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The question of the competition between � and �0,− in the ground state of multistrange hypernuclei is
addressed within a nonrelativistic density functional approach, partially constrained by ab initio calculations and
experimental data. The exploration of the nuclear chart for 10 < Z < 120 as a function of the strangeness number
is performed by adding hyperons to a nuclear core, imposing either conserved total charge Q or conserved proton
number Z. We find that almost all � hypernuclei present an instability with respect to the strong interaction
decay of � towards �0,− and that most of the instabilities generates �− (�0) in the case of conserved total
charge Q (proton number Z). The strangeness number at which the first �0,− appear is generally lower for
configurations explored in the case of conserved Q compared to the case of conserved Z, and corresponds to
the crossing between the � and the neutron or proton chemical potentials. About two to three hundred thousand
pure � hypernuclei may exist before the onset of �0,−. The largest uncertainty comes from the unknown ��

interaction, since the N� and the N� ones can be constrained by a few experimental data. The uncertainty on
the �� interaction can still modify the previous estimation by 30–40%, while the impact of the unknown ��

interaction is very weak.

DOI: 10.1103/PhysRevC.96.054317

I. INTRODUCTION

Since the discovery of the first hypernucleus in an emulsion
exposed to cosmic rays [1], single and double-� hypernu-
clei, as well as single-� ones, have been synthesised and
some of their ground state properties have been measured
[2,3]. It is further expected from theoretical calculations that
multistrange hyperons remain bound up to a large number of
hyperons [3], but precise predictions require reliable hyperon
interactions. The scarce amount of data, however, makes the
hyperon interactions still rather unknown. Depending on the
hyperon interaction, a hyperon might or might not appear in
dense matter—hypernuclear matter—which exists in the inner
cores of neutron stars [4]. Finite hypernuclei and neutron stars
are therefore the two systems which can provide constraints
on the hyperon interactions.

New dedicated experimental programs such as the Japan
Proton Accelerator Research Complex (J-PARC) in Japan and
the proton-antiproton detector array at the GSI Facility for
Antiproton and Ion Research (FAIR) are or will be providing
new data which contribute to a better understanding of the
properties of hypernuclei [2,3]. The physics of hypernuclei
opens a new direction in the exploration of the nuclear
chart which is complementary to the direction towards more
and more exotic nuclei. Hypernuclei are interesting finite
nuclear systems since they allow one to study the properties
of bound strange hadrons and to test the behavior of the
baryon-baryon interaction. The representation of the nuclear
chart, traditionally expressed in terms of the number of protons
Z and neutrons N , acquires a new dimension associated with
the strangeness number S. For a given strangeness number
S, several configurations corresponding to different hyperons

can be considered. The charge-neutral and lightest hyperon �
happens to be also the most bound, and single-� hypernuclei
have been synthesized through the nuclear chart, providing
information such as global masses and single-particle energies
for most of them [5]. These data are important to reduce
the uncertainties of the N� interaction, at least at very low
density, as shown for instance in Refs. [6,7]. Multistrange
hypernuclei are still one of the least-explored, open questions
in hypernuclear physics, from both experimental and theoret-
ical viewpoints [8]. Data on double-� hypernuclei are very
scarce, mostly because the production rates are low. A few of
them are nevertheless known, such as 6

��He or 11
��Be, allowing

extraction of the bond energy which is expected to be a measure
of the �� interaction, here also at very low density [9,10]. The
existence of an extra binding associated with a double-hyperon
system implies that the �� interaction is at least marginally
attractive, opening the possibility of multistrange systems with
a higher number of hyperons [11]. In particular, the production
of multistrange hypernuclei may be favored during the cluster
formation phase in relativistic heavy-ion collisions, since they
usually lower the binding energy per particle [11,12].

From the theoretical point of view, there are many relativis-
tic and nonrelativistic density functional approaches which
were developed and applied to the prediction of the structure
of hypernuclei; see Refs. [6,7,13–16] for a few of them. Mul-
tistrange hypernuclei with more than two hyperons were first
discussed in Ref. [11], and a large variety of phenomena were
predicted for such nuclei during the 1980s and the early 1990s
[13,17,18]. However, these studies assumed very attractive
hyperon-hyperon interactions, inspired by the first analyses
of double-lambda 10

��Be and 13
��B data, which suggested a
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large bond energy �B�� ≈ 5 MeV [19]. Therefore, it may be
interesting to check these predictions with a density functional
approach including the latest phenomenological constraints.
Since our knowledge of the hyperon interaction remains quite
poor, it may also be interesting to evaluate to which extent
this lack of knowledge impacts the predictions of multistrange
hypernuclear properties.

In a previous work we discussed hyperons and hypernuclear
matter made of nucleons (N ) and � particles [10]. It is,
however, expected that multistrange hypernuclei including
also other hyperons, such as �0,−, could be bound at large
values of the strangeness number S [20–23]. For a given S,
these complex configurations might even correspond to the
ground state of the multibaryon system, meaning that the
hypernuclear chart at large −S [10] should take into account all
the possible hyperons. In this work, we want to investigate the
properties of multistrange hypernuclei with � and �0,− within
nonrelativistic density-functional theory, which has proven to
give a very good description of normal nuclei [24,25] and �
hypernuclei [6,7,26–31], as well as � hypernuclei [32].

Supposing an initial hypernucleus made of nucleons and
�s, there are three kinds of possible strong interaction decays:
(i) reactions transforming � into �±,0,

� + n → �0 + n, � + p → �+ + n,

� + n → �− + p, (1)

with average free reaction Qfree
� ≈ −80 MeV; (ii) reactions

transforming two � into �0,−,

� + � → �− + p, � + � → �0 + n, (2)

with average free reaction Qfree
� ≈ −26 MeV; and finally (iii)

reactions transforming three � into �−,

� + � + � → �− + n + p, (3)

with average free reaction Qfree
� ≈ −180 MeV.

The Qfree values make the previously listed decays nonfa-
vorable, and the hypernuclei with only � are usually preferred.
However, the Qfree values takes into account only the mass
of the particles, while in dense matter as well as in finite
nuclei there is an additional quantum effect induced by Pauli
blocking: because of the Fermi energy, the total energy of
hypernuclei with a large amount of � may become larger than
the total energy of a system where some � are converted into
other hyperons, leading to a positive Qfree value in the medium.
Moreover, the presence of other baryons in hypernuclei
generates a potential field in nonrelativistic approaches, or
in-medium mass shift in relativistic approaches, which in turn
shifts the Qfree values. The Coulomb interaction contributes
also to the mean field, and shifts it down for negatively
charged hyperons, making them more favored. Then, the
minimum energy configuration for a fixed value of the quantum
number set (A,Q,S) may have a finite amount of �, or �,
or � particles. The Qfree values give, however, a reasonable
hierarchy in the formation of new systems: it is expected that
it will be easier to decay from � to � than to � and �.

In this work, we therefore extend our previous analysis of
the hypernuclear chart [10], considering the possible decay of
� into �0,− (hereafter called the � instability). The detailed

study of the general properties of multistrange hypernuclei is
left to a future work. In the present work, we systematically
look for the strangeness threshold associated to the appearance
of �0,− in the hypernuclear ground state. To calculate the �0,−
instability threshold, we consider a core nucleus (Acore, Zcore)
in between the drip lines, and add strangeness distributed over
� and �0,− types of hyperons. Fixing the three conserved
charges of the strong interaction, namely the baryon number
A, the total charge Q, and the strangeness number S, the
ground state multistrange hypernucleus is the one which
minimizes the energy. This criterium corresponds to defining
the stable configuration with respect to strong decays, and
univocally defines the hypernuclear ground state. To compare
to some results in the literature, we also consider another
convention: fixing Z and adding strangeness on top of a core
nucleus (Acore, Zcore), as done for instance in Refs. [20–23].
It should be noted that a third strategy could be considered,
which consists of adding strangeness at conserved total mass
A; see Refs. [13,17] for instance. It should be stressed that
these strategies are convenient pictures to understand the effect
of adding strangeness to ordinary nuclei, but none of them
reflects exactly the present possibilities for the experimental
production of multistrange hypernuclei. In particular, at
the Heavy Ion Collision the reactions forming multistrange
hypernuclei can certainly produce extra excited states which
do not correspond to the minimum energy at conserved Q.

The outline of the present work is as follows. In Sec. II, we
propose a nonrelativistic density-functional approach to treat
multistrange hypernuclei. We first briefly recall in Sec. II A the
formalism already used in our previous work [10], and propose
in Sec. II B a minimal extension to include the full baryonic
octet with the inclusion of ten additional coupling constants.
The multistrange hypernuclear chart is studied in Sec. III.
After a brief description of the numerical strategy (Sec. III A),
the instability threshold corresponding to the onset of �0,−
hyperons in the ground state of hypernuclei is computed in
Sec. III B and the number of pure-� hypernuclei is calculated
in Sec. III C. We show that the use of realistic N�, ��,
and N� interactions modifies the predictions with respect to
previous results in the literature. The effect of the other largely
unconstrained YY couplings is also analyzed and we show that
the �� interaction channel is the most influential one. Finally,
conclusions and outlooks are presented in Sec. IV.

II. DENSITY FUNCTIONAL THEORY FOR
MULTISTRANGE HYPERNUCLEI

In the present work, we consider the most general nonrela-
tivistic system composed of interacting nucleons N (neutrons
and protons) and hyperons, hereafter denoted Y for � and
�0,−. Notice that the extension to the other hyperons, �0,±, and
eventually �−, is straight-forward, but will not be considered
in this paper. The total Hamiltonian reads

Ĥ =
∑

i=N,Y

t̂i +
∑

i,j=N,Y

v̂NY
ij + 1

2

∑
i=N

v̂NN
ii + 1

2

∑
i=Y

v̂YY
ii . (4)

In the following, we will consider the density functional
theory, which allows relating in a direct way the microscopic
Brueckner-Hartree-Fock (BHF) theory for uniform matter,
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TABLE I. Parameters of the fi functions, see Eqs. (8)–(10), for the functionals DF-NSC89, DF-NSC97a, DF-NSC97f.

Force αN�
1 αN�

2 αN�
3 αN�

4 αN�
5 αN�

6 α��
1 α��

2 α��
3

(MeV fm3) (MeV fm6) (MeV fm9) (MeV fm5/3) (MeV fm14/3) (MeV fm23/3) (MeV fm3) (MeV fm6) (MeV fm9)

DF-NSC89 [6,7] 327 1159 1163 335 1102 1660 0 0 0
DF-NSC97a [7] 423 1899 3795 577 4017 11061 38 186 22
DF-NSC97f [7] 384 1473 1933 635 1829 4100 50 545 981

based on the Nijmegen interactions, to the properties of
hypernuclei.

A. Energy-density functional for N and � hypernuclear matter

In a previous study of hypernuclei and nuclear matter
[10] we used a density functional which was determined
directly from the BHF theory including nucleons and single
� hyperons [6,7]. Here we recall the main equations and refer
the reader to Ref. [10] for more details.

The total energy density ε(ρN,ρ�) is related to the energy
per particle of infinite nuclear matter calculated within the BHF
framework, eBHF, as ε(ρN,ρ�) = (ρN + ρ�)eBHF(ρN,ρ�) and
is decomposed in different terms,

ε(ρN,ρ�) = h̄2

2mN

τN + h̄2

2m�

τ� + εNN (ρN )

+εN�(ρN,ρ�) + F�ε��(ρ�), (5)

where τN and τ� are the kinetic energy densities, and the
term εN� is parametrized in terms of the nucleon and hyperon
densities as [6,7]

εN�(ρN,ρ�) = −f N�
1 (ρN )ρNρ� + f N�

2 (ρN )ρNρ
5/3
� . (6)

Here the first term physically corresponds to the attractive N�
interaction, corrected by the presence of the medium given by
the function f1, and the second term is induced by the repulsive
momentum dependent term of the � potential (considering
the low-momentum quadratic approximation), also corrected
by the medium through the function f2. Some repulsion is
indeed necessary at high density for the � in nuclear matter,
as fits to single � hypernuclear data have revealed [33]. In
the presence of the attractive �� interaction, the term ε�� is
solely determined by the hyperon density as [7]

ε��(ρ�) = −f ��(ρ�)ρ2
�. (7)

To avoid self-interaction, the factor F� in the functional Eq. (5)
is 0 if there is only one � and 1 for more.

The functions f are given by the polynomial forms

f N�
1 (ρN ) = αN�

1 − αN�
2 ρN + αN�

3 ρ2
N, (8)

f N�
2 (ρN ) = αN�

4 − αN�
5 ρN + αN�

6 ρ2
N, (9)

f ��(ρ�) = α��
1 − α��

2 ρ� + α��
3 ρ2

�. (10)

The values for the parameters αN�
1 –αN�

6 were determined
in Refs. [6,7] from a fit of the BHF infinite nuclear matter
calculations performed with different N� potentials which
equally well fit the available N� phase shifts. In this work
we will use the models DF-NSC89, DF-NSC97a, and DF-
NSC97f, whose parameters are given in Tables I and V.

It should be noted that no direct experimental information
is available on �� scattering, meaning that these phenomeno-
logical bare interactions are rather unconstrained in the ��
channel. For this reason, NSC89 does not contain any ��
interaction. The NSC97a–f models assume for this channel a
simple SU(3) extension of the original Nijmegen potential
models to multiple strangeness S = −2 [34,35]. For these
models, the energy density associated to the �� interaction is
expressed as

ε�� = −(
α��

1 − α��
2 ρ� + α��

3 ρ2
�

)
ρ2

�. (11)

It turns out that these models do not lead to a satisfactory
description of the bond energy of double-� hypernuclei [7],
which is the only empirical information that we have on
�� couplings [9,19,36]. For this reason, in our previous
work in Ref. [10] we empirically modified the α��

1 –α��
3

parameters to reproduce the measured binding energy of 6
��He.

It should be noted that the parameters α��
2 –α��

3 control the
high density behavior of the �� interaction. In that same
work, we found that the global properties of �-hypernuclei
were not impacted by the high density behavior of the ��
interaction [10]. Therefore the parameters α��

2 –α��
3 have no

impact in double-� hypernuclei, since the � density in these
systems remains rather small. In the present work, by including
additional hyperons, the � density in multi-Y hypernuclei is
expected to be even further reduced compared to the case of
pure � hypernuclei. We therefore simplify the �� interaction,
as expressed in Eq. (7), to its first term as

ε�� = −α��
1 ρ2

�. (12)

In the following, we will refer to the modification of the ��
interaction Eq. (12) as the EmpC prescription.

The parameter α��
1 can still be approximately related

to the average bond energy expected from a local density
approximation �B�� and the average density of � inside
the nucleus, x� = ρ�/ρ0 (see Ref. [10] for details), as

α��
1 = 1

2

�B��

ρ0x�

. (13)

A recent publication questions the validity of the local density
approximation [37], and points out the fact that the � potential
obtained imposing Eq. (13) with a constant value x� = 1/5 de-
pends on the chosen functional, and so does the corresponding
bond energy obtained by a direct HF hypernuclear calculation.
If, however, the value of x� is consistently obtained for each
interaction model by a self-consistent HF calculation, we
have shown in Ref. [10] that this simple prescription leads to
very precise results. This point is demonstrated for the EmpC
prescription in Table II, which shows the final values for α��

1
for SLy4 and the �N potentials DF-NSC89, DF-NSC97a, and
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TABLE II. Prescription EmpC. We present the values of the
parameters α��

1 , the resulting bond energy in He �B��(A = 6) in
MeV, and the ratio of the � density in He to the saturation density
(ρ0).

Pot. �N DF-NSC89 DF-NSC97a DF-NSC97f
Pot. �� EmpC EmpC EmpC

α��
1 (MeV fm3) 22.81 21.12 33.25

�B��(6)HF (MeV) 1.00 0.99 1.01
ρ�(6)/ρ0 0.137 0.148 0.094

NSC97f, together with the HF results for the bond energy and
the ratio of the average � density to the saturation density in
He obtained from our Hartree-Fock calculations. The resulting
bond energy is very close to the value �B�� = 1 MeV im-
posed by Eq. (13), provided the consistent value of x� obtained
in the 6

��He ground state, and given in Table II, is used.
In the nucleon sector, we use the SLy4 parametrization of

the phenomenological Skyrme functional including nonlocal
and spin-orbit terms, since it is the NN interaction which has
been used to calibrate the �� interaction [7], and it can cor-
rectly reproduce the properties of stable and exotic nuclei [24].

A three-body YNN repulsive interaction has recently been
proposed in relation with the hyperonization puzzle [38]:
usual NN and NY interactions fitted on phase shifts cannot
predict neutron star masses above about 1.6 M�, while such
objects were recently observed [39,40]. This YNN repulsive
interaction was originally introduced to improve the agreement
between the experimental �-separation energies and the one
predicted from an Argonne-like two-body potential [41]. It
is interesting to remark that the functional we use does not
include a bare NNY interaction, and still is able to well
reproduce the experimental �-separation energies [6,7]. This
seemingly contradictory result can be qualitatively explained
by the fact that the Nijmegen functional (6) has indeed a
two-body induced NNY term, the αN�

2 term. It would however
be interesting to have a functional form adjusted to the ab initio
calculations reported in Refs. [38,41] for future systematic
applications to multihypernuclei such as those in this work.

B. Generalization of the energy functional for N and multi-Y
hypernuclear matter

In this section, we propose a general and simple density
functional considering the full hyperon octet. The functional
form (5) is generalized in order to include Y = � and �0,−
hyperons, as

ε = h̄2

2mN

τN + εNN (ρN )

+
∑
Y

h̄2

2mY

τY +
∑
Y

εNY (ρN,ρY )

+
∑
Y1,Y2

εY1Y2 (ρY1 ,ρY2 ) +
∑
Y

FY εYY (ρY ). (14)

Using the isospin invariance of the strong interaction and
neglecting spin dependence for simplicity, we suppose that
the general functional (14) depends only on the densities ρN ,

FIG. 1. Potentials vN�(ρN,ρ�) (a) and v��(ρ�) (b) as a function
of the nucleon density ρN in units of the saturation density ρ0, for
the functionals DF-NSC89, DF-NSC97a, and DF-NSC97f. In panel
(a) two different � densities are considered: ρ� = 0.0 fm−3 (solid
lines) and ρ� = 0.1 fm−3 (empty squares). In panel (b) the simplified
prescription EmpC (solid lines) is compared to the prescription
EmpB2 from Ref. [10] (empty squares) in the case when 30% of
the baryons are taken as �.

ρ�, and ρ� = ρ�0 + ρ�− . It should be noted that while the
spin-orbit interaction between N and � is known to be small
[42], it is not certain that it is also the case for the interaction
channels involving other hyperons. Due to the lack of data to
set the spin-orbit interaction strength, we neglect the spin-orbit
interactions in all NY and YY channels in the present work.
In Eq. (14), the parameters FY are introduced in finite systems
to avoid self-interactions: FY = 1 if the associated number of
Y , NY � 2; FY = 0 otherwise.

The mean-field potentials are deduced from the functional
(14) by using functional derivative [43]. Figure 1 displays the
N� and the �� mean fields defined as vunif

XY = ∂εXY /∂ρY for
the functionals DF-NSC89, DF-NSC97a, and DF-NSC97f. On
the left panel the N� potential is shown for two cases: in the
absence of � and for ρ� = 0.1 fm−3. On the right panel, 30%
of the baryons are taken as �. The N� mean field is consistent
with the empirical expectation (box on Fig. 1), and a finite
amount of � decreases the depth of the mean field, as expected
[33]. There is a qualitative difference between the functional
DF-NSC97a and the two others for a small amount of �: the
functional DF-NSC97a is much more attractive than the two
others, which are rather equivalent. We will see in the following
that hypernuclei predicted by DF-NSC97a are consequently
more bound. On the right panel, the prescriptions EmpB2 from
Ref. [10] and the present simplified functional quadratic in
density EmpC are compared for the �� channel. It is shown
that, up to a large amount of � (30%) and at saturation density,
there is almost no difference between the two prescriptions
EmpB2 and EmpC for the �� interaction. This implies that the
parameters α��

2 –α��
3 can indeed be ignored for hypernuclei

as discussed above, and that the density dependence of the ��
interaction cannot be constrained by hypernuclear physics, as
concluded in our previous study [10].

To study this feature in more details, Fig. 2 displays
the evolution of the binding energies for a few illustrative
nuclei as a function of the strangeness number −S: 40–S�Ca,
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FIG. 2. Binding energy E/A at conserved Q for different multi-�
hypernuclei as a function of the strangeness number −S: 40–S�Ca,
56–S�Ni, 120–S�Sn, 208–S�Pb. We compare predictions from two
functionals for the �� interaction, DF-NSC89+EmpC (lines) and
DF-NSC89+EmpB2 (symbols), using SLy4 for the N interaction
and VY0 for the � interaction. The calculations are stopped at the
�-instability threshold.

56–S�Ni, 120–S�Sn, 208–S�Pb. The calculations are stopped at
the � instability. The similarity in the predictions for the
�� interactions given by EmpB2 and its simplified version
EmpC is demonstrated in Fig. 2. This figure clearly shows that
the high density contribution of the �� interaction, namely
the parameters α��

2 –α��
3 in Eq. (10) which are neglected

in the present parametrization EmpC, has no contribution to
the mean field in multi-� hypernuclei. This is consistent with
our previous conclusions in Ref. [10] and confirms that the
hyperon density in hypernuclei remains too low to provide
information on the hyperon matter above saturation density.

As expected from previous works (see Ref. [3] and
references therein) the binding energy increases in absolute
value when hyperons are added to normal nuclei (see Fig. 2),
and for this reason it was suggested that multi-� hypernuclei
may be formed in heavy-ion collisions [18]. As we have
stressed in the introduction, this can be understood from
the fact that adding hyperons opens new degree of freedom
for which the Fermi energy is small. As the number of �
increases, this effect is less and less important, and finally
the binding energy saturates with the number of �, for a
large number of �. For an even larger number of �, the total
binding energy increases, and thus the chemical potential μ�

becomes positive, indicating that the � drip line is met (and
the calculation is stopped at that point).

For a large number of � one might expect that it could
again be energetically favored to add new types of hyperons,
such as the �0,−. It should be noted, however, that when we
are comparing different possible ground state configurations
conserving A, S, and Q (or Z), the final result might not be
easy to anticipate because it depends on different competing
effects. First, the higher masses of �0,−, �0,±, and �− bring
a penalty for the onset of an addition of these hyperons (see
the discussion of the Qfree values in the introduction of this
work). In addition, the interaction of these new hyperons with
the nucleons, which is the dominant contribution, might be

attractive or repulsive, impacting their mean-field potential.
The attractive Coulomb interaction for negatively charged
hyperons could help the binding, as we will show in Sec.
III. Finally, the higher mass also induces a reduction of the
kinetic energy of these particles, which could therefore slightly
counterbalance the effect of a weaker interaction. All these
phenomena are naturally included in our framework, and in
the following we will study all their combined effects in more
detail.

We now discuss the � channel. This channel is much less
known than the � one. The � density is expected to remain
quite low, even lower than the � density in the case of pure �
hypernuclei [10], since they shall be less numerous than the �,
which is expected to be the more bound hyperon. In addition,
the effective masses of the � are assumed to be equal to their
bare masses. This is justified from recent Bruckener-Hartree-
Fock calculations [30,44] for the � and it was also assumed
in recent density-functional approaches [32]. Indeed, if we are
only interested in ground-state properties, the effective masses
can be incorporated in a deeper mean-field. Since we do not
know much concerning the mean field or the effective masses
of these hyperons, it is simpler to assume the effective mass
is equal to the bare mass, and eventually alter the depth of the
mean-field.

Following the previous arguments, the NY (Y = �0,−)
terms of the potential energy density functional are given
a quadratic density dependence, as obtained for a simple
two-body effective interaction:

εNY (ρN,ρY ) = −αNY ρNρY , (15)

and the same is assumed for the YY ′ terms (Y ′ = � and �0,−):

εYY ′(ρY ,ρY ′ ) = −αYY ′
ρY ρY ′ , (16)

leading to the definition of three additional constants.
The parameter αN� can be determined by imposing the �

potential in uniform matter vunif
� = ∂ε/∂ρ� to be equal to the

empirical value U� at saturation density in the absence of �
and �, leading to

αN� = −U�/ρ0. (17)

A value of U� ≈ 14 MeV is deduced from the analysis of the
spectrum of the (K−,K+) reaction on a 12C target to produce
12
� Be, assuming a Woods-Saxon potential for the �− potential
[45]. This yields αN� ≈ 100 MeV fm3. Another, and maybe
more direct, way to determine the parameter αN� is to calculate
the �− removal energy B�− , defined as

B�− = Etot(N,Z) − Etot(N,Z,N�− ), (18)

where Etot is the total binding energy; that is, the total energy
with subtraction of the rest-mass term [32]. This allows us
to compare to two experimental energies for 12

�sBe [45] (with
N = 6, Z = 5) and 15

� C [48] (with N = 7, Z = 7), also called
the “Kiso” event. The latter experimental datum is, however,
subject to two possible interpretations: (1) by assuming that
15
� C is produced in its ground state (� being in the 1s single-
particle state), or (2) by assuming that 15

� C is produced in its first
excited state (� being in the 2p single-particle state). A recent
theoretical analysis based on mean-field theory has shown that
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TABLE III. The �− removal energies B�− [in MeV, see Eq. (18)]
of 12

�sBe in its ground state and of 15
�sC in its ground and first excited

states. Interpretations 1 and 2 stand for the two possible interpretations
of the “Kiso” event [48] (see text).

αN�
1

12
�sBe 15

�sC
15
�pC

Interpretation 1 of the “Kiso” event
105 2.64 3.92 0.12
109 3.05 4.36 0.29
110 3.16 4.47 0.34
Expt. ≈5a 4.38 ± 0.25 1.11 ± 0.25
Ref. [45,46] [47] [48]

Interpretation 2 of the “Kiso” event
120 4.23 5.60 0.84
125 4.79 6.18 1.13
130 5.36 6.78 1.81
Expt. ≈5a 7.2–9.4a 1.11 ± 0.25
Ref. [45,46] [32] [48]

aTheoretical expectation.

interpretation (2) is also compatible with the removal energy
of 12

�sBe [32]. We have performed a similar analysis with our
density functional, as shown in Table III. In our model, the
�− removal energies B�− are uniquely determined by the
parameter αN�

1 , which we vary around 100 MeV fm3. It is
shown in Table III that the value αN� = 109 MeV fm3 which
reproduces well the �− removal energies supposing 15

� C in its
ground-state is not compatible with the expected �− removal
energies of 12

�sBe, while the value αN� = 125 MeV fm3 which
reproduces well the �− removal energies supposing 15

� C in its
first excited-state gives reasonable results for the expected �−
removal energies of 12

�sBe and 15
�sC [32]. In the following, we

thus fix αN�
1 = 125 MeV fm3.

In the case of the hyperon-hyperon couplings, since it is
yet impossible to fix the values of these parameters from
experimental data, they are normalized to better known
parameters such as αN�, αN� , αN�, and α��. The following
dimensionless parameters are therefore introduced:

βYY ′ = αYY ′

αNY ′ , Y �= Y ′ (19)

with Y = � and Y ′ = � and �, and

βYY = αYY

α��
. (20)

The parameters βYY ′
and βYY are largely unknown. They

are expected to be less influential than the parameters in the
NY ′ and �� channels since they act between minority species.
The channels of interest in the present study are �� and ��.
For the same argument related to the number of particles, we
expect (i) these channels to be rather weak, and (ii) that the
�� channel is more influential than the �� channel.

Since the interaction in the �� and �� channels is un-
known, it is difficult to do more than a sensitivity analysis. We
have defined three models, VY0–2, for the sensitivity analysis,
which are given in Table IV. The sign of the interaction
parameters is not relevant for the sensitivity analysis, and it is

TABLE IV. Set of values for the dimensionless parameters αNY
1

and βYY ′
used in this work.

VY0 VY1 VY2

αN�
1 125 125 125

β�� 0 1 1
β�� 0 0 1

arbitrarily chosen positive. The influence of these choices will
be studied in Sec. III.

The mean field potentials in uniform matter, vunif
� = ∂ε/∂ρ�

and vunif
� = ∂ε/∂ρ�, are displayed in Fig. 3 as a function of

the nucleon density ρN (in units of the saturation density ρ0)
for the functional DF-NSC89+EmpC+VY0 and for various
choices of the densities ρ� and ρ� expressed in fm−3 (a), and
for various strengths of the �� interaction (b).

Let us first discuss the potential in uniform matter,
vunif

� (ρN,ρ�,ρ�), shown in Fig. 3(a). The addition of a finite
amount of � for ρ� = 0.03 fm−3 to standard nuclear matter
increases the value of the potential (by about 5 MeV at
ρ0), while the addition of the same amount of � decreases
the potential (by about −5 MeV at ρ0). The larger the �N
repulsion (�� attraction) the shallower (deeper) the potential.
It should also be noted that the very same attractive term in
the energy functional ε�� is responsible for the decrease of
vunif

� (ρN,ρ�,ρ�) and the decrease of vunif
� (ρN,ρ�) by adding �.

If not for the cost in rest mass, it would therefore be preferable
to add � hyperons rather than � hyperons, due to the gain
in the � potential as well as the reduced Pauli blocking of
� single-particle states in N� matter. If, instead of being
attractive, the �� channel is repulsive, the effect at the level
of the potential would be opposite to the present case.

The potential vunif
� (ρN,ρ�) is displayed in Fig. 3(b) for var-

ious choices of the strength of the �� interaction (represented
by the parameter β��) and for a fixed amount of �. This figure

FIG. 3. Hyperon potentials in uniform matter vunif
� (ρN,ρ�,ρ�)

(a) and vunif
� (ρN,ρ�) (b) as a function of the nucleon density

ρN (in units of the saturation density ρ0) for the functional DF-
NSC89+EmpC+VY0 for various choices of the densities ρ� and ρ�

(in fm−3) (panel a), and for various strengths of the �� interaction
(panel b). See text for more details.
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TABLE V. Parameters of the � effective mass given by Eq. (24)
for the functionals considered in this work.

Force μN�
1 μN�

2 μN�
3 μN�

4

(fm3) (fm6) (fm9)

DF-NSC89 [6,7] 1 1.83 5.33 6.07
DF-NSC97a [7] 0.98 1.72 3.18 0
DF-NSC97f [7] 0.93 2.19 3.89 0

shows that the larger is the parameter β��, the more attractive
is the potential vunif

� (ρN,ρ�), as expected.

III. THE EXTENDED HYPERNUCLEAR CHART

Minimizing the total energy defined from the density
functional (14), and using the Skyrme model for the nucleonic
part [25], we obtain the usual Schrödinger equation (i = N,Y ),[

−∇ · h̄2

2m∗
i (r)

∇ + Vi(r) − iWi(r)(∇ × σ )

]
ϕi,α(r)

= −ei,αϕi,α(r), (21)

where Wi is the spin-orbit potential [43] and the nucleon
potential VN is defined as

VN (r) = v
Skyrme
N + ∂

∂ρN

(
m�

m∗
�(ρN )

)

×
(

τ�

2m�

− 3

5

(3π2)2/3h̄2

2m�

ρ
5/3
�

)
, (22)

The �-hyperon potential V� is given by

V�(r) = vunif
� −

(
m�

m∗
�(ρN )

− 1

)
(3π2)2/3h̄2

2m�

ρ
2/3
� , (23)

and the � effective mass m∗
� determined from BHF calcula-

tions [6,7] is expressed as

m∗
�(ρN )

m�

= μN�
1 − μN�

2 ρN + μN�
3 ρ2

N − μN�
4 ρ3

N . (24)

The values for the parameters μ1–μ4 for the functional
considered here are given in Table V.

For the � hyperon potentials, we have the relation

V�(r) = vunif
� = ∂ε/∂ρ�. (25)

It should be noted that, in the case of �−, an additional
contribution to the Coulomb potential shall be considered.
The Coulomb energy is generated by the Coulomb interaction
among charged particles p and �−. It is decomposed into a
direct term,

ED
Coul =

∑
i �=j

sgn(i) sgn(j )

×e2

2

∫
d3r d3r′ρi(r)

1

|r − r′|ρj (r ′), (26)

where i,j = p,�− and sgn(i) is the sign of the Coulomb
charge of particle i. It should be noted that the p�− channel

is attractive with respect to the Coulomb direct interaction,
which could favor the onset of the �− hyperon against �0.

Considering the Slater approximation, the exchange term
reads

EE
Coul = −e2 3

4

(
3

π

)1/3 ∫
d3r

(
ρ4/3

p + ρ
4/3
�−

)
. (27)

The exchange term is attractive for all charged particles,
favoring again �− against �0.

The contribution of the Coulomb interaction to the mean
fields is obtained by functional derivation of Eqs. (26) and
(27), giving from the proton direct term

uD
Coul,p(r) = e2

∫
d3r′ 1

|r − r′|ρch(r ′). (28)

where the charge density is ρch = ρp − ρ�− . It should be
noted that the direct Coulomb terms for all other particles
are defined exactly the same as for the proton case, with only
a sign difference which refers to the charge of the considered
hyperon:

uD
Coul,�− (r) = −uD

Coul,p(r). (29)

We consider the extension of the Slater approximation for
multiple types of charged particles, giving for the exchange
Coulomb potential

uE
Coul,i(r) = −e2

(
3

π

)1/3 ∫
d3r′{ρi(r

′)}1/3, (30)

where i = p, �−. As we have noted, the Coulomb interaction
favors the onset of negatively charged particles over neutral
ones. The �− hyperon could therefore be favored against �0.

A. Numerical strategy

The HF equations are solved in coordinate representation
assuming spherical symmetry. Deformations are known to
play an important role in the structure of light hypernuclei
[28,49,50], however this approximation is expected to hold at
the level of accuracy in our work. Indeed deformation induces
corrections to energies which approximately scale as A−1/6,
and can be neglected when calculating energy differences of
nuclei with A > 20, as done in this work for the calculation of
the �-instability phenomenon.

To correct for the spurious one-body center-of-mass energy,
the mass mi of each species i in the Schrödinger equation is
replaced by the reduced mass m′

i , defined as (m′
i)

−1 = m−1
i −

(
∑

j �=i Njmj )−1, where i and j indexes run over N and Y =
�, �0,−.

The Numerov method is used to determine the wave
functions ϕi,α(r) for given potentials Vi(r) and Wi(r) as well
as given effective mass m∗

i (r), and we consider the vanishing
wave-function Dirichlet boundary condition. The coordinate
space extends up to 30 fm and it is discretized with equal
steps of 0.1 fm. Masses of particles are fixed to be their bare
masses, except for neutrons, protons, and �’s, which acquire
an effective mass in dense medium. As usual in HF solvers,
the self-consistency is reached by successive iterations until
the total energy converges within an accuracy of less than
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10−8 MeV. Further details about the implementation of the
Hartree-Fock approach in the hypernuclear case can be found
in Refs. [6,7,10] for instance.

When considering nucleons and hyperons (here � and
�0,−), the three conserved charges of the strong interaction
are defined as

A = Nn + Np + NY , (31)

Q = Np − N�− , (32)

−S = N� + 2N�, (33)

where the hyperon numbers are

NY = N� + N�, (34)

N� = N�+ + N�0 (35)

In the following, hyperons are added on top of a core
nucleus (Acore, Zcore) with step in strangeness �S = 2. The
S-drip line (S-DL) is the drip line in the strangeness number
S. This is the maximum value for −S before the chemical
potential of any of the hyperons becomes positive.

As discussed in the introduction, according to the free space
Q values, the hypernuclear ground state is expected to contain
only �’s for low strangeness −S, followed by �0,− when
the number of �’s is sufficiently high for the gain in kinetic
energy to compensate for the energy cost in rest mass. The �0,−
instability is defined as the strangeness number −S at which the
first �0,− appear in the hypernucleus ground state. This number
is called in the following Sinst.. In the present work we limit the
exploration in S up to Sinst.. The appearance of �0,− is given
from the comparison of the energies of the � hypernucleus to
all other ground states formed by � and �0,− with the same
mass A, total charge Q (or proton charge Z, in the case where
constant Z transformations are considered), and strangeness
S numbers. Especially, we compare the energy of the system
Acore + N� + N� to the energy of all the systems composed of
(Acore + 1) + (N� − 2) + (N� + 1), which correspond to the
transformation of 2� into one � and a N .

An illustration of the search for the �0,− instability is
shown in Fig. 4, for the case A = 132, Q = 50. The different
colors correspond to different numbers of � as indicated in the
box. Up to the strangeness number −S ≈ 20, the configuration
with only �’s corresponds to the hypernucleus ground state.
The energy difference between the configurations with a given
number of � is due (i) to the slight mass difference between
�0 and �−, (ii) to the Coulomb energy, and (iii) to the
Pauli blocking effect. In this case, for same N� groups
the lowest energy configurations are always the ones with
the largest number of �−. The sharp energy drops reflect
shell closures. Considering the lowest energy configuration
for each N� groups, the energy hierarchy scales well with
N� up to S ≈ −20, but at larger values of −S the different
configurations are highly degenerate, and the composition
of the actual ground state shall depend on the hypothesis for
the unknown couplings. These unknown coupling are varied
from VY0 to VY2; see Table IV. The �0,− instability is only
weakly impacted by the choice for the unknown couplings,
while the ground-state energy beyond the �0,− instability is
largely impacted. The largest uncertainty comes from the ��

FIG. 4. Representation of the energy difference �Etot(S,N�) =
Etot(N� = −S − N�/2,N�) − Etot(N� = −S,N� = 0) for various
multistrange hypernuclei conserving the mass A = 132 and the elec-
tric charge Q = 50, and for which the strangeness charge −S is varied
from 0 to 30, for the functionals SLy4+DF-NSC89+EmpC+VY0
(a), VY1 (b), and VY2 (c).

interaction (VY1), while the �� interaction (VY2) seams to
be weakly influential, even for a finite amount of �. It is not
surprising that the largest impact comes from the N� channel
(VY0) since N is the dominant species; then comes the ��
channel (VY1), and finally the weakest channel is the ��
(VY2) one. For this same reason, the influence of the repulsive
Coulomb interaction between �− turns out to be very small.

In the absence of �� interaction (case VY0) it should be
noted that the configurations with a same number of �−’s are
almost degenerate beyond S = Sinst.. The introduction of ��
interaction breaks this quasidegeneracy.
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FIG. 5. Chemical potential for the functional SLY4+DF-
NSC89+EmpC+VY0.

B. The �0,− instability over the nuclear chart

We now turn to a systematic exploration of the �0,−
instability over the nuclear chart and compare the predictions
of the different functionals.

As already discussed in the Introduction, the onset of
�0 is slightly favored over �− from the mass differences.
However, in dense matter, opposite effects coming from the
kinetic energy term and the Coulomb interaction may play an
important role. The final results of these contradictory tenden-
cies are reflected in the chemical potentials. We thus define
the following quantities: �μ(�−) ≡ μ�− + μp − 2μ� and
�μ(�0) ≡ μ�0 + μn − 2μ�, where the chemical potentials
are defined without rest mass.

In order to evaluate the mean field contribution to the onset
properties, the evolution of the chemical potentials is displayed
in Fig. 5 up to the S-DL for pure-� hypernuclei. The following
typical core nuclei are considered: 40Ca, 132Sn, and 208Pb, on
top of which strangeness is added. The position of the Sinst.

is indicated by the vertical arrows for conserved Q (purple
arrow) or conserved Z (green arrow).

As expected from the Coulomb interaction, the chemical
potential of the �− is lower than that of the �0 for all
hypernuclei. The difference between these chemical potentials
is already about 5 MeV for the lightest system shown in
Fig. 5, and reaches about 40 MeV for the heaviest nuclei.
This observation confirms the specific role played by the �−,
especially for systems studied at conserved Q. It highlights
the contribution of the Coulomb field in the correction to the
mean field for negatively charged particles. We can therefore
anticipate that �− will certainly appear as the first particle in
most of the cases.

Moreover, it should be noted that the � instability at
conserved Q occurs when the � chemical potential crosses
the neutron or proton chemical potential. At conserved Z, the
� instability is observed for larger values of the strangeness
number −S. There is no � instability at conserved Z in Ca,
and, as the mass increases, the � instability at conserved Z
comes closer to that at conserved Q. The reason is that in light
systems there is a big gap between the onset of the �− (first
appearing at conserved Q) and of the �0 (the single system

FIG. 6. Comparison of the strangeness number −S at the S-drip
line for � hypernuclei (black lines) with Sinst. and strangeness number
−S at the �0,− instability (red, blue, and pink lines/points). A sample
of various total charges Q are considered, Q = 20, 50, and 82, and
Acore runs from the proton to the neutron drip line. Results are from
the functional SLy4+DF-NSC89+EmpC+VY0.

allowed at conserved Z). This energy gap tends to become less
and less important as the charge of the system increases.

We now come to more systematics by analyzing Ca, Sn,
and Pb isotopes. Figure 6 displays a comparison of the S-drip
line obtained for � hypernuclei (black lines), as obtained in
Ref. [10], with the value of Sinst. associated with the onset of
the first �0 and �− hyperons (red and blue lines). The onset
of the first �0,− hyperon occurs before the S-DL for pure �
multistrange hypernuclei is reached, for all hypernuclei shown
in Fig. 6 except one, namely 236

56�Pb. In this exceptional case
the lowest energy state at the � onset is composed of 1�0

and 1�−. The concurrent hypernucleus composed of �− has a
lower energy, but its proton chemical potential is about 2 MeV
higher. Since this nucleus is close to the proton drip line, this
increase makes it proton-unstable. It should be noted that the
next calculated nucleus of this isotopic chain, 236

48�,2�Pb, also
exhibits a configuration with 1�0 and 1�− at the � instability.

At constant Q, the presence of �− implies an extra proton,
which explains why, for extreme neutron deficient hypernuclei
at the proton drip line, �0 are favored at the �0,− instability.

The observed plateaus are due to strong shell effects for
both the �0,− instability and the S-DL for pure � hypernuclei.
DF-NSC89 and DF-NSC97f predict similar results, while DF-
NSC97a pushes up both the �0,− instability and the S-DL
for pure � hypernuclei. This is in agreement with the fact
that DF-NSC97a predicts more-stable � matter than the other
functionals. The sensitivity of Sinst. to the N� interaction is
quite large, but the global trend is an increasing value for
−Sinst. with increasing nuclear mass.

We can also compare to the other estimation of Sinst. [22]
based on relativistic mean-field Lagrangians. The data used
in Ref. [22] to calibrate the model are roughly the same
as ours, except for the �� channel which was considered
more attractive: 5 MeV versus about 1 MeV now. For a core
of 208Pb, they have estimated −Sinst. = 41 while we predict
−Sinst. = 36–40, depending on the N� interaction. The fact
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FIG. 7. Prediction for Sinst. through the nuclear chart. Calculations are performed with the density functional DF-NSC89+EmpC for the �

interaction and SLy4 and VY0 for the nucleon and other hyperon interactions. Each point represents a calculation performed at constant A and
Q (total charge) and they are represented as function of the baryonic number Acore and charge Zcore associated with neutrons and protons. The
value of the total charge Q is written at the end of each isocharge line. See text for more details.

that the prediction in Ref. [22] is slightly higher than ours
is mostly explained by the different choice made for the
�� interaction.

Extended predictions for Sinst. over the nuclear chart are
displayed in Figs. 7–9. We explore the nuclear chart delimited
by the neutron and proton drip lines, which are defined for
ordinary nuclei (with only neutrons and protons).

Calculations for Zcore between 10 and 120 are performed,
with steps �Acore = 4, �Zcore = 2, and �S = 2. As discussed
above, the maximum number of strangeness Sinst. is reached in
two cases: either the S-DL is reached before the onset of the

�0,− instability (it occurs only for a few cases around Zcore =
82 and Acore = 182 in Figs. 7–9), or the �0,− instability is
reached before the S-DL and we indicate in Figs. 7–9 if
the first � to appear is a �0 (with symbol ×) or �− (with
symbol +).

In Figs. 8 and 9, we compare the predictions for the �0,−
instability, considering the functionals DF-NSC97a+EmpC
and DF-NSC97f+EmpC. One of the main differences between
these two functionals is that DF-NSC97a+EmpC predicts a
higher strangeness at the �0,− instability −Sinst. than DF-
NSC97f+EmpC. This feature is consistent with the fact that

FIG. 8. Same as Fig. 7 using the functional DF-NSC97a+EmpC.
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FIG. 9. Same as Fig. 7 using the functional DF-NSC97f+EmpC.

the N� mean field predicted by DF-NSC97a+EmpC is more
attractive, leading to more bound � hypernuclei.

Despite some quantitative differences between the pre-
dictions for the �0,− instability shown in Figs. 7–9, gross
features emerge from the comparison of the results obtained
with various � interactions:

(1) The instability with respect to the onset of �0,− is
observed all along the nuclear chart.

(2) In most cases, the first hyperon to be formed is �−.
The onset of �0 is predicted only for nuclei close to
the proton drip line and for Zcore < 50.

(3) As Acore increases, the value of Sinst. increases by steps,
showing some shell effects (also visible in Fig. 6).

These predictions are very weakly influenced by the choice
of the � interaction. The impact of the � interaction is only
observed for the absolute value of Sinst.: the softer the �
interaction, the higher Sinst.. For instance, on the stability valley
the softer � interaction (DF-NSC97a+EmpC) predicts larger
values for Sinst. for heavy hypernuclei (up to 60) than the others
(40–50).

C. Number of hypernuclei

In a previous work, we counted the number of new
multistrange hypernuclei for a system formed of N and �
only [10]. Since the �0,− instability was not considered, we
now proceed to a new counting of pure-� hypernuclei up to
the �0,− instability.

Table VI displays the counting of pure-� hypernuclei for
two cases: first up to the �0,− instability, and then up to
strange-drip line (unrestricted). The latter case is equivalent
to our previous calculation in Ref. [10] but the counting is
a bit different. In Ref. [10] only a few strangeness numbers
were considered, −S = 2,8,20,40,70, corresponding to �-
shell closure without spin-orbit, and the position of the drip

line was obtained by interpolation between these cases. We
found in this previous work about 490 000 � hypernuclei
having a maximum of 70 �. In the present calculation, we
systematically calculate the ground state of hypernuclei for
almost every strangeness number (step �S = 2), and we
do not limit the maximum strangeness number. Hypernuclei
between shell closures are still calculated within the spherical
approximation. However, the effect of deformation cannot
change the present estimations by more than a few percent. We

TABLE VI. Number of bound multi-� hypernuclei for 10 <

Zcore < 120. In parenthesis is indicated the number of even-even-even
hypernuclei.

DF-NSC89 DF-NSC97a DF-NSC97f
+EmpC +EmpC +EmpC

−S + VY0 + VY0 + VY0

Ordinary nuclei
0 7 688 (1 922) 7 688 (1 922) 7 688 (1 922)

Pure-� hypernuclei below � instability
2 7 664 (1 916) 7 656 (1 922) 7 664 (1 916)
8 7 664 (1 916) 7 656 (1 922) 7 648 (1 912)
20 6 352 (1 588) 7 248 (1 812) 6 544 (1 636)
40 520 (130) 4 576 (1 144) 872 (218)
70 0 (0) 0 (0) 0 (0)
Total 198 448 (24 806) 303 440 (37 930) 211 744 (26 468)

Smax 56 58 58

Pure-� hypernuclei unrestricted
2 7 672 (1 918) 7 664 (1 916) 7 688 (1 922)
8 7 672 (1 918) 7 656 (1 914) 7 672 (1 918)
20 7 568 (1 892) 7 616 (1 904) 7 672 (1 918)
40 6 744 (1 686) 7 168 (1 792) 7 560 (1 890)
70 4 576 (1 144) 5 896 (1 474) 4 344 (1 086)
Total 604 112 (75 514) 767 952 (95 994) 592 192 (74 024)
Smax 140 180 140
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FIG. 10. Distribution of hypernuclei function of the
strangeness number −S. The functionals that we consider are
SLY4+VN�+EmpC+VY0 where VN� = DF-NSC89 (solid lines),
DF-NSC97a (dashed lines), and DF-NSC97f (dotted lines). The
black lines show the distributions of hypernuclei below the �0,−

instability while the red lines show the distribution of pure-�
hypernuclei (disregarding the �0,− instability).

found that the maximum strangeness number is about 56–58
below the �0,− instability and 140–180 in the unrestricted case.
Since this maximum number is larger than the one considered
in our previous work, we find a larger amount of hypernuclei
in the unrestricted case: 600 000–800 000 � hypernuclei are
presently predicted. Some differences are found between the
predictions of the different VN� functionals: as expected, the
functional DF-NSC97a predicts a larger amount of hypernuclei
since the N� interaction in this case is the more attractive.

All these predictions for pure-� hypernuclei (unrestricted
case) shall be revised since they do not consider the �0,−
instability. Counting the number of pure-� hypernuclei below
the �0,− instability, we now find that they are about 200 000
to 300 000 hypernuclei. This number is about 1/3 to 1/2 of the
unrestricted one, but it is, however, still very large. It offers a
considerable potential of discovery of multistrange hypernu-
clei which are expected in future hypernuclear facilities.

We show in Fig. 10 the number of pure-� hypernuclei
below the �0,− instability (in black) and in the unrestricted
case (in red). The predictions for the different N� functionals
(DF-NSC89, DF-NSC97a, and DF-NSC97f) are shown with
different line styles; see the legend in the figure. It should be
noted that the shell effects which produce the steps correspond
to shell closures (magic numbers) or subshell closure. These
shell closures are located at the same position for the various
N� functionals. For the unrestricted case, most of the
difference between DF-NSC97a and the two others is located
where −S > 70. This is the reason why the difference in the
counting between DF-NSC97a and the two others is larger in
the present case compared to our previous estimation [10].

Finally, Table VII displays a comparison for the predictions
of the number of multi-� hypernuclei below � instability and
with 10 < Zcore < 120, considering various choices for the
unknown interaction channels such as VY0, VY1, and VY2
(Table IV). As expected, the largest corrections come from the
unknown �� channel (VY1), and the �� channel (VY2) has

TABLE VII. Impact of the unknown YY couplings on the number
of multi-� hypernuclei below � instability and with 10 < Zcore < 120.

DF-NSC89 DF-NSC97a DF-NSC97f
+EmpC +EmpC +EmpC

−S + VY0 + VY1 + VY2

Pure-� hypernuclei below � instability
2 7 664 (1 916) 7 664 (1 916) 7 664 (1 916)
8 7 664 (1 916) 7 512 (1 878) 7 512 (1 878)
20 6 352 (1 588) 4 216 (1 054) 4 216 (1 054)
40 520 (130) 0 (0) 0 (0)
70 0 (0) 0 (0) 0 (0)
Total 198 448 (24 806) 133 984 (16 748) 133 776 (16 722)
Smax 56 34 34

almost no impact on the number of hypernuclei below Sinst..
This latest result is rather expected since the �� interaction
can occur only if the number of � at the onset threshold is at
least 2, which rarely occurs.

IV. CONCLUSIONS

In this work we have presented the first extensive micro-
scopic exploration of the nuclear chart along the strangeness
dimension where the competition between the � and the �
hyperons is consistently treated. The exploration of the nuclear
chart as function of the strangeness number S is performed
by adding hyperons to a core (Acore,Zcore), imposing either
conserved total charge Q or conserved proton number Z. This
study, which is a continuation of our previous work detailed in
Ref. [10], is performed using realistic and microscopically
rooted nonrelativistic energy functionals. In particular, we
use in the N� channel different functionals extracted from
Brueckner-Hartree-Fock calculations with Nijmegen interac-
tions. These effective interactions, fitted on all the available
phase shifts, cover our present uncertainty on the interaction
at least at low density, and have been successfully confronted
with hypernuclear data in the past. We have proposed a
phenomenological extension of these potentials to the whole
baryonic octet. The experimental data on single and double �
hypernuclei are used to constrain the N� interaction, and
the mean-field analysis of the “Kiso” event is performed
along the line proposed in Ref. [32] to determine the N�
interaction.

Starting from a nonstrange (A,Z) core and adding � hyper-
ons, we have shown that the quasitotality of the hypernuclei
present an instability towards the decay into � hyperons before
the strangeness drip line is met. The strangeness instability
threshold increases by step with the mass of the system due to
shell effects. It is approximately constant at a given Q for stable
(Acore,Zcore) cores. A clear Coulomb effect is present, with �0

appearing in the proton-rich side of the nuclear chart, and �−
for the majority of hypernuclei (at conserved charge Q). At
conserved charge Q, the onset of the first �0,− corresponds
to the crossing between the � and the neutron or proton
chemical potentials. We also show the impact of the different
interacting channels on the results. The numerical value of
the instability threshold largely depends on the N� and N�
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interaction models, which are the most important channels.
The �� interaction has however a non-negligible impact: it
can modify the number of pure-� hypernuclei by 30–40%.
Finally, the �� interaction channel has almost no impact
on the position of the �0,− instability, and therefore on the
number of pure-� hypernuclei. It seems rather weakly impact
multistrange hypernuclei. In all cases the opening of the �
channel reduces the number of bound pure � hypernuclei that
we previously estimated [10] by a factor of approximatively
1/3–1/2, to be about 200 000–300 000 hypernuclei.

The detailed characteristics of multi-hypernuclei along the
nuclear chart, as well as their excited states, will be addressed
in a future study. We also plan to include � and � hyperons and
perform a sensitivity study on their largely unknown coupling,
in order to further assess the possible model dependence of the
results.
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