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In the earlier unitary-model-operator approach (UMOA), one-body correlations have been taken into account
approximately by the diagonalization of unitary-transformed Hamiltonians in the 0p0h and 1p1h space. With this
prescription, the dependence of the harmonic-oscillator energy (h̄ω) on calculated observables is not negligible
even at larger model spaces. In the present work, we explicitly introduce the one-body correlation operator so that
it optimizes the single-particle basis states and then reduces the h̄ω dependence. For an actual demonstration, we
calculate the energy and radius for the 4He ground state with the softened nucleon-nucleon (NN ) interactions
from Argonne v18 (AV18) and chiral effective field theory (χEFT) up to the next-to-next-to-next leading order
(N3LO). As a result, we obtain practically h̄ω-free results at sufficiently large model spaces. The present results are
reasonably close to those by the other ab initio calculations with the same NN interactions. This methodological
development enables more systematic analysis of calculation results in the UMOA. We also discuss qualitatively
the origin of the h̄ω dependence on calculated observables in a somewhat simplified way.
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I. INTRODUCTION

Over the past decade, nuclear structure for medium-
mass nuclei have been extensively investigated by ab inito
many-body approaches such as the coupled-cluster method
(CCM) [1–9], in-medium similarity renormalization group
(IM-SRG) approach [10–12], and self-consistent Green’s
function method [13–15]. For instance, the reproduction of
ground-state energies for oxygen isotopes is one of the most
successful examples with such methods [5,11,14]. This finding
supports the importance of the contributions from three-body
forces for exotic nuclear structure. Also, the CCM casts light
on the size of atomic nucleus from the study of neutron
and weak-charge distributions of the 48Ca nucleus [16]. In
addition, the IM-SRG stimulates discussion on nuclear shape
deformations with such ab initio approaches [17], which
follows the extension of the method to solve the valence-space
problem for open-shell nuclei [18,19].

Similar to these methods, the unitary-model-operator ap-
proach (UMOA) [20–22] is also applicable to the investi-
gation for the medium-mass nuclei. The UMOA was first
introduced by Providência and Shakin to study the effects of
short-range correlations on nuclear wave functions [23,24].
In those studies, the correlation operator was empirically
determined. After these exploratory studies, the determination
of correlation operators has been established based on a
Hermitian effective-interaction theory [25,26]. Applying this
to many-body systems, the Okubo-Lee-Suzuki transformation
is done for many-body Hamiltonians to decouple the n-particle
n-hole (npnh) excitations. In other words, the UMOA is natural
extension of the Hartree-Fock (HF) method where only the
1p1h decoupling is considered [27]. For actual applications
of the UMOA, only the 2p2h excitations have been decoupled
with the 0p0h state. As mentioned in our previous publications

[28,29], the results strongly depend on the harmonic-oscillator
energy h̄ω, even if these are converged with respect to the size
of model space. It can be an issue to obtain reliable converged
results which should be free from the underlying parameters
(the model-space sizes and h̄ω values) and also to compare
with the other ab initio results.

According to the recent CCM study [30], the h̄ω depen-
dence can be drastically reduced by considering the one-body
correlations. In the present work, we follow this study and
introduce the one-body correlation operator in the UMOA in
addition to the two-body correlation operator included already
in the former calculations. We expect that the one-body corre-
lation operator optimizes single-particle states and controls the
h̄ω dependence on calculated observables. The main purpose
of this work is to demonstrate how the introduction of the
one-body correlation operator in the UMOA works well and
to discuss the h̄ω dependence of the ground-state energy and
point-nucleon radius for the 4He nucleus taken as a test case.

The outline of this paper is as follows. In Sec. II, we
represent the theoretical framework of the UMOA focusing
on the difference between the previous and current calcula-
tion procedures. Then, we show the results of ground-state
energies and point-nucleon radii for 4He to check how the
h̄ω dependence on these observables can be removed by the
implementation of the one-body correlation operator in Sec.
III. We also compare the UMOA results with the other ab initio
ones with the same interactions. Finally, we summarize the
present work in Sec. IV.

II. UNITARY-MODEL-OPERATOR APPROACH

Before discussing how the 1p1h decoupling works well in
the UMOA, we present theoretical structure in this section. In
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Sec. II A, general transformed Hamiltonians in the UMOA
are introduced to help the understanding of the difference
between the formulations employed in the earlier and this
studies. Then, how to truncate the model space in the UMOA
is discussed in Sec. II B. Section II C describes the actual
calculation procedure, focusing on the difference between
the formulations employed in the former studies and this
one. Finally, in Sec. II D, we mention how to calculate the
observables in the UMOA.

A. Similarity transformation

We begin with the many-body Schrödinger equation,

H |�〉 = Eg.s.|�〉, (1)

with the ground-state energy eigenvalue Eg.s. and eigen-
vector |�〉. Here, the operator H is a general intrinsic
Hamiltonian,

H =
A∑
i

p2
i

2m
− Tc.m. +

A∑
i<j

Vij +
A∑

i<j<k

Vijk + · · · (2)

with the mass number A, the momentum of the ith nucleon
pi , the nucleon mass m, the NN interaction Vij , and the three-
nucleon interaction Vijk . The center-of-mass kinetic energy
Tc.m. can be described with the one- and two-body terms as

Tc.m. = ∑A
i

p2
i

2Am
+ ∑A

i<j
pi ·pj

Am
. Then, the Hamiltonian can be

rewritten as

H =
A∑
i

ti +
A∑

i<j

vij +
A∑

i<j<k

vijk + · · · (3)

with the one-, two-, and three-body terms, ti = A−1
A

p2
i

2m
, vij =

Vij − pi · pj /Am, and vijk = Vijk , respectively.
To decouple the 0p0h state with npnh states, the similarity

transformation of the original Hamiltonian can be done
as

H̃ = U †(H + W )U − U †WU (4)

with the unitary operator U and the auxiliary potential W .
Here, the auxiliary potential is introduced as

W =
A∑
i

wi +
A∑

i<j

wij +
A∑

i<j<k

wijk + · · · (5)

so as to take into account the in-medium effects. The operator
wi1···in is the n-body auxiliary potential. So far, the auxiliary
potential wi1···in can be taken arbitrarily but is determined self-
consistently as discussed in the end of Sec. II A. With the
transformation (4), the original Schrödinger equation, Eq. (1),
is also transformed to

H̃ |�〉 = E|�〉 (6)

with the reference state |�〉 multiplied by the unitary operator
U as

|�〉 = U †|�〉. (7)

Since the reference state is arbitrary in principle, we take |�〉 as
a single Slater determinant such as the particle-hole vacuum. In

the UMOA, the unitary-transformation operator U is defined
as the product of exponential operators up to the A-body terms
[27],

U = eS(1)
eS(2) · · · eS(A)

. (8)

The exponents S(1), S(2), . . . , S(n) are the one-, two-, . . . , and
n-body correlation operators. They are defined as

S(1) =
A∑
i

si , (9)

S(2) =
A∑

i<j

sij , (10)

S(n) =
A∑

i1<···<in

si1···in , (11)

respectively. Here, si1···in is the correlation operator acting on
n particles labeled by i1, . . . ,in. The correlation operators S(n)

are anti-Hermitian and satisfy

S(n)† = −S(n), (12)

so that the transformation operator U is unitary.
Generally, the transformed Hamiltonian H̃ is expanded by

the Baker-Campbell-Hausdorff (BCH) formula as found in the
CCM [8]. It is because the BCH expansion terminates with
the finite order and is actually one of the advantages in the
CCM. In contrast, the BCH expansion does not terminate with
the finite order in the UMOA, as the correlation operators do
not commute with each other. Therefore, the UMOA employs
another type of expansion known as the cluster expansion [23].
Following the cluster expansion, we decompose H̃ into

H̃ = H̃ (1) + H̃ (2) + H̃ (3) + · · · , (13)

according to the number of interacting particles. Note that
the three- and higher-body terms can be induced by the
transformation, even if the initial Hamiltonian includes up
to the two-body interaction. For clarification, we show the
explicit expressions of the one-, two-, and n-body cluster
terms:

H̃ (1) =
A∑
i

h̃i , (14)

H̃ (2) =
A∑

i<j

ṽij −
A∑
i

w̃i , (15)

H̃ (n) =
A∑

i1<···<in

ṽi1···in −
A∑

i1<···<in−1

w̃i1···in−1

for 3 � n � A (16)
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with the terms introduced as

h̃1 = e−s1h1e
s1 = e−s1 (t1 + w1)es1 , (17)

ṽ12 = e−s12e−(s1+s2)(h1 + h2 + v12 + w12)es1+s2es12 − (̃h1 + h̃2), (18)

ṽi1...in = e−s1···n . . . e−(
∑

i<j sij )e−(
∑

i si )

⎛⎝ n∑
i

hi +
n∑

k=2

n∑
i<···<ik

vi1···ik +
n∑

k=2

n∑
i1<···<ik

wi1···ik

⎞⎠e
∑

i si e
∑

i<j sij . . . es1...n

−
⎛⎝ n∑

i

h̃i +
n−1∑
k=2

n∑
i1<···<ik

ṽi1···ik

⎞⎠, for 3 � n � A. (19)

The transformed auxiliary potentials w̃1, w̃12, . . . in Eqs. (14)–
(16) are, in principle, arbitrary, but the determinations of them
are crucial in the actual calculation. In order to determine
these transformed auxiliary potentials, we recall the one-body
potential appeared in the HF method. In the HF calculations,
the one-body potential cancels with the bubble-diagram contri-
butions of the two-body interaction. This procedure is applied
directly to the UMOA. Since the transformed Hamiltonian
contains many-body transformed interactions and auxiliary
potentials, the bubble-diagram contributions come from ṽ12,
ṽ123, . . . and w̃1, w̃12, . . . . The conditions of the cancellation
can be represented diagrammatically in Fig. 1. The analytical
expressions corresponding to Fig. 1 are∑

λ�ρF

〈αλ|̃v12|βλ〉 + 1

2!

∑
λμ�ρF

〈αλμ|̃v123|βλμ〉 + · · ·

− 〈α|w̃1|β〉 −
∑
λ�ρF

〈αλ|w̃12|βλ〉 − · · · = 0 (20)

for the one-body term and∑
λ�ρF

〈αβλ|̃v123|γ δλ〉 + 1

2!

∑
λμ�ρF

〈αβλμ|̃v1234|γ δλμ〉 + · · ·

− 〈αβ|w̃12|γ δ〉 −
∑
λ�ρF

〈αβλ|w̃123|γ δλ〉 − · · · = 0 (21)

for the two-body term. Here, ρF denotes the Fermi level and
|α1 . . . αn〉 is antisymmetrized and normalized n-body state.
The conditions of the cancellation for three- and higher body

(a)

(b)

FIG. 1. Cancellations of bubble-diagram contributions for the
one-body (a) and two-body (b) parts.

terms are given in the same way. Thus, the matrix elements of
the transformed auxiliary potentials are [27,31]

〈α|w̃1|β〉 =
∑

λ1�ρF

〈αλ1 |̃v12|βλ1〉

− 1

2!

∑
λ1λ2�ρF

〈αλ1λ2 |̃v123|βλ1λ2〉 + · · · (22)

for the one-body potential, and

〈αβ|w̃12|γ δ〉 =
∑

λ1�ρF

〈αβλ1 |̃v123|γ δλ1〉

− 1

2!

∑
λ1λ2�ρF

〈αβλ1λ2 |̃v1234|γ δλ1λ2〉 + · · ·

(23)

for the two-body potential.
Furthermore, the auxiliary potentials w1, w12, . . . in

Eqs. (17)–(19) are related to the transformed auxiliary poten-
tials w̃1, w̃12, . . . through the relevant inverse transformations
[27,31],

w1 = es1w̃1e
−s1 , (24)

w12 = es1+s2es12 (w̃1 + w̃2 + w̃12)e−s12e−(s1+s2) − (w1 + w2).

(25)

As found in Refs [27,30,31], this choice of the transformed
auxiliary potentials gives the normal ordered H̃ with respect
to |�〉.

The essential point in the UMOA is to determine the
correlation operators. These are determined so that the
transformed Hamiltonian does not induce the particle-hole
excitations. There are a number of studies about the correlation
operators (see, for example, Refs. [32–34]). For brevity, the
determination of correlation operators is given in Appendix A.
Once the correlation operators are determined, one can build
up the transformed Hamiltonian with Eqs. (13)–(19).

B. Model space

In this subsection, we present the choice of the model
space employed in earlier and current UMOA calculations.
To obtain converged results in relatively smaller mode spaces,
the two-step decoupling method has been applied in the earlier
UMOA [21,22]. Figures 2(a) and 2(b) schematically show how
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Second-step decoupling

2n a + l a

2n b+lb

ρ 1ρ F

First-step decoupling

2n a + l a

2n b+lb

ρ 1
(a)

(b)

FIG. 2. Illustrations of the model space and its decoupling
employed in the previous work. The first-step decoupling (a) denotes
the decoupling between the outside and inside (shaded area) of our
model space. The second-step decoupling (b) means the decoupling
of 2p2h excitations with 0p0h state (shaded area).

to decouple the model space in the earlier calculations. In the
first-step decoupling, the initial Hamiltonian is transformed
so that the model space [the shaded area in Fig. 2(a)] and its
complement are decoupled. The aim of this step is to make
bare NN interactions able to be handled without any explicit
softening of input interactions. Since this decoupling is done
in the huge space to take into account short-range correlations
of input bare NN interactions, the decoupling equation is
solved with the relative and center-of-mass coordinates. Thus,
our model space has to be truncated to be a triangle shape in
the two-body space by ρ1 = max(2na + la + 2nb + lb). Here,
na and la are the nodal and azimuthal quantum numbers
of the harmonic-oscillator (HO) basis state a, respectively.
By employing this effective interaction through the first-step
decoupling, we further decouple the 2p2h excitations with
the reference state, which is illustrated by the solid arrow in
Fig. 2(b). After the second-step decoupling, we construct the

Decoupling

2n a + l a

2n b+lb

ρ F emax

FIG. 3. Illustrations of the model space and its decoupling
employed in the present work. The shaded area indicates our reference
state. The arrow means the decoupling of 1p1h and 2p2h excitations
with the reference state.

transformed Hamiltonian and obtain the observables using the
transformed operators as discussed in Sec. II D.

In the first-step decoupling, the angle-average approxima-
tion is used for the Pauli exclusion operator. The investigation
of this approximation, at least for finite nuclei, may not
be sufficient and can cause uncontrollable uncertainties. As
discussed in Refs. [35–37], it was reported that there is
the non-negligible difference between the results with and
without the angle-average approximation in the nuclear matter
calculations. Since we would like to examine the validity
of the UMOA without any uncontrollable approximations,
we do not employ the first-step decoupling in the present
work. Alternatively, we soften input bare interactions via low
momentum or similarity renormalization group techniques.
Therefore, we consider only the process for the decoupling of
the 1p1h and 2p2h excitations on top of the reference state.
Then, the choice of the model space is no longer restricted to
the triangle shape. Here, we employ the simplest square model
space defined by emax = max(2na + la) = max(2nb + lb), as
shown in Fig. 3. The decoupling of the 1p1h and 2p2h
excitations is indicated by the solid arrow in Fig. 3 .

C. Numerical implementation

In this subsection, we discuss the numerical implementation
of the UMOA with the 1p1h decoupling examined in the
present work. In this study, we treat only two-body interactions
and do not include any three- and higher many-body ones
in the initial Hamiltonian, Eqs. (2) and (3). In addition, we
keep only the one- and two-body cluster terms and correlation
operators. Thus, two- and many-body auxiliary potentials in
Eq. (5) are dropped out and only one-body auxiliary potentials
W = ∑

i wi are left. Under these conditions, the flow chart of
the actual computation is illustrated schematically in Fig. 4.
Each step of the procedure is also listed as follows:
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1. solve

start
input NN interaction

obtain

solve

converge?

No

obtain

Yes

calculate E3BC and obtain Eg.s.
calculate the radius

newly added procedure

2.

3.

4.

5.

6.

FIG. 4. Flow chart of the actual calculation. The steps surrounded
with the dashed line (1, 3, and 6) are related to the procedure on the
1p1h decoupling newly added this time. See text for details.

(1) The one-body Schrödinger equation,

(t1 + w1)
∣∣ψ (1)

k

〉 = Ek

∣∣ψ (1)
k

〉
, (26)

is solved and s1, es1 , h̃1, t̃1, and w̃1 are obtained by
using Eqs. (A6), (A10), and (17), respectively.

(2) The calculation is performed iteratively until
max(|w̃(new)

1 − w̃
(old)
1 |) < 10−5 is satisfied. Here, w̃(new)

1

and w̃
(old)
1 are the one-body fields obtained at the current

and previous iteration steps, respectively.
(3) By using the operator es1 obtained in step 1, the original

two-body interaction is transformed as

ṽ′
12 = e−(s1+s2)v12e

s1+s2 . (27)

(4) The two-body Schrödinger equation,

(P (2) + Q(2))(̃h1 + h̃2 + ṽ′
12)(P (2) + Q(2))

∣∣ψ (2)
k

〉
= Ek

∣∣ψ (2)
k

〉
, (28)

is solved and s12, es12 , and ṽ12 are obtained by using
Eqs. (A6), (A10), and (18), respectively.

(5) By taking the normal ordering with respect to the Fermi
level,

〈α|w̃1|β〉 =
∑
λ�λF

〈αλ|̃v12|βλ〉, (29)

we obtain new w̃1.
(6) Applying the inverse transformation,

w1 = es1w̃1e
−s1 , (30)

0

0

0p0h 1p1h 2p2h

0p
0h

1p
1h

2p
2h

0

0

0

0

0p0h 1p1h

(a) (b)

2p2h

0p
0h

1p
1h

2p
2h

FIG. 5. Schematic representations of the transformed Hamiltoni-
ans without [left; panel (a)] and with [right; panel (b)] the one-body
correlation operator.

we get w1 to be substituted into the one-body
Schrödinger equation in step 1.

After the calculation procedure described above, the correla-
tion operators s1 and s12 are evaluated. Using s1 and s12, we
can construct the transformed Hamiltonian and then obtain
the ground-state energy and wave function. Moreover, we can
obtain the other expectation values of observables with the
same transformed operators as discussed in Sec. II D. This is
one of the advantages about effective operators in the UMOA.

D. Ground-state energy and radius

Here, we present how to calculate the ground-state energy
and root-mean-square radius in the UMOA. After the trans-
formation discussed in Sec. II C, we construct the transformed
Hamiltonian up to the two-body parts with Eqs. (14), (15), (17),
(18), and (29). Figure 5 shows the schematic representations of
the transformed Hamiltonians with and without the one-body
correlation operator. In previous publications [28,29], we
have employed the Hamiltonian without the 1p1h decoupling
(S(1) = 0) as shown schematically in Fig. 5(a) to evaluate the
ground-state energy and radius. Instead, we diagonalized the
transformed Hamiltonian in the 0p0h and 1p1h space to take
into account the effect of off-diagonal components between
the 0p0h and 1p1h states. In the present formulation, the
matrix elements between the 0p0h and 1p1h states vanish
from the beginning, because of the 1p1h decoupling by the
one-body correlation operator S(1) as shown in Fig. 5(b).
The ground-state energy is dictated with the transformed
Hamiltonian and reference state as

Eg.s. = 〈�|H |�〉 = (〈�|U )U †HU (U †|�〉) = 〈�|H̃ |�〉.
(31)

The rightmost term in Eq. (31) corresponds to the zero-body
term after taking the normal ordering with respect to the
reference state |�〉. It is approximated up to the third order
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of expansion as

Eg.s. ≈
∑
λ�ρF

〈λ|̃h1|λ〉 + 1

2!

∑
λμ�ρF

〈λμ|̃v12|λμ〉

−
∑
λ�ρF

〈λ|w̃1|λ〉 + E3BC (32)

=
∑
λ�ρF

〈λ|̃t1|λ〉 + 1

2!

∑
λμ�ρF

〈λμ|̃v12|λμ〉 + E3BC, (33)

where t̃1(= e−s1 t1e
s1 ) is the one-body transformed kinetic

energy term. The three-body cluster term E3BC is evaluated
a posteriori as

E3BC = 1

3!

∑
λμν�ρF

〈λμν |̃v123|λμν〉, (34)

which is taken into account through order S(2)2 [20]. From
our experience, this approximation is rather good. The conver-
gence with respect to the cluster expansion will be discussed
in Sec. III.

One of the advantages in the UMOA is the usage of
the same transformed operators for energies to obtain the
other observables. Although, in principle, one can also use
the transformed operator in the CCM, one has to solve the
coupled-cluster equation for both left and right eigenvectors
to construct the transformation operator due to the non-
Hermiticity. In practical applications, the Hellmann-Feynman
theorem is often applied to obtain the observables other than
energies, as found in recent studies (see, e.g., Ref. [8]). On
the other hand, the calculation of observables is rather simple
in the UMOA. For an explicit demonstration, we show how
to calculate the radius in the following. Let r2 be the squared
point-nucleon radius operator defined as

r2 = 1

A

∑
i

(ri − Rc.m.)
2 (35)

with the coordinate vector of ith nucleon ri and of the center of
mass Rc.m.. Similar to the evaluation of ground-state energy,
the squared radius operator r2 is decomposed into one- and
two-body operators,

r2 = r2(1) + r2(2), (36)

where r2(1) and r2(2) are the one- and two-body parts,
respectively, as

r2(1) = 1

A

(
1 − 1

A

) A∑
i=1

r2
i =

A∑
i=1

r2
i , (37)

r2(2) = −2
1

A2

A∑
i<j

ri · rj =
A∑

i<j

r2
ij . (38)

With the aid of the unitary operator U , the expectation value
can be expressed by the transformed operator r̃ 2 and the
reference state |�〉 as

〈�|r2|�〉 = 〈�|̃r 2|�〉 (39)

with the transformed radius operator r̃ 2

r̃ 2 = U †r2U. (40)

Then, we carry out the cluster expansion of the transformed
operator r̃ 2,

r̃ 2 = r̃ 2(1) + r̃ 2(2) + · · · . (41)

Here, the one- and two-body cluster terms are generated as

r̃ 2(1) =
∑

i

r̃ 2
i , r̃ 2(2) =

∑
i<j

r̃ 2
ij , (42)

with

r̃ 2
1 = e−s1r 2

1 es1 , (43)

r̃ 2
12 = e−s12e−(s1+s2)

(
r2

1 + r2
2 + r2

12

)
es1+s2es12 − (̃

r 2
1 + r̃ 2

2

)
.

(44)

The expectation value is equal to the normal-ordered zero-body
term,

〈�|̃r 2|�〉 =
∑
λ�ρF

〈λ|̃r 2(1)|λ〉 + 1

2

∑
λμ�ρF

〈λμ|̃r 2(2)|λμ〉 + · · ·

≈ r̃ 2(1BC) + r̃ 2(2BC). (45)

Here, r̃ 2(1BC) and r̃ 2(2BC) are the contributions of one- and
two-body transformed radius operators, respectively. In actual
calculations, we truncate the cluster expansion up to the second
order to evaluate the radius as in Eq. (45).

III. RESULTS AND DISCUSSION

In the earlier UMOA studies, the ground-state properties
of 16O, 40Ca, and 56Ni have been mainly discussed with
realistic NN interactions [20–22,28,29]. Only the decoupling
of the 2p2h excitations has been considered, i.e., U = eS(2)

in
Eq. (8). The calculated results, especially for radii, strongly
depend on the h̄ω values and are difficult to judge the
reliability from ab initio point of view. Following the success
to reduce the h̄ω dependence in the CCM [30], we naturally
extend the formalism and introduce the one-body correlation
operator S(1) to the UMOA in the present study. As the
validation of the effectiveness, we show the numerical results
of ground-state energy and point-nucleon radius of 4He with
the transformation U = eS(1)

eS(2)
. Then, we discuss the role of

the one-body correlation operator S(1) in the UMOA to some
extent.

The choice of the initial Hamiltonian for numerical calcu-
lations is one of the important issues. Nowadays, sophisticated
nucleon-nucleon (NN ) interactions have been developed
which reproduce the NN scattering phase shift data with
high precision, as well as the deuteron properties, such as the
AV18 [38], CD-Bonn [39], and chiral EFT N3LO interactions
[40]. It is, however, difficult to apply directly such bare NN
interactions to our calculations, because of the strong coupling
between low- and high-momentum regions. To get rid of this
computational difficulty, we have applied to the earlier UMOA
the effective interactions derived with some approximations
which hamper reliable estimations of the uncertainty on
calculated results (see, e.g., Refs. [20,21]).
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In the present work, we are interested in confirming the
applicability of the UMOA through comparison to other ab
initio results. It is preferable to reduce the uncertainties coming
from the effective interactions employed in the earlier UMOA
as much as possible. Therefore, we omit such process in the
earlier UMOA by using sophisticated softened interactions.
For this purpose, we mainly use two types of NN interactions.
One is the low-momentum interaction Vlow k derived from the
AV18 NN interaction [38] with the sharp cutoff � = 1.9 fm−1.
The other is the SRG-transformed chiral EFT N3LO NN
interaction [40] with the cutoff λSRG = 2.0 fm −1 to compare
with the recent ab initio calculation results [2,41,42]. As the
qualitative aspect between these two interactions is similar
enough to discuss the role of S(1) in the UMOA, we mainly
show the results with the low-momentum interaction Vlow k

in the following discussion. Note that our results are not
comparable directly to the experimental data due to the miss-
ing genuine three-body and induced many-body interactions
which cannot be treated in the Vlow k formalism. We can,
however, compare our present UMOA results with the other
ab initio ones obtained by using the same NN interactions.

A. Role of the one-body correlation operator

Before discussing the importance of one-body correlations
in the UMOA, Fig. 6 summarizes the dependence of the
model-space size on the energy and point-nucleon radius of
the 4He ground state in the former and current UMOA. In
the left panels, one-body correlations are approximately taken
into account through the diagonalization in the 0p0h and 1p1h
space as done in earlier works [21,22,28,29]. In the right
panels, one-body correlations are explicitly included by the
one-body correlation operator as in the present formalism. As

seen in the figure, the convergence with respect to the size of the
model space can be almost achieved around emax = 12 both in
the earlier (left panels) and current (right panels) formulations.
Interestingly, in the earlier formalism (shown in the left
panels), we can observe the artificial h̄ω dependence even after
the convergence for the model-space size is achieved. It is our
motivation behind the employment of the one-body correlation
operator in the UMOA to eliminate this artificial dependence.
On the other hand, in the current formalism (shown in the right
panels), the results show typical behavior for the h̄ω and emax

parameters found in usual ab initio calculations; i.e., the h̄ω
dependence reduces as the model-space size increases. Now
we can obtain the converged results by the UMOA calculations
with sufficiently large model space, unlike before. In the figure,
the Faddeev-Yakubovsky (FY) [41] and coupled-cluster single
and double (CCSD) [2] results for the ground-state energy with
the same NN interaction are also shown for comparison.

After confirming the convergence of the results with
respect to the parameters, h̄ω and emax, Fig. 7 compares
the ground-state energies (upper panel) and point-nucleon
root-mean-square radii (lower panel) of 4He as functions of
h̄ω in the earlier and current UMOA formalisms with and
without the one-body correlation operator S(1). Note that we
show the results only in emax = 12, because the calculated
results almost converge at emax = 12 as found in Fig. 6. For
example, the difference between our results for energies at
emax = 12 and emax = 14 is order of 10 keV. It is sufficient
for the present purpose of discussion. In the figure, the results
without the one-body correlation operator S(1) (blue triangles)
are almost parallel with the HO 0p0h results (black dashed line)
both for the ground-state energies and point-nucleon radii. It
implies that the operator S(2) does not change the trend of the
h̄ω dependence originating from the HO 0p0h reference state.

FIG. 6. Ground-state energies [upper panels (a) and (b)] and point-nucleon root-mean-square matter radii [lower panels (b) and (d)] of the
4He nucleus as a functions of the HO energy h̄ω. In panels (a) and (c), one-body correlations are approximately taken into account through
the diagonalization in 0p0h and 1p1h space as done in earlier works [21,22,28,29]. In panels (b) and (d), one-body correlations are explicitly
included. Note that the results from “FY” (solid line) and “CCSD” are taken from Refs. [41] and [2], respectively.
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FIG. 7. Ground-state energies (upper panel) and point-nucleon
root-mean-square matter radii (lower panel) of the 4He nucleus as
a functions of the HO energy h̄ω. Circles and triangles are given
with the Hamiltonian in Figs. 5(b) and 5(a), respectively. Squares are
obtained after the diagonalization of the Hamiltonian in Fig. 5(a) in
the 0p0h and 1p1h space. The dashed curves are obtained with the
0p0h HO reference state.

After the diagonalization in the 0p0h and 1p1h space (green
squares) as employed in the earlier framework [21,22,28,29],
the h̄ω dependence on the results is slightly reduced compared
to the UMOA without S(1) (blue triangles). In contrast, the
situation drastically changes if the transformation operator U is
constructed by the one- and two-body correlation operators, as
in the current formalism. The results from the UMOA with S(1)

(red circles) are practically h̄ω independent both for the energy
and radius. This is the main result in this paper: showing that
the one-body correlation operator functions well in the UMOA
to reduce the h̄ω dependence, which is needed to obtain reliable
converged results. In the present framework, we do not have
to care about the choice of h̄ω, if the calculations are done in
sufficiently large model spaces.

There are additional remarks on the optimum h̄ω value
in the UMOA. In the CCM [30], the choice of the h̄ω
values is discussed by comparing the results with and without

the one-body correlation operator. In Ref. [30], the authors
concluded that the results (calculated without the one-body
correlation operator) at h̄ω minimizing the ground-state energy
agree with the h̄ω-independent results (calculated with the
one-body correlation operator). This statement is confirmed by
the present UMOA calculations. Our results for energies with
(circles) and without (triangles) the S(1) operator are very close
to each other around the optimum h̄ω value of h̄ω = 28 MeV
in Fig 7. There is, however, a word of caution about the choice
of the h̄ω value for the results after the diagonalization in
the earlier UMOA. In our previous investigations [28,29], the
ground-state energies and charge radii of doubly magic nuclei
have been calculated in the UMOA without S(1). Then, the
results converge with respect to the model-space size, while
the h̄ω dependence of the results, especially for charge radii,
is not negligible. To determine accurately the radii, we have
taken the results after the diagonalization at h̄ω minimizing
the ground-state energy, corresponding to the square symbol at
h̄ω = 20 MeV in Fig. 7. Since we do not confirm the agreement
of the results with the diagonalization (squares) and with S(1)

(circles) at h̄ω = 20 MeV in Fig. 7, such an estimation would
not be valid after the diagonalization. In the present framework,
however, we do not have to care about the choice of h̄ω,
because of the weak h̄ω dependence of the results.

After glancing over the effect of the one-body correlation
operator, we next discuss how the h̄ω dependence of the results
is reduced by introducing the S(1) operator. To look closer at
the role of the one-body correlation operator, it is convenient to
decompose the expectation value into the contributions from
each cluster term. In the case of the ground-state energy, it can
be decomposed into energies from the one-body kinetic term
t̃1, two-body cluster term ṽ12, and three-body cluster term ṽ123.
Figure 8 describes the energies from each decomposed cluster
term. The total, one-body, two-body, and three-body energies
of the 4He ground state are shown as functions of h̄ω from the
top to the bottom in the figure. As a reference, the HO (dashed
line) and HF (dotted) reference states are also drawn. From the
figure, one can find that the contribution from the three-body
cluster term is smaller by two orders of magnitude than the
one- and two-body cluster terms. The cluster expansion in the
UMOA converges in the case of the 4He ground-state energy.
Also, the h̄ω dependence of the energy expectation values is
reduced at each order of the cluster expansion.

Now, let us focus on the one-body kinetic energy part (the
second panel from the top in Fig. 8). When we ignore S(1) from
the beginning (S(1) = 0), 〈t1〉 is nothing but the sum of the
diagonal component of the matrix 〈a|t1|a〉. Here, 〈X〉 means
the expectation value of an operator X with respect to the HO
0p0h reference state |HO〉. In the case of the 4He ground state,
one can easily find that 〈t1〉 (denoted by the blue triangles in
the second panel from the top in Fig. 8) is proportional to
h̄ω as

〈t1〉 =
(

1 − 1

A

) ∑
a�ρF

(
2na + la + 3

2

)
h̄ω

2

= 9

4
h̄ω, (46)
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FIG. 8. The total (a), one-body (b), two-body (c), and three-body
energies (d) for 4He as functions of h̄ω from the top to the bottom. The
NN interaction is the Vlow k interaction derived from AV18 interaction
[38] at � = 1.9 fm−1. Circles (triangles) correspond to the results
with (without) S(1). The dashed and dotted lines are for the HO
reference and HF states, respectively.

with respect to the HO reference state (0s1/2)4. On the
other hand, when S(1) is introduced, the off-diagonal com-
ponent of the original matrix 〈a|t1|b〉 (a �= b) contributes to
〈̃t1〉 = 〈e−s1 t1e

s1〉. As a result, 〈̃t1〉 becomes practically h̄ω
independent (as denoted by the red circles in the figure). Also,
these are quite close to the HF kinetic energy 〈HF|t1|HF〉
(black dotted curve in the figure). Thus, the S(1) operator acts
as the generator of the transformation from |HO〉 to |HF〉 in
the UMOA.

Almost the same discussion can be done for the expectation
value of the two-body cluster term. The dashed line in the third
panel from the top in Fig. 8 corresponds to

〈v12〉 = 1

2

∑
a,b�ρF

〈ab|v12|ab〉, (47)

which is the sum of the diagonal components of the original
two-body matrix elements. As seen in the figure, it shows
the monotonic dependence on h̄ω. This tendency can be
understood by assuming a simple S-wave two-nucleon po-
tential model such as the contact interaction regularized by the
Gaussian with a cutoff momentum �δ:

Vδ =
⎧⎨⎩C1S0 exp

(− q2+q ′2

�2
δ

)
for 1S0 channel,

C3S1 exp
(− q2+q ′2

�2
δ

)
for 3S1 channel.

(48)

Here, q and q ′ are the magnitudes of relative momenta for the
initial and final states, respectively. The C1S0 and C3S1 are the
low-energy constants for 1S0 and 3S1 channels, respectively.
Note that only the S-wave potentials are enough for the
discussion about the (0s1/2)4 single-particle configuration.
As discussed in Appendix C, one can obtain

〈Vδ〉 = 3

√
π

2

(
C1S0 + C3S1

)( √
h̄mω�2

δ

mω + h̄�2
δ

)3

. (49)

The h̄ω dependence is given by the derivative of 〈Vδ〉 with
respect to ω. As shown in Eq. (C11), the derivative is always
negative in our h̄ω range from 20 to 40 MeV, while the HF
result (dotted curve) shows rather weaker h̄ω dependence.
Similar behavior can be found in the UMOA with and without
S(1) (circles and triangles, respectively). Accordingly, the h̄ω
dependence is reduced by the effect of S(1).

Like the one- and two-body cluster terms, the h̄ω depen-
dence on the three-body cluster term is also reduced, as shown
in the bottom panel of Fig. 8. From these considerations, the
inclusion of the S(1) operator mitigates considerably the h̄ω
dependence of the energy expectation value at each order of the
cluster expansion. Moreover, the relations between the UMOA
with and without S(1) resemble those between the results with
the HF and HO 0p0h states. Note that, if we ignore S(2) from
the beginning, calculated ground-state energies numerically
coincide with the HF ground-state energies within a few-keV
level. Thus, a constant shift in the two-body energy comes
from the S(2) contribution.

To examine more directly the role of S(1), the overlap of
wave functions is also investigated. In Fig. 9, we show three
squared overlaps obtained with the HF and HO reference
states (black dashed line), the UMOA with and without S(1)
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FIG. 9. The squared overlaps between the ground and reference
states as functions of h̄ω. The employed NN interaction is the Vlow k

interaction derived from AV18 interaction at � = 1.9 fm−1. Circles
(triangles) are obtained with the UMOA with S(1) and HF (UMOA
without S(1)) states. The dashed line is given with the HF and HO
reference states.

(blue triangles), and the UMOA with S(1) and HF states (red
circles). Note that the UMOA results are obtained at emax = 12.
The squared overlap |〈HO|HF〉|2 (dashed line) indicates the
effect of the optimization of single-particle basis states. In
Fig. 9, the squared overlaps |〈HO|HF〉|2 (black dashed line)
and |〈UMOA(S(1) �= 0)|UMOA(S(1) = 0)〉|2 (blue triangles)
behave in a similar way. Therefore, the role of S(1) is to
optimize the single-particle basis states, as expected from the
above discussion of the ground-state energy. As a check, we
confirm that the overlap |〈UMOA(S(1) �= 0)|HF〉|2 (red circles)
does not depend on the h̄ω values.

Further insight can be acquired by looking into the one-
body density matrix γ . The derivation of the one-body
density matrix in the UMOA is shown in Appendix B. Using
Eq. (B8), we have 〈̃t1〉L.O. = Tr(γ t1) at the leading order
of cluster expansion. Figure 10 shows the density matrices
for the s1/2 orbital with the h̄ω values ranging from 20
to 36 MeV at emax = 12. For visibility of the figure, we
only show the density matrices up to the components of
max(na , nb) = 3. When the one-body correlation operator is
switched off (S(1) = 0), only the component of the density
matrix γ0s1/2,0s1/2 is dominant. Then, as shown in Eq. (46),
〈t1〉 linearly increases as a function of h̄ω. In contrast, the
off-diagonal elements, especially γ0s1/2,1s1/2, can have large
values, when the one-body correlation operator is turned
on (S(1) �= 0). At h̄ω = 20 MeV, γ0s1/2,1s1/2 is positive and
increases 〈̃t1〉. Note that the off-diagonal component of 〈a|t1|b〉
is always positive. On the other hand, γ0s1/2,1s1/2 is negative
and decreases 〈̃t1〉 at h̄ω = 36 MeV. The contribution from
the off-diagonal components to 〈̃t1〉 balances around h̄ω = 28
MeV, because γ0s1/2,1s1/2 is almost zero there. This finding is
consistent with the behavior of one-body energies shown in
Fig. 8.

FIG. 10. One-body density matrix γ of s1/2 orbitals for 4He
calculated without [left; panels (a), (c), and (e)] and with [right;
panels (b), (d), and (f)] the one-body correlation operator. The top,
middle, and bottom panels are calculated at emax = 12 and h̄ω = 20,
28, and 36 MeV, respectively.

Next, we discuss the effects of the one-body correlation
operator on the point-nucleon radius. Since the radius operator
is dominated by the one-body term, the one-body density
matrix concerns more directly the reduction of the h̄ω
dependence rather than the ground-state energy where the
two-body correlations are dominant. As shown in the lower
panel in Fig. 7, the point-nucleon radius of the 4He nucleus
with respect to the HO reference state (0s1/2)4 can read√〈

r2
1

〉 =
√∑

a

1

A

(
1 − 1

A

)
(h̄c)2

mc2h̄ω

(
2na + la + 3

2

)
� 6.8(h̄ω)−1/2(MeV)1/2 fm. (50)

From the observation that the off-diagonal components of the
kinetic and radius one-body operators contribute oppositely,
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TABLE I. Calculated ground-state energy of 4He with the
decomposition of each cluster term. The results in the section named
“Vlow k” are calculated with the Vlow k interaction derived from AV18
interaction with the sharp cutoff � = 1.9 fm−1. Also, the results in
section “VSRG” are obtained with the SRG transformed chiral N3LO
NN interaction at λSRG = 2.0 fm−1. All the energies are in MeV. See
text for details.

Method E1BC E2BC E3BC Eg.s.

Vlow k UMOA 62.60 −89.84 −0.86 −28.10
CCSD [2] −28.9
FY [2,41] −29.19(5)

VSRG UMOA 53.50 −80.47 −0.76 −27.73
IT-NCSM [42] −28.25(1)

Exp. [43] −28.30

we can expect that the radius decreases (increases) in smaller
(larger) h̄ω regions across h̄ω � 28 MeV compared to the HO
reference state, Eq. (50). This is consistent with the radii shown
in the lower panel of Fig. 7.

B. Comparison with the other ab initio results

After discussing how the introduction of the one-body
correlation operator in the UMOA works well, in this section,
we compare the present results with those from the other
ab inito calculations. For this purpose, we employ the Vlow k

potential derived from AV18 two-nucleon interaction at � =
1.9 fm−1 throughout the comparison. In addition, we also
employ the SRG-transformed chiral N3LO NN interaction
[40] with the momentum cutoff λSRG = 2.0 fm−1, which is
widely used in recent ab initio calculations.

The results of the 4He ground-state energy are summarized
in Table I with comparison to the other ab inito results. In
Table I, the calculated energies are shown with the decompo-
sition of the one-body cluster (kinetic) term, E1BC, two-body
cluster (interaction) term, E2BC, the three-body cluster term,
E3BC, and the total energy, Eg.s. for 4He, respectively [see
Eq. (33)]. All the results are calculated at emax = 14 and
h̄ω = 20 MeV. For comparison, the results of the CCSD,
FY, importance-truncated no-core shell model (IT-NCSM),
and experiment are taken from Refs. [2,41–43]. We notice
that the convergence with respect to the model-space size is
confirmed. The difference between emax = 12 and 14 results
is less than the order of 10 keV both for the Vlow k and SRG
transformed interactions. As shown in Table I, the contribution
of the three-body cluster term, E3BC, is much smaller than
those of one- and two-body cluster terms, E1BC and E2BC,
respectively. Therefore, our result for the energy practically
converges with respect to the cluster expansion. Moreover, the
present result for the total energy, Eg.s., is reasonably close
to the other ab initio calculation energies. The difference
between them is comparable to the size of E3BC. In other
words, the contributions of the truncated cluster terms can be
approximated by the size of E3BC and the uncertainty of our
energies can be roughly estimated from E3BC. In Fig. 11, we
also summarize the comparison of various calculated energies.

FIG. 11. Comparisons for the ground-state energies of 4He in the
UMOA and in the other ab initio calculations. The displayed UMOA
results are obtained at emax = 14 and h̄ω = 20 MeV. The error bands
of the UMOA energies are estimated from the size of the three-body
cluster term corrections. The CCSD, FY, importance-truncated no-
core shell model (IT-NCSM), and experimental results are taken from
Refs. [2,41–43].

The error bands of the UMOA energies are estimated from the
size of the three-body cluster term corrections.

Our results for point-nucleon radius of 4He are listed in
Table II. It summarizes the calculated point-nucleon radii
with the “one-body cluster term”

√
r̃ 2(1BC), “two-body cluster

term”
√

r̃ 2(2BC), and the “one- and two-body cluster term”√
r̃ 2, respectively [see Eq. (45)]. Note that

√
r̃ 2 �=

√
r̃ 2(1BC) +√

r̃ 2(2BC), and r̃ 2 = r̃ 2(1BC) + r̃ 2(2BC). The calculation setup
is same as in Table I. The experimental value is take from
Ref. [44]. According to Table II, the contribution from the
one-body cluster term,

√
r̃ 2(1BC), is dominant. Since the effects

of the higher-body cluster terms can be expected to be smaller
than those of the one-body cluster term, the cluster expansion
works well for the radius operator, the same as in the case
of the ground-state energy. Moreover, the present result for
point-proton radius, 1.41 fm, with the SRG softened N3LO
chiral EFT NN interaction [40] with λSRG = 2.0 fm−1 is
consistent with the in-medium SRG results with the same
interaction [45]. Note that the calculated radius is much smaller
than the experimental radius, 1.49 fm. This observation is also
true for the other ab initio calculations with NN interactions
only and is consistent with the obtained larger binding energy
compared to the experimental binding energy. From these
demonstrations, we can conclude that the UMOA with the aid
of the one-body correlation operator gives fully microscopic
results as well as the other ab initio approaches, at least in the
ground-state properties of the 4He nucleus.

TABLE II. Calculated point-nucleon radius of 4He with the
decomposition of each cluster term. See text for details.

√
r̃ 2(1BC)

√
r̃ 2(2BC)

√
r̃ 2

Vlow k 1.30 0.20 1.32
VSRG 1.40 0.13 1.41
Exp. [44] 1.49(3)
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IV. SUMMARY

We extend the former formalism of the UMOA accommo-
dating only two-body correlations by including additionally
the one-body correlation operator. As a demonstration, we
have carried out numerical calculations of the ground-state
energy and point-nucleon radius for the 4He nucleus. We
can successfully reduce the h̄ω dependence on calculated
observables which existed in the earlier UMOA. The present
results for converged ground-state energy and radius are
reasonably close to the results from the other ab initio
calculations with the same NN interactions. We find that
the hierarchy of the cluster expansion is preserved and the
h̄ω dependence can be removed, order by order, from the
cluster expansion. The decoupling of the 1p1h excitations from
the 0p0h reference state is related to the HF mean field to
absorb the h̄ω dependence. The origin of the h̄ω dependence
in the former UMOA has also been discussed qualitatively.
Concerning the behavior of the total energy as a function of
h̄ω, the one-body kinetic term totally entails the positive slope,
while the two-body potential term causes the negative slope,
which results in the parabolic shape of the total energy. The
above discussion about the one-body kinetic energy can also
explain the negative slope of the radius as a function of h̄ω.

In this study, we only employ two-nucleon interactions
without genuine and/or induced three-nucleon interactions.
For quantitative comparison with experimental data, the
introduction of three-body forces is requisite. For this purpose,
the systematic improvement of the UMOA is necessary. The
next step to be done for this direction is to explicitly deal with
the three-body cluster term and to introduce the three-body
correlation operator. These implementations in the UMOA
described above will open the way toward a fully microscopic
description of nuclear structure consistent with the other ab
initio methods. As for the physical application, in this paper, we
only focus on the ground-state property of the lightest doubly
closed nucleus, 4He, as a test case of the implementation of
the one-body correlation operator in the UMOA. Application
to heavier nuclei such as 16O and 40Ca is also interesting. The
extension to the excited states can also be done, for example,
with the method introduced in Ref. [21]. Furthermore, the
UMOA can be applied to the nuclear structure of open-shell
nuclei and gives information about the one-nucleon separation
energy [21,22]. These studies are now ongoing, and the results
will be reported elsewhere in future publications.
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APPENDIX A: DECOUPLING EQUATIONS

In this appendix, we briefly explain how to determine the
correlation operators used in the UMOA [34]. Owing to the

definition of the unitary operator U as shown in Eq. (8), exp S(n)

appears only in the n-body and higher body cluster terms and
does not affect cluster terms lower than n-body clusters [for
instance, two- and higher many-body correlation operators
do not show up in the one-body cluster terms of Eqs. (14)
and (17)]. Therefore, we can sequentially solve correlation
operators in the order from the one- to A-body cluster terms.
In the following, we focus on the determination of the n-
body correlation operator S(n), provided that the correlation
operators with the rank lower than n, S(1), S(2), . . . , S(n−1), are
already obtained. The correlation operator S(n) is determined
so that H̃ (n) has no matrix elements between the 0p0h and
npnh states. For this purpose, we define the operators P (n) and
Q(n) projecting onto the space of n particles occupying the
orbits below and above the Fermi level, respectively. Then,
the decoupling condition between the target space P (n) and its
complement Q(n) can be described as

Q(n)H̃ (n)P (n) = P (n)H̃ (n)Q(n) = 0. (A1)

Equation (A1) can be rewritten as

Q(n)e−S(n)
H̃ ′(n)eS(n)

P (n) = P (n)e−S(n)
H̃ ′(n)eS(n)

Q(n) = 0

(A2)

with

H̃ ′(n) = e
−(

∑n
i1<···<in−1

si1 ···in−1 )
. . . e−(

∑n
i si )

×
⎛⎝ n∑

i

hi +
n∑

k=2

n∑
i1<···<ik

vi1...ik +
n∑

k=2

n∑
i1<···<ik

wi1...ik

⎞⎠
× e

∑n
i si . . . e

∑n
i1<···<in−1

si1 ...in−1 . (A3)

For deriving Eq. (A2) from Eq. (A1), one can use the fact that

Q(n)

⎛⎝ A∑
in<···<in−1

w̃i1...in−1

⎞⎠P (n) = 0, (A4)

Q(n)

⎛⎝ n∑
i

h̃i +
n−1∑
k=2

n∑
i1<···<ik

ṽi1...ik

⎞⎠P (n) = 0, (A5)

in Eqs. (16) and (19), since P (n) and Q(n) have no common
states. Thus, H̃ (n) in Eq. (A1) can be factorized into H̃ ′(n) and
eS(n)

. H̃ ′(n) can be calculated in a straightforward way, and the
problem can be cast into the determination of S(n). According
to Refs. [32–34], it is known that one of the solutions can be
expressed as

S(n) = arctanh(ω(n) − ω(n)†) (A6)

with the wave operator for n-particle states,

ω(n) =
d∑

k=1

Q(n)
∣∣ψ (n)

k

〉〈
φ̃

(n)
k

∣∣P (n). (A7)

Here, d is the dimension of the P (n) space and the biorthogonal
state 〈φ̃(n)

k | of |φ(n)
k 〉 = P (n)|ψ (n)

k 〉 is defined to satisfy the
following biorthonormal condition〈

φ̃
(n)
k

∣∣φ(n)
l

〉 = δkl . (A8)
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In Eq. (A7), |ψ (n)
k 〉 is an eigenvector of the n-body Schrödinger

equation in the P (n) + Q(n) space,

(P (n) + Q(n))H̃ ′(n)(P (n) + Q(n))
∣∣ψ (n)

k

〉 = Ek

∣∣ψ (n)
k

〉
, (A9)

where Ek is the kth eigenvalue. Moreover, exp S(n) can also be
expressed in terms of ω(n) [20],

eS(n) = (1 + ω(n) − ω(n)†)(1 + ω(n)†ω(n) + ω(n)ω(n)†)−1/2.

(A10)

Note that the solution of ω(n) depends on the choice of a set
of d eigenstates. In the present work, we choose d eigenstates
having the largest overlap with the reference state. This choice
is reasonable as long as we consider only the ground state.

APPENDIX B: ONE-BODY DENSITY MATRIX

Here, we summarize how to compute the one-body density
matrix in the UMOA. As found in the usual textbooks (see, for
example, Ref. [46]), the one-body density-matrix element γba

is defined as

γba ≡ 〈�|nab|�〉 = 〈�|c†acb|�〉 (B1)

with the one-body operator nab concerning the single-particle
states labeled by a and b. The one-body operator nab can be
transformed as

γba = 〈�|U †nabU |�〉
= 〈�|̃nab|�〉 (B2)

with the unitary-transformed one-body operator ñab =
U †nabU and the reference state |�〉. Like the Hamiltonian
and radius operator discussed in the text, we apply the cluster
expansion to this transformed one-body operator,

ñab = ñab(1) + ñab(2) + · · · . (B3)

Here, one- and two-body cluster terms are defined as

ñab(1) =
∑

i

ñab
i , ñab(2) =

∑
i<j

ñab
ij (B4)

with

ñab
1 = e−s1nab

1 es1 , (B5)

ñab
12 = e−s12

(̃
nab

1 + ñab
2

)
es12 − (̃

nab
1 + ñab

2

)
. (B6)

Then, the matrix element γba can also be expanded as

γba =
∑
λ�ρF

〈λ|̃nab
1 |λ〉 + 1

2

∑
λμ�ρF

〈λμ|̃nab
12 |λμ〉 + · · · . (B7)

In the actual UMOA calculations, we keep the terms up to
the two-body clusters. With the aid of the one-body density
matrix, the expectation value for one-body operators, O =∑

ab〈a|o|b〉c†acb, can also be obtained by

〈�|O|�〉 =
∑
ab

〈a|o|b〉〈�|c†acb|�〉 =
∑
ab

oabγba

= Tr (oγ ) (B8)

with the one-body matrix element oab = 〈a|o|b〉.

APPENDIX C: EXPECTATION VALUE OF A CONTACT
INTERACTION WITH RESPECT TO THE (0s1/2)4

CONFIGURATION

In this appendix, we derive the expectation value of the
contact interaction Vδ introduced in Eq. (48). It is given by the
normal ordered zero-body term with respect to the (0s1/2)4

configuration:

〈Vδ〉 =
∑
JT

(2J + 1)(2T + 1)〈JT |Vδ|JT 〉 (C1)

with the JT -coupled two-body matrix element 〈JT |Vδ|JT 〉.
Note that |JT 〉 means the (0s1/2)2 two-nucleon state with the
total angular momentum J and total isospin T . Also J + T
has to be odd integer, because of the antisymmetrization of
two-nucleon state. To obtain the expectation value 〈Vδ〉, all
the terms we need are 〈10|Vδ|10〉 and 〈01|Vδ|01〉. When we
apply the Talmi-Moshinsky transformation formula, they are
expressed as

〈10|Vδ|10〉 = 〈α|Vδ|α〉, (C2)

〈01|Vδ|01〉 = 〈β|Vδ|β〉 (C3)

with the two-nucleon states |α〉 and |β〉 in the rel-
ative coordinate. Here, |α〉 (|β〉) has the quantum
numbers (n,lrel,S,Jrel,T ) = (0,0,0,0,1) [(n,lrel,S,Jrel,T ) =
(0,0,1,1,0)], where n,lrel,S,Jrel, and T are the nodal quantum
number, relative orbital angular momentum, total spin, relative
total angular momentum, and total isospin for the two-nucleon
system, respectively. Since the HO radial wave function with
n = 0 and lrel = 0 is just the Gaussian, these expectation values
are written as

〈α|Vδ|α〉 = C1S0

8
√

2√
π

(
h̄

mω

)3/2

�6
δI

2(ω,�δ), (C4)

〈β|Vδ|β〉 = C3S1

8
√

2√
π

(
h̄

mω

)3/2

�6
δI

2(ω,�δ) (C5)

with the integration

I (ω,�δ) =
∫ ∞

0
dxx2 exp

[
−

(
h̄�2

δ

mω
+ 1

)
x2

]
. (C6)

This integration can be done analytically and reads

I (ω,�δ) =
√

π

4

(
mω

mω + h̄�2
δ

)3/2

. (C7)

Substituting this result into Eqs. (C4) and (C5), one can get

〈α|Vδ|α〉 = C1S0

√
π

2

( √
h̄mω�2

δ

mω + h̄�2
δ

)3

, (C8)

〈β|Vδ|β〉 = C3S1

√
π

2

( √
h̄mω�2

δ

mω + h̄�2
δ

)3

. (C9)

Therefore, the expectation value can be obtained as

〈Vδ〉 = 3

√
π

2

(
C1S0 + C3S1

)( √
h̄mω�2

δ

mω + h̄�2
δ

)3

. (C10)
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Since the S-wave scattering phase shift analysis implies that
the NN interaction is attractive at low energies, the low-energy
constants C1S0 and C3S1 are usually negative values. Then, the
sign of 〈Vδ〉 is also negative. To investigate the ω dependence
of 〈Vδ〉, let us take the derivative of 〈Vδ〉 with respect to ω.
After the straightforward calculation, it is

d〈Vδ〉
dω

= 3

2
〈Vδ〉 m�2

δ

mω + h̄�2
δ

(√
h̄

mω
+ 1

�δ

)(√
h̄

mω
− 1

�δ

)
.

(C11)

From Eq. (C11), it is found that the sign of the derivative
is negative (positive) for h̄ω < h̄2�2

δ/m (h̄ω > h̄2�2
δ/m).

Thus, 〈Vδ〉 has a minimum at h̄ω = h̄2�2
δ/m. Since h̄2�2

δ/m
specifies the energy scale of the NN interaction and is
roughly the order of, at least, the pion mass, this minimum
is far from the h̄ω values of 20–40 MeV in the present
work. Therefore, the h̄ω dependence can be regarded as
monotonically decreasing in such a h̄ω range.
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