configurations, calculated by
TAC-CDFT with and without pairing, respectively. The numbers
below the abscissa denote the rotational frequency at which the plotted
alignments have been obtained.

in the h11/2 shell, whose angular momentum alignments are
hardly influenced by the pairing correlations. The pairing
effects are mainly exhibited by the reduction of the angular
momentum alignment for 10 neutrons in the (g7/2d5/2) shell.

The electromagnetic transition properties associated with
the rotational band are investigated as well. The theoretical
transition probabilities are given in Fig. 8 in comparison with
the available data [36]. A good agreement with the experiment
is achieved by performing the TAC-CDFT calculations with
pairing correlations. The pairing effects are marginal for the
B(E2) values, while they are more significant for the B(M1)
transitions, whose strengths are reduced by the inclusion
of pairing correlations and, thus, approach the experimental

m* m
m* m

(a)

(b)

FIG. 8. The calculated B(E2) and B(M1) values as a function
of the angular momentum in comparison with the data [36] (solid
dots). The solid and dashed lines represent the results calculated by
TAC-CDFT with and without pairing correlations, respectively. The
B(M1) values are also calculated with scaled Dirac effective mass and
denoted by the dash-dotted (with pairing) and dotted lines (without
pairing).

values. These findings are very similar to those reported in
Ref. [31] for the yrast band of 135Nd. However, the reduction
of the B(M1) values caused by the pairing effects in the current
work is less remarkable as that in the previous work of 135Nd
[31], and this is probably related to the fact that the pairing gap
obtained here in 109Ag is smaller. To clarify this, the average
pairing gaps [44]

�̄ =
∑

k ukυk�k∑
k ukυk

(27)

are calculated for both protons and neutrons. Here, υ2
k denotes

the occupation probability of the single-particle state ψk in
the canonical basis, and it fulfills υ2

k + u2
k = 1, and �k is the

corresponding diagonal matrix element of the pairing field in
this basis.

Taking the 3-qp configuration as an example, the proton
pairing gap of 109Ag is almost zero because it is close to the
major shell at Z = 50 and the blocking of the odd proton
reduces pairing correlations in addition. Similarly, the proton
pairing gap of the 3-qp configuration of 135Nd in Ref. [31]
is also negligible due to the two aligned quasiprotons in the
h11/2 shell. For the neutron pairing gap, however, the one
obtained for 109Ag (0.87 MeV) is 20% smaller than that of
135Nd (1.26 MeV) at the same frequencies. This might be due
to the fact that the two aligned νh11/2 quasineutrons in 109Ag
could suppress the corresponding pairing gap significantly.

The B(M1) values depend strongly on the magnetic
moment which can be calculated through Eq. (24). In fact, one
can rewrite the first part of Eq. (24), i.e., the Dirac magnetic
moment μD , as

μD =
∑
k>0

∫
qm

m∗ V̄k(r)[L + �]Vk(r)d r. (28)

Here, m∗ denotes the Dirac effective mass, and L and �

are respectively the operators of the orbital and spin angular
momenta. It is known that in the relativistic mean field
theory, the effective mass appears too small (m∗ ≈ 0.58m),
which might be associated with the lack of a fine tuned
tensor-coupling vertex. This leads to a significant enhancement
of the Dirac magnetic moment and, thus, additional effects,
such as the back-flow effects, are required to describe the
magnetic moment properly. Therefore, here one scales the
Dirac effective mass approximately to the nucleon mass
by introduction of a factor 0.58 [45], and it approximately
accounts for the back-flow effects, which have been calculated
in infinite nuclear matter by a Ward identity [46–48]. In such
a way, it is found that the calculated B(M1) values are highly
consistent with the experimental data. Moreover, it is noted that
this method works not only for the present case but also for
the case of the chiral rotation in 106Rh as reported in Ref. [45].

V. SUMMARY

In summary, a separable form of Gogny’s pairing force has
been implemented in the tilted axis cranking covariant density
functional theory for the treatment of pairing correlations.
Contrary to the method of the monopole pairing force, the
strength of this force is not adjusted to odd-even mass
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differences. It is derived from the Gogny force, and in that
sense it is universal in the entire periodic table. This method
has been applied to investigate the yrast rotational band of
109Ag. The description of the energy spectra, especially the
bandhead energies, is improved remarkably when the pairing
correlations are considered with the separable pairing force.
For the yrast band of 109Ag, pairing effects pull down the
calculated angular momenta at a certain cranking frequency,
and a good agreement with experimental data is thus achieved.
Along the band, the rotational axis undergoes a sharp transition
from the long-intermediate plane to the long-short one, which
accompanies the change from 1-qp to 3-qp configuration.
The electromagnetic transition strengths B(E2) and B(M1)
are also well reproduced. In particular, for the 3-qp band,
the B(M1) values are reduced by the inclusion of pairing
correlations, and this should be connected with the reduction
of the angle between the proton and neutron angular momenta
by pairing correlations.
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APPENDIX: CALCULATION OF PAIRING
MATRIX ELEMENTS

The harmonic oscillator basis one uses to solve the tilted
axis cranking RHB equation [Eq. (4)] reads

|nxnynz; i = +〉 = |nxnynz〉 iny

√
2

[| ↑〉 − (−1)nx | ↓〉], (A1)

|nxnynz; i = −〉 = |nxnynz〉(−1)nx+ny+1 iny

√
2

× [| ↑〉 + (−1)nx | ↓〉]. (A2)

Here, |nxnynz〉 is the harmonic oscillator wave function in
Cartesian coordinates, and nx,ny,nz are the corresponding
quantum numbers. The labels i = + and i = − represent the
states with positive and negative x simplex, respectively, and
for simplicity they are respectively abbreviated below as |α〉
and |β̄〉.

Based on this harmonic oscillator basis, the antisymmetric
pairing matrix elements 〈ab|V pp|cd〉a in Eq. (10) can be
calculated, where the pairing force V pp [Eq. (11)] can be
written as

V pp(r1,r2; r ′
1,r

′
2) = Gδ(R − R′)P (r)P (r ′) 1

2 (1 − P σ )

≡ W (r1,r2; r ′
1,r

′
2) 1

2 (1 − P σ ). (A3)

These are four types of such matrix elements, nonvanishing,

〈αβ̄|V pp|γ δ̄〉a = 〈αβ̄|W 1
2 (1 − P σ )|γ δ̄〉a, (A4)

〈αβ|V pp|γ δ〉a = 〈αβ|W 1
2 (1 − P σ )|γ δ〉a, (A5)

〈αβ|V pp|γ̄ δ̄〉a = 〈αβ|W 1
2 (1 − P σ )|γ̄ δ̄〉a, (A6)

〈ᾱβ̄|V pp|γ̄ δ̄〉a = 〈ᾱβ̄|W 1
2 (1 − P σ )|γ̄ δ̄〉a, (A7)

because the operator 1
2 (1 − P σ ) projects onto the S = 0 spin-

singlet product state

|γ δ̄〉S=0 = −|δ̄γ 〉S=0

= 1
2 in

γ
y +nδ

y (−1)n
δ
y+1δn

γ
x +nδ

x ,even[| ↑↓〉 − | ↓↑〉]|nγ nδ〉,
(A8)

|γ δ〉S=0 = −|δγ 〉S=0

= 1
2 in

γ
y +nδ

y (−1)n
δ
x+1δn

γ
x +nδ

x ,odd[| ↑↓〉 − | ↓↑〉]|nγ nδ〉.
(A9)

It should be noted that in the noncranking or the principal-
axis-cranking RHB theory, the terms in Eqs. (A5)–(A7) vanish
because of the spatial symmetries fulfilled by the nuclear
density distribution. As a result, only the matrix elements
in Eq. (A4) need to be calculated. However, in the present
tiled axis cranking case, one has only the space-reflection
symmetry for nuclear density distribution. Therefore, all
four kinds of matrix element in Eqs. (A4)–(A7) could be
nonzero.

Since the final forms of Eqs. (A6) and (A7) are the same
as that of Eq. (A5), here I give only the detailed derivations of
Eqs. (A4) and (A5):

〈αβ̄|V pp|γ δ̄〉a = (−i)n
α
y −n

β
y δnα

x +n
β
x ,eveni

n
γ
y −nδ

y

× δn
γ
x +nδ

x ,even〈nαnβ |W |nγ nδ〉, (A10)

〈αβ|V pp|γ δ〉a = in
α
y +n

β
y (−1)n

β
x δnα

x +n
β
x ,oddi

n
γ
y +nδ

y (−1)n
δ
x

× δn
γ
x +nδ

x ,odd〈nαnβ |W |nγ nδ〉. (A11)

For the evaluation of

〈nαnβ |W |nγ nδ〉 =
∫

φnα
(r1)φnβ

(r2)W (r1,r2; r ′
1,r

′
2)

×φnγ
(r ′

1)φnδ
(r ′

2)d3r1d
3r2d

3r ′
1d

3r ′
2,

(A12)

it can be decomposed into the x, y, and z parts:

〈nαnβ |W |nγ nδ〉 = GWxWyWz. (A13)

For example, the x component reads

Wx =
∫

φnα
x
(x1,bx)φn

β
x
(x2,bx)P (x)δ(X − X′)P (x ′)

×φn
γ
x
(x ′

1,bx)φnδ
x
(x ′

2,bx)dx1dx2dx ′
1dx ′

2. (A14)

Such an integral can be evaluated by means of the Talmi-
Moshinsky transformation and the generating function for the
Hermite polynomials [41]. Finally, the pairing matrix elements
can be represented by a sum of a few separable terms in a basis
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of three-dimensional harmonic oscillator,

〈αβ̄|V pp|γ δ̄〉a = G
∑
Nx=0

∑
Ny=0

∑
Nz=0

(
V

NxNyNz

αβ̄

)∗
V

NxNyNz

γ δ̄
,

(A15a)

〈αβ|V pp|γ δ〉a = G
∑
Nx=0

∑
Ny=0

∑
Nz=0

(
V

NxNyNz

αβ

)∗
V

NxNyNz

γ δ .

(A15b)

Here, the single-particle matrix elements read

V
NxNyNz

γ δ̄
= δn

γ
x +nδ

x ,eveni
n

γ
y −nδ

y W
Nx

n
γ
x nδ

x

W
Ny

n
γ
y nδ

y

W
Nz

n
γ
z nδ

z

, (A16)

V
NxNyNz

γ δ = δn
γ
x +nδ

x ,oddi
n

γ
y +nδ

y (−1)n
δ
x W

Nx

n
γ
x nδ

x

W
Ny

n
γ
y nδ

y

W
Nz

n
γ
z nδ

z

, (A17)

and the factors W
Nμ

n
γ
μnδ

μ

are given by

W
Nμ

n
γ
μnδ

μ

= 1

bμ

M
nNμ

n
γ
μnδ

μ

In(αμ), n = Nμ − nγ
μ − nδ

μ, (A18)

where bμ is the harmonic oscillator length, and αμ = a/bμ.

M
nNμ

n
γ
μnδ

μ

denotes the Talmi-Moshinsky bracket,

M
nNμ

n
γ
μnδ

μ

=
√

n
γ
μ!nδ

μ!

n!Nμ!

√
1

2Nμ+n
δn

γ
μ+nδ

μ,n+Nμ

×
∑
m

(−1)n+m ×
(

Nμ

Nμ − n + m

)(
n
m

)
, (A19)

and I (αμ) reads

In(αμ) = δn,even
(−1)n/2

(2π )1/4

√
n!

2n/2(n/2)!

×
(

1

1 + α2
μ

)1/2(
1 − α2

μ

1 + α2
μ

)n/2

. (A20)

Through Eqs. (10) and (A15), one can finally get the matrix
elements of the pairing field,

�αβ̄ = G
∑
Nx=0

∑
Ny=0

∑
Nz=0

(
V

NxNyNz

αβ̄

)∗
PNxNyNz

, (A21a)

�αβ = G
∑
Nx=0

∑
Ny=0

∑
Nz=0

(
V

NxNyNz

αβ

)∗
PNxNyNz

, (A21b)

with the coefficients

PNxNyNz
=

∑
γ δ̄>0

V
NxNyNz

γ δ̄
κγ δ̄ or

PNxNyNz
=

∑
γ δ>0

V
NxNyNz

γ δ κγ δ. (A22)
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