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Microscopic core-quasiparticle coupling model for spectroscopy of odd-mass nuclei
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Background: Predictions of the spectroscopic properties of low-lying states are critical for nuclear structure
studies but are problematic for nuclei with an odd nucleon due to the interplay of the unpaired single particle
with nuclear collective degrees of freedom.
Purpose: To predict the spectroscopic properties of odd-mass medium-heavy and heavy nuclei with a model that
treats single-particle and collective degrees of freedom within the same microscopic framework.
Method: A microscopic core-quasiparticle coupling (CQC) model based on the covariant density functional
theory is developed that contains the collective excitations of even-mass cores and spherical single-particle states
of the odd nucleon as calculated from a quadrupole collective Hamiltonian combined with a constrained triaxial
relativistic Hartree-Bogoliubov model.
Results: Predictions of the new model for excitation energies, kinematic and dynamic moments of inertia, and
transition rates are shown to be in good agreement with results of low-lying spectroscopy measurements of the
axially deformed odd-proton nucleus 159Tb and the odd-neutron nucleus 157Gd.
Conclusions: A microscopic CQC model based on covariant density functional theory is developed for odd-mass
nuclei and shown to give predictions that agree with measurements of two medium-heavy nuclei. Future studies
with additional nuclei are planned.
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I. INTRODUCTION

The nuclear spectroscopic properties of low-lying states
are important physical quantities that reveal rich structure
information of atomic nuclei, including shape phase transi-
tions, evolution of the shell structure, isomeric states, shape
coexistence, and more [1–4]. Since nuclei are finite-size,
strong correlated quantal many-body systems, their complex
spectra exhibit a large variety of excitation modes that relate
to either collective or single-particle degrees of freedom, or
the coupling between them [1,2].

Global, microscopic descriptions of complex nuclear
spectra require modeling the in-medium nucleon-nucleon
interaction. Here we focus on methods based on an energy
density functional (EDF), which have been successfully used
over the whole nuclide chart [5–10]. In general, frameworks
based on static nuclear mean-field approximations can only
describe ground-state properties such as binding energies and
charge radii. Calculating excitation spectra and electromag-
netic transition probabilities requires including correlations
beyond the static mean field through the restoration of broken
symmetries and configuration mixing of symmetry-breaking
product states. The most effective approach to configuration
mixing calculations is the generator coordinate method (GCM)
[2], with multipole moments used as collective coordinates
to generate symmetry-breaking product wave functions. As
the Gaussian overlap approximation of GCM, quadrupole
collective Hamiltonians with parameters determined by self-
consistent mean-field calculations are numerically simpler
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and have achieved great success in the description of low-
lying states in a wide range of nuclei, from A ∼ 40 to
super-heavy regions including both stable and unstable nuclei
[11–21]. The validity of this approximate method was recently
demonstrated by a comparison with a full GCM calculation
for a shape coexisting nucleus 76Kr based on a covariant
EDF [22].

Most studies using the GCM or quadrupole collective
Hamiltonians based on EDFs are limited to even-even nuclei.
Calculations for odd-mass nuclei are much more complicated
due to the interplay between the unpaired single-particle
and collective degrees of freedom. Recently, two EDF-
based approaches have been reported for odd-mass nuclei.
One is a consistent extension of GCM, where the gener-
ator coordinate space is built on blocked one-quasiparticle
Hartree-Fock-Bogoliubov (HFB) states. In Ref. [23], a fully
GCM calculation based on angular-momentum and particle-
number projected triaxially deformed HFB states using the
Skyrme SLyMR0 parametrization was performed for the
low-lying spectrum of 25Mg. References [24,25] presented
an approach for the calculation of odd nuclei with exact
self-consistent blocking and particle number and angular-
momentum projection with the finite-range density-dependent
Gogny force as applied to the study of Mg isotopic chain.
The other approach is the beyond-mean-field boson-fermion
model based on the framework of nuclear energy density
functional theory [26]. This method uniquely determines the
parameters of the Hamiltonian of the boson core, while the
strength of the particle-core coupling is specifically adjusted
to selected data for a particular nucleus. The approach is
illustrated in a systematic study of low-energy excitation
spectra and transition rates of axially deformed odd-mass Eu
isotopes.
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In this work, our covariant EDF-based quadrupole collec-
tive Hamiltonian will be extended to describe the spectroscopy
of odd-mass nuclei via the core-quasiparticle coupling (CQC)
scheme. The CQC scheme has been extensively used with
phenomenological inputs, e.g., a rotor or Bohr Hamiltonian
for the core and a single particle in a phenomenological
spherical potential [27–34], and microscopic inputs calculated
from Hartree-Fock plus BCS [35–37]. Here, we will construct
a microscopic CQC model, where the collective degrees of
freedom of the core and single-particle will be both treated
within the same covariant EDF. The framework of the present
model is similar as that of the previous work with microscopic
inputs [35–37], while in our model a fully microscopic
quadrupole collective Hamiltonian is used to describe the
core. Also, the inclusion of neighboring even cores enables the
model to take into account the shape polarization effect that is
critical for transitional nuclei. We utilize the advantages of the
EDF-based quadrupole collective Hamiltonian for even-even
nuclei, namely a clear physical picture constructed from the
concept of nuclear shapes, a global model that can be used for
both stable and unstable nuclei, and reasonable computational
speed for heavy nuclei.

In Sec. II, we describe the method to construct the CQC
Hamiltonian and the calculations of the microscopic inputs.
In Sec. III, the model is tested in a series of illustrative
calculations for the spectroscopic properties of the axially
deformed odd-proton nucleus 159Tb and the odd-neutron
nucleus 157Gd. Sec. IV contains a summary of results and
an outlook for future studies.

II. THEORETICAL FRAMEWORK

A. Core-quasiparticle coupling model

In the core-quasiparticle coupling scheme, the odd-mass
nucleus with mass number A is considered to be composed of
both a particle coupled to the lighter even neighbor A − 1 and
a hole coupled to the heavier even neighbor A + 1. The ansatz
of the wave function for odd-mass nucleus can therefore be
written as

|αJMJ 〉A =
∑
μj,νR

{
UαJ (μj,νR)

[
a
†
μjmj

|νRMR〉]A−1
JMJ

+VαJ (μj,νR)
[
aμjmj

|νRMR〉]A+1
JMJ

}
, (1)

where α denotes all quantum numbers beside the total angular
momentum J and its projection MJ for the odd-A nucleus. μ
and ν play the same roles as α but for the single-particle states
and collective states of the core, respectively. The linear coef-
ficients UαJ (μj,νR) and VαJ (μj,νR) represent the probability
amplitudes for the particlelike and holelike states, respectively,
which are formed by vector-coupling of a spherical particle
state |μjmj 〉A−1 to a collective state |νRMR〉A−1 of the core
A − 1 and a spherical hole state |μjm̄j 〉A+1 coupled to the
corresponding collective state |νRMR〉A+1 of the core A + 1,
respectively.

The Hamiltonian for CQC model can be written in a general
form1 [33]:

H = Hqp + Hc

=
(

(εA−1 − λ) + �A−1 �A+1

�†A−1 −(εA+1 − λ) − �A+1

)

+
(

EA−1 0
0 EA+1

)
. (2)

The matrices (εA±1 − λ) and (EA±1) are diagonal with respect
to the basis states in the decomposition Eq. (1):

(εA±1 − λ) = (
εA±1
μj − λ

)
δμj,μ′j ′δνR,ν ′R′ , (3)

(EA±1) = EA±1
νR δμj,μ′j ′δνR,ν ′R′ , (4)

with the single-particle energies εA±1
μj , Fermi surface λ, and

collective excitation energies EA±1
νR . � and � are the mean

field and pairing field related to the long-range particle-
hole interaction and short-range particle-particle interaction
between the odd nucleon and core, respectively. In the present
version of the model, the dominant quadrupole-quadrupole
interaction and monopole pairing force are used to determine
the fields � and �, respectively [33],

(�A±1) = −χ (−1)j+R+J

{
j 2 j ′
R′ J R

}
〈μj‖Q̂2‖μ′j ′〉A±1

×〈νR‖Q̂2‖ν ′R′〉A±1, (5)

(�A+1) = (�A−1) = 〈νR; A − 1|�̂|ν ′R′; A + 1〉δμj,μ′j ′

≈ 1

2

(
�A−1

νR + �A+1
νR

)
δμj,μ′j ′δνR,ν ′R′ ≡ (�), (6)

where 〈μj‖Q̂2‖μ′j ′〉A±1 and 〈νR‖Q̂2‖ν ′R′〉A±1 are the re-
duced quadrupole matrix elements of the spherical hole
(particle) and cores, respectively, while χ is the coupling
strength of the quadrupole field. �A±1

νR denotes the average
pairing gaps of the collective states |νRMR〉A±1.

In the present work, the Fermi surface λ and coupling
strength χ are left as free parameters that are fit to data
separately for positive- and negative-parity states. Finally,
we obtain the excitation energies EαJ and linear coefficients
UαJ (μj,νR), VαJ (μj,νR) in the wave functions of the odd-A
nucleus by solving the eigen equation,(

(εA−1 − λ) + �A−1 + EA−1 �

� −(εA+1 − λ) − �A+1 + EA+1

)

×
(

U
V

)
= EαJ

(
U
V

)
, (7)

following the method introduced in Ref. [33].
In core-quasiparticle coupling scheme, the electromagnetic

multipole operator is composed of two parts contributed from

1In the present work, the expression of CQC Hamiltonian is a little
bit different from that in Eqs. (34) and (35) of Ref. [33], because the
signs of our definitions for pairing field � and eigenvalue EαJ are
opposite to those in Ref. [33].
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the single particle and even-mass core,

M̂λμ = M̂
s.p.
λμ + M̂c

λμ. (8)

The corresponding reduced transition matrix element between states |α1J1〉 and |α2J2〉 reads

〈α1J1‖M̂λ‖α2J2〉 =
√

(2J1 + 1)(2J2 + 1)
∑

νR,μ1j1μ2j2

(−1)j1+J2+R+λ

{
J1 λ J2

j2 R j1

}[
M

s.p.
U + M

s.p.
V

]

+
√

(2J1 + 1)(2J2 + 1)
∑

μj,ν1R1ν2R2

(−1)R1+J2+j+λ

{
J1 λ J2

R2 j R1

}[
Mc

U + Mc
V

]
, (9)

with

M
s.p.
U = Uα1J1 (μ1j1,νR)Uα2J2 (μ2j2,νR)〈μ1j1‖M̂s.p.

λ ‖μ2j2〉A−1, (10)

M
s.p.
V = Vα1J1 (μ1j1,νR)Vα2J2 (μ2j2,νR)〈μ1j1‖M̂s.p.

λ ‖μ2j2〉A+1, (11)

Mc
U = Uα1J1 (μj,ν1R1)Uα2J2 (μj,ν2R2)〈ν1R1‖M̂c

λ‖ν2R2〉A−1, (12)

Mc
V = Vα1J1 (μj,ν1R1)Vα2J2 (μj,ν2R2)〈ν1R1‖M̂c

λ‖ν2R2〉A+1. (13)

The reduced matrix elements for electric quadrupole tran-
sitions and magnetic dipole transitions will be presented in
Sec. II B in detail.

B. Microscopic inputs based on covariant EDF

The full dynamics of CQC Hamiltonian Eq. (2) is deter-
mined by the energies εA±1

μj and EA±1
νR , quadrupole matrix ele-

ments 〈μj‖Q̂2‖μ′j ′〉A±1 and 〈νR‖Q̂2‖ν ′R′〉A±1, and pairing
gaps �A±1

νR corresponding to the spherical hole (particle) states
of the odd nucleon and collective excitation states of the cores.
In the following, the superscript A ± 1 will be omitted for con-
venience. In this part, we will calculate all the inputs for CQC
model from a triaxial relativistic Hartree-Bogoliubov (RHB)
model combined with a quadrupole collective Hamiltonian
[15,16,38]. The RHB model provides a unified description
of particle-hole (ph) and particle-particle (pp) correlations
on a mean-field level by combining two average potentials:
the self-consistent mean field that encloses long-range (ph)
correlations and a pairing field �̂, which sums up (pp)
correlations. In the present analysis, the mean-field potential is
determined by the relativistic density functional PC-PK1 [39]
in the ph channel, and a separable pairing force [40,41] is used
in the pp channel.

In the first step of the construction of CQC Hamiltonian
Eq. (2), a constrained RHB calculation for a spherical
configuration of the even-mass cores are made to obtain
the single-particle energies εμj , wave functions |μjmj 〉, and
quadrupole matrix elements,

〈μj‖Q̂2‖μ′j ′〉 = 〈μj‖r2Y2‖μ′j ′〉

= (−1)j+j ′+1

√
5(2j ′ + 1)

4π
C

j 1
2

j ′ 1
2 20

〈μj |r2|μ′j ′〉,
(14)

where C
j 1

2

j ′ 1
2 20

are the Clebsch-Gordan coefficients.

Second, a constrained RHB calculation for the entire energy
surface as functions of the quadrupole deformation β and γ is

performed to provide the microscopic inputs, i.e., the moments
of inertiaIk (k = 1,2,3), collective masses Bββ, Bβγ , Bγγ , and
the potential Vcoll, for the quadrupole collective Hamiltonian
describing the collective vibration, rotation, and the coupling
between them of the even-mass core [15,16],

Ĥcoll = − h̄2

2
√

wr

{
1

β4

[
∂

∂β

√
r

w
β4Bγγ

∂

∂β

− ∂

∂β

√
r

w
β3Bβγ

∂

∂γ

]
+ 1

β sin 3γ

×
[
− ∂

∂γ

√
r

w
sin 3γBβγ

∂

∂β

+ 1

β

∂

∂γ

√
r

w
sin 3γBββ

∂

∂γ

]}
+ 1

2

3∑
k=1

Ĵ 2
k

Ik

+ Vcoll .

(15)

Ĵk denotes the components of the angular momentum in the
body-fixed frame of a nucleus, and the moments of inertia Ik

depend on the quadrupole deformation variables β and γ :

Ik = 4Bkβ
2 sin2(γ − 2kπ/3). (16)

Two additional quantities that appear in the expression for
the vibrational energy, r = B1B2B3 and w = BββBγγ − B2

βγ ,
determine the volume element in the collective space.

The diagonalization of this Hamiltonian yields the excita-
tion energies EνR and collective wave functions,

|νRMR〉 =
∑
K

ψR
νK (β,γ )�R

MRK (�), (17)

where K is the projection of angular momentum R on the
third axis in the body-fixed frame and �R

MRK (�) is a linear
combination of Wigner D functions as functions of Euler
angles �. Then, we can calculate the reduced matrix elements
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TABLE I. The calculated intraband and interband E2 (in units of e2b2) and M1 (in units of μ2
N ) transition rates for low-lying positive-parity

bands in 159Tb, compared to available data [47].

Th. Exp. Th. Exp.

band1 → band1 B(E2; 7/2+
1 → 3/2+

1 ) 0.70 0.73(4) B(E2; 5/2+
1 → 3/2+

1 ) 1.66 1.87(5)

B(E2; 9/2+
1 → 5/2+

1 ) 1.10 1.13(5) B(E2; 7/2+
1 → 5/2+

1 ) 1.03 1.23(20)

B(E2; 11/2+
1 → 7/2+

1 ) 1.33 1.50(3) B(E2; 9/2+
1 → 7/2+

1 ) 0.65 0.60(6)

B(E2; 13/2+
1 → 9/2+

1 ) 1.49 1.65(5) B(E2; 11/2+
1 → 9/2+

1 ) 0.44 0.58(6)

B(E2; 15/2+
1 → 11/2+

1 ) 1.61 1.61(11) B(E2; 13/2+
1 → 11/2+

1 ) 0.34 0.33(4)

B(E2; 17/2+
1 → 13/2+

1 ) 1.69 1.55(10) B(E2; 15/2+
1 → 13/2+

1 ) 0.24 0.38(7)

B(E2; 19/2+
1 → 15/2+

1 ) 1.78 – B(E2; 17/2+
1 → 15/2+

1 ) 0.21 0.14(7)

B(E2; 21/2+
1 → 17/2+

1 ) 1.82 2.00(26) B(E2; 19/2+
1 → 17/2+

1 ) 0.15 –

B(M1; 5/2+
1 → 3/2+

1 ) 0.21 0.310(14) B(E2; 21/2+
1 → 19/2+

1 ) 0.14 –

B(M1; 7/2+
1 → 5/2+

1 ) 0.26 0.338(21) B(M1; 15/2+
1 → 13/2+

1 ) 0.35 0.487(36)

B(M1; 9/2+
1 → 7/2+

1 ) 0.33 0.367(18) B(M1; 17/2+
1 → 15/2+

1 ) 0.40 0.430(54)

B(M1; 11/2+
1 → 9/2+

1 ) 0.32 0.467(9) B(M1; 19/2+
1 → 17/2+

1 ) 0.37 –

B(M1; 13/2+
1 → 11/2+

1 ) 0.37 0.448(18) B(M1; 21/2+
1 → 19/2+

1 ) 0.42 –

band2 → band2 B(E2; 9/2+
2 → 5/2+

2 ) 0.53 – B(E2; 7/2+
2 → 5/2+

2 ) 1.88 –

B(E2; 11/2+
2 → 7/2+

2 ) 0.92 – B(E2; 9/2+
2 → 7/2+

2 ) 1.61 –

B(E2; 13/2+
2 → 9/2+

2 ) 1.18 – B(E2; 11/2+
2 → 9/2+

2 ) 1.26 –

B(E2; 15/2+
2 → 11/2+

2 ) 1.38 – B(E2; 13/2+
2 → 11/2+

2 ) 0.99 –

B(M1; 7/2+
2 → 5/2+

2 ) 1.18 – B(E2; 15/2+
2 → 13/2+

2 ) 0.78 –

B(M1; 9/2+
2 → 7/2+

2 ) 1.77 – B(M1; 13/2+
2 → 11/2+

2 ) 2.34 –

B(M1; 11/2+
2 → 9/2+

2 ) 2.14 – B(M1; 15/2+
2 → 13/2+

2 ) 2.55 –

band2 → band1 B(M1; 7/2+
2 → 5/2+

1 ) 0.09 – B(M1; 13/2+
2 → 11/2+

1 ) 0.04 –

B(M1; 9/2+
2 → 7/2+

1 ) 0.07 –

band3 → band3 B(E2; 5/2+
3 → 1/2+

1 ) 0.34 – B(E2; 3/2+
2 → 1/2+

1 ) 0.12 –

B(E2; 7/2+
4 → 3/2+

2 ) 0.64 – B(E2; 5/2+
3 → 3/2+

2 ) 0.02 –

B(E2; 9/2+
4 → 5/2+

3 ) 0.73 – B(E2; 9/2+
4 → 7/2+

4 ) 0.03 –

B(E2; 11/2+
3 → 7/2+

4 ) 1.06 – B(E2; 11/2+
3 → 9/2+

4 ) 0.04 –

B(M1; 3/2+
2 → 1/2+

1 ) 0.23 – B(M1; 7/2+
4 → 5/2+

3 ) 0.15 –

B(M1; 5/2+
3 → 3/2+

2 ) 0.09 – B(M1; 11/2+
3 → 9/2+

4 ) 0.14 –

band3 → band1 B(E2; 11/2+
3 → 9/2+

1 ) 0.01 – B(M1; 5/2+
3 → 3/2+

1 ) 0.03 –

band4 → band4 B(E2; 11/2+
4 → 7/2+

3 ) 0.37 – B(E2; 9/2+
3 → 7/2+

3 ) 1.82 –

B(E2; 13/2+
4 → 9/2+

3 ) 0.70 – B(E2; 11/2+
4 → 9/2+

3 ) 1.81 –

B(E2; 15/2+
4 → 11/2+

4 ) 0.95 – B(E2; 13/2+
4 → 11/2+

4 ) 1.52 –

B(E2; 17/2+
4 → 13/2+

4 ) 1.15 – B(E2; 15/2+
4 → 13/2+

4 ) 1.23 –

B(M1; 9/2+
3 → 7/2+

3 ) 2.67 – B(E2; 17/2+
4 → 15/2+

4 ) 0.98 –

B(M1; 11/2+
4 → 9/2+

3 ) 4.05 – B(M1; 15/2+
4 → 13/2+

4 ) 5.31 –

B(M1; 13/2+
4 → 11/2+

4 ) 4.84 – B(M1; 17/2+
4 → 15/2+

4 ) 5.56 –

band4 → band2 B(E2; 7/2+
3 → 5/2+

2 ) 0.03 – B(E2; 9/2+
3 → 5/2+

2 ) 0.01 –

B(M1; 7/2+
3 → 5/2+

2 ) 0.94 – B(M1; 11/2+
4 → 9/2+

2 ) 0.45 –

B(M1; 9/2+
3 → 7/2+

2 ) 0.62 – B(M1; 13/2+
4 → 11/2+

2 ) 0.33 –

band5 → band5 B(E2; 11/2+
5 → 7/2+

5 ) 0.20 – B(E2; 9/2+
5 → 7/2+

5 ) 0.08 –

B(E2; 13/2+
5 → 9/2+

5 ) 0.86 – B(E2; 11/2+
5 → 9/2+

5 ) 0.05 –

B(E2; 15/2+
5 → 11/2+

5 ) 1.29 – B(E2; 13/2+
5 → 11/2+

5 ) 0.08 –

B(E2; 17/2+
5 → 13/2+

5 ) 1.53 – B(E2; 15/2+
5 → 13/2+

5 ) 0.06 –

B(M1; 9/2+
5 → 7/2+

5 ) 0.18 – B(M1; 13/2+
5 → 11/2+

5 ) 0.34 –

B(M1; 11/2+
5 → 9/2+

5 ) 0.27 – B(M1; 15/2+
5 → 13/2+

5 ) 0.39 –

band5 → band3 B(E2; 7/2+
5 → 5/2+

3 ) 0.02 – B(E2; 9/2+
5 → 7/2+

4 ) 0.03 –

band5 → band4 B(E2; 15/2+
5 → 13/2+

4 ) 0.05 – B(E2; 17/2+
5 → 15/2+

4 ) 0.06 –
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FIG. 1. Triaxial energy surfaces of the core nuclei 160Dy, 158Gd,
and 156Gd in the β-γ plane (0 � γ � 600) as calculated from a
constrained triaxial RHB model. For each nucleus, energies are
normalized with respect to the binding energy of the global minimum.
The contours join points on the surface with the same energy
(in MeV).

〈νR‖Q̂2‖ν ′R′〉 = √
2R + 1

∑
K

∫
β4|sin 3γ |dβdγ

×
[
CRK

R′K20ψ
R
νKψR′

ν ′Kq20(β,γ )

+
√

1 + δK0

2

(
CRK+2

R′K22ψR
νKψR′

ν ′K+2

+CRK
R′K+22−2ψ

R
νKψR′

ν ′K−2

)
q22(β,γ )

]
, (18)

FIG. 2. The excitation energies (left panels) and reduced electric
quadrupole transitions B(E2) (right panels) of the ground-state bands
in the core nuclei 160Dy, 158Gd, and 156Gd. The theoretical results are
obtained from the quadrupole collective Hamiltonian with collective
parameters determined by the constrained triaxial RHB model using
the PC-PK1 density functional. The experimental data are taken from
Refs. [42–44].

�νR =
∑
K

∫
β4|sin 3γ |dβdγ

∣∣ψR
νK

∣∣2
�(β,γ ),

(19)

where q20(β,γ ) (q22(β,γ )) and �(β,γ ) are the mass
quadrupole moments and pairing gaps calculated from the
Slater determinant of the RHB model for each deformation
value (β, γ ).

For the electric quadrupole transitions, the reduced ma-
trix elements in Eqs. (10)–(13) are 〈μ1j1‖Q̂p

2 ‖μ2j2〉 and
〈ν1R1‖Q̂p

2 ‖ν2R2〉, which have the same expressions as the
quadrupole matrix elements in Eqs. (14) and (18) in the special
case of protons. For the magnetic dipole transitions, the
reduced matrix elements for the single particle are calculated
using a nonrelativistic approximation,

〈μ1j1‖M̂s.p.
1 ‖μ2j2〉

= 〈μ1j1‖(gss + gl l) · (∇rY1)‖μ2j2〉

= (−1)j1+j2+1

√
3(2j2 + 1)

4π
C

j1
1
2

j2
1
2 10

〈μ1j1|μ2j2〉(1 − k)

×
[

1

2
gs − gl

(
1 + k

2

)]
, (20)

with k = (j1 + 1/2)(−1)j1+l1+1/2 + (j2 + 1/2)(−1)j2+l2+1/2.
Here, gs and gl are the g factors for the spin and orbital parts
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FIG. 3. The calculated low-energy positive-parity bands (panels
a, b), kinematic moments of inertia (panel c), and dynamic moments
of inertia (panel d) of the odd-proton nucleus 159Tb, plotted in
comparison with experimental data [45]. The theoretical results are
calculated from CQC model with only the ground-state band of the
core (panel a) and with both the ground-state and γ bands of the core
(panels b, c, d). The Fermi surface and coupling strength (λ, χ ) in
the CQC model are chosen as (−8.50 MeV, 9.40 MeV/b2) in the
calculations.

of the single particle, respectively. For the core,

〈ν1R1‖M̂c
1‖ν2R2〉 = 〈ν1R1‖M̂c

1‖ν1R1〉δν1R1,ν2R2

=
√

2R1 + 1

C
R1R1
R1R110

gcR1δν1R1,ν2R2 , (21)

where gc is the g factor for the core.

III. ILLUSTRATIVE CALCULATIONS FOR
WELL-DEFORMED ODD-MASS NUCLEI

As an illustrative application of the microscopic CQC
model, we consider the case of a single nucleon coupled to an
axially symmetric rotor: the spectroscopy of the odd-proton
nucleus 159Tb and the odd-neutron nucleus 157Gd. We choose
these because there is extensive data on their electromagnetic
transition rates. The corresponding even-core nuclei 160Dy,
158Gd, and 156Gd present excellent examples of axially
deformed rotors, as shown by the potential energy surfaces
in Fig. 1 as calculated from the constrained triaxial RHB
model. The axial deformation parameter β is ∼0.35 for these
three nuclei. Solving the quadrupole collective Hamiltonian
based on their potential energy surfaces yields the collective
excitation states of the even-core nuclei. Figure 2 displays the
resulting excitation energies and intraband B(E2) transitions
of the ground-state bands. The theoretical results are in very
good agreement with the experimental data, especially for
low-lying states.

FIG. 4. Same as Fig. 3 but for the negative-parity bands of 159Tb.
The excitation energies in the upper panels are shown relative to the
lowest state. The Fermi surface and coupling strength (λ, χ ) in the
CQC model are chosen as (−7.00 MeV, 12.80 MeV/b2).

Figure 3 compares the calculated low-lying positive-
parity bands (panels a, b), kinematic moments of inertia
J (1) = 2J−1

Eγ (J ) [where Eγ (J ) = E(J ) − E(J − 2)] (panel c),

and dynamic moments of inertia J (2) = 4
Eγ (J )−Eγ (J−2) (panel

d) of the odd-proton nucleus 159Tb to available data [45]. The
theoretical results are calculated from microscopic CQC model
with only the ground-state band of the core (panel a) and with
both the ground-state and γ bands of the core (panels b, c, d).
For the single nucleon valence space in the CQC model, we

FIG. 5. Same as Fig. 3 but for the negative-parity bands of the
odd-neutron nucleus 157Gd. The Fermi surface and coupling strength
(λ, χ ) in the CQC model are chosen as (−9.70 MeV, 12.50 MeV/b2).

054309-6



MICROSCOPIC CORE-QUASIPARTICLE COUPLING MODEL . . . PHYSICAL REVIEW C 96, 054309 (2017)

FIG. 6. Same as Fig. 3 but for the positive-parity bands of 157Gd.
The excitation energies in the upper panels are shown relative to the
lowest state. The Fermi surface and coupling strength (λ, χ ) in the
CQC model are chosen as (−7.70 MeV, 15.10 MeV/b2).

include the spherical single-particle states located in between
Ef ± 2h̄ω, where Ef is the Fermi surface of the corresponding
spherical configuration and h̄ω = 41A−1/3 MeV. For the A ∼
160 mass region, states within approximately 15 MeV of the
Fermi surface are included, and this is sufficient to calculate
the low-lying spectrum.

The levels are grouped into different bands according to
the dominant decay pattern. Here, four lowest-lying measured
bands with band heads Jπ = 3/2+ (0.000 MeV), Jπ = 5/2+
(0.348 MeV), Jπ = 1/2+ (0.581 MeV), and Jπ = 7/2+
(0.777 MeV) are shown. Bands 1, 2, and 3 exhibit strong-
coupling �J = 1 systematics. In Fig. 3(a), the CQC model
with ground-state band of the core can reproduce most of
the structure of the bands in 159Tb and only the band 3
is ∼0.2 MeV higher than the data. Band 1 predominantly
corresponds to the 2d5/2 spherical proton configuration, while
bands 2 and 4 are dominated by the 1g7/2 hole and particle
configurations, respectively. Band 3 is based on two strongly
mixed configurations of 2d3/2 and 2d5/2 spherical single-
proton states. When adding the γ band of the core to the CQC
model, in Fig. 3(b) bands 1, 2, and 4 have been modified only
slightly, while band 3 is lowered by ∼0.15 MeV and closer to
the data. This is because band 3 has strong mixing between
the configurations based on the ground-state band (∼60%)
and γ band (∼40%) of the core. The off-diagonal matrix
elements of the CQC Hamiltonian mainly come from the con-
figurations with �R = 1 (e.g., 3+

γ ↔ 2+
g.s., 3+

γ ↔ 4+
g.s., 5+

γ ↔
4+

g.s., . . . ) and �j = 1 (2d3/2 ↔ 2d5/2), and the typical value is
∼0.15 MeV, consistent with the shifting of band 3. In Fig. 3(b),
a band for which purely coupling to the γ band of the core is
also plotted as band 5, and the band head is 1.058 MeV, which
is almost identical to the calculated γ band head, 1.035 MeV,
of the core 158Gd. It is remarkable that the band structure of
band 5, e.g., quasiparticle configurations, moments of inertia
[cf. Figs. 3(c) and 3(d)], and electromagnetic transitions (cf.
Table I), is very similar as that of the ground-state band. A
possible candidate of this band head is the measured state with
Jπ = (7/2+) at 1.102 MeV [45].

TABLE II. The calculated intraband and interband E2 (in units of e2b2) and M1 (in units of μ2
N ) transition rates for low-lying negative-parity

bands in 159Tb.

Th. Exp. Th. Exp.

band1 → band1 B(E2; 9/2+
1 → 5/2+

1 ) 0.40 – B(E2; 7/2+
1 → 5/2+

1 ) 1.37 –

B(E2; 11/2+
1 → 7/2+

1 ) 0.76 – B(E2; 9/2+
1 → 7/2+

1 ) 1.60 –

B(E2; 13/2+
1 → 9/2+

1 ) 1.06 – B(E2; 11/2+
1 → 9/2+

1 ) 1.36 –

B(E2; 15/2+
1 → 11/2+

1 ) 1.26 – B(E2; 13/2+
1 → 11/2+

1 ) 1.08 –

B(M1; 9/2+
1 → 7/2+

1 ) 0.22 – B(E2; 15/2+
1 → 13/2+

1 ) 0.87 –

B(M1; 11/2+
1 → 9/2+

1 ) 0.55 – B(M1; 15/2+
1 → 13/2+

1 ) 1.10 –

B(M1; 13/2+
1 → 11/2+

1 ) 0.72 –

band2 → band2 B(E2; 11/2+
2 → 7/2+

2 ) 0.51 – B(E2; 9/2+
2 → 7/2+

2 ) 1.69 –

B(E2; 13/2+
2 → 9/2+

2 ) 0.88 – B(E2; 11/2+
2 → 9/2+

2 ) 1.56 –

B(E2; 15/2+
2 → 11/2+

2 ) 1.09 – B(E2; 13/2+
2 → 11/2+

2 ) 1.27 –

B(E2; 17/2+
2 → 13/2+

2 ) 1.31 – B(E2; 15/2+
2 → 13/2+

2 ) 1.03 –

B(M1; 9/2+
2 → 7/2+

2 ) 1.85 – B(E2; 17/2+
2 → 15/2+

2 ) 0.81 –

B(M1; 11/2+
2 → 9/2+

2 ) 2.34 – B(M1; 15/2+
2 → 13/2+

2 ) 2.61 –

B(M1; 13/2+
2 → 11/2+

2 ) 2.29 – B(M1; 17/2+
2 → 15/2+

2 ) 2.06 –

band2 → band1 B(E2; 7/2+
2 → 5/2+

1 ) 0.45 – B(E2; 7/2+
2 → 7/2+

1 ) 0.32 –

B(E2; 9/2+
2 → 5/2+

1 ) 0.16 – B(E2; 9/2+
2 → 9/2+

1 ) 0.16 –

B(M1; 7/2+
2 → 5/2+

1 ) 2.49 – B(M1; 11/2+
2 → 9/2+

1 ) 0.61 –

B(M1; 9/2+
2 → 7/2+

1 ) 0.98 – B(M1; 15/2+
2 → 13/2+

1 ) 0.45 –
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TABLE III. The calculated intraband and interband E2 (in units of e2b2) and M1 (in units of μ2
N ) transition rates for low-lying negative-parity

bands in 157Gd, compared to available data [48].

Th. Exp. Th. Exp.

band1 → band1 B(E2; 7/2+
1 → 3/2+

1 ) 0.63 0.61(5) B(E2; 5/2+
1 → 3/2+

1 ) 1.46 1.47(7)

B(E2; 9/2+
1 → 5/2+

1 ) 0.95 1.09(12) B(E2; 7/2+
1 → 5/2+

1 ) 0.91 1.20(60)

B(E2; 11/2+
1 → 7/2+

1 ) 1.16 1.25(13) B(E2; 9/2+
1 → 7/2+

1 ) 0.62 1.10(80)

B(E2; 13/2+
1 → 9/2+

1 ) 1.31 1.53(17) B(E2; 11/2+
1 → 9/2+

1 ) 0.45 1.10(60)

B(E2; 15/2+
1 → 11/2+

1 ) 1.44 1.66(21) B(E2; 13/2+
1 → 11/2+

1 ) 0.32 –

B(E2; 17/2+
1 → 13/2+

1 ) 1.53 1.51(23) B(E2; 15/2+
1 → 13/2+

1 ) 0.25 0.35(13)

B(E2; 19/2+
1 → 15/2+

1 ) 1.62 1.62(28) B(E2; 17/2+
1 → 15/2+

1 ) 0.21 –

B(E2; 21/2+
1 → 17/2+

1 ) 1.68 1.90(30) B(E2; 19/2+
1 → 17/2+

1 ) 0.16 –

B(M1; 5/2+
1 → 3/2+

1 ) 0.16 0.090(7) B(E2; 21/2+
1 → 19/2+

1 ) 0.15 –

B(M1; 7/2+
1 → 5/2+

1 ) 0.20 0.146(8) B(M1; 15/2+
1 → 13/2+

1 ) 0.22 0.200(40)

B(M1; 9/2+
1 → 7/2+

1 ) 0.21 0.140(16) B(M1; 17/2+
1 → 15/2+

1 ) 0.21 0.170(100)

B(M1; 11/2+
1 → 9/2+

1 ) 0.20 0.167(18) B(M1; 19/2+
1 → 17/2+

1 ) 0.23 0.160(100)

B(M1; 13/2+
1 → 11/2+

1 ) 0.22 0.180(31) B(M1; 21/2+
1 → 19/2+

1 ) 0.19 –

band2 → band2 B(E2; 15/2+
2 → 11/2+

2 ) 0.53 – B(E2; 13/2+
2 → 11/2+

2 ) 1.81 –

B(E2; 17/2+
2 → 13/2+

2 ) 0.78 – B(E2; 15/2+
2 → 13/2+

2 ) 1.72 –

B(E2; 19/2+
2 → 15/2+

2 ) 0.98 – B(E2; 17/2+
2 → 15/2+

2 ) 1.53 –

B(E2; 21/2+
2 → 17/2+

2 ) 1.15 – B(E2; 19/2+
2 → 17/2+

2 ) 1.33 –

B(M1; 13/2+
2 → 11/2+

2 ) 0.75 – B(E2; 21/2+
2 → 19/2+

2 ) 1.16 –

B(M1; 15/2+
2 → 13/2+

2 ) 1.04 – B(M1; 19/2+
2 → 17/2+

2 ) 1.42 –

B(M1; 17/2+
2 → 15/2+

2 ) 1.26 – B(M1; 21/2+
2 → 19/2+

2 ) 1.54 –

band3 → band3 B(E2; 9/2+
3 → 5/2+

2 ) 0.48 – B(E2; 7/2+
2 → 5/2+

2 ) 1.55 –

B(E2; 11/2+
4 → 7/2+

2 ) 0.82 – B(E2; 9/2+
3 → 7/2+

2 ) 1.31 –

B(E2; 13/2+
3 → 9/2+

3 ) 1.08 – B(E2; 11/2+
4 → 9/2+

3 ) 0.98 –

B(E2; 15/2+
3 → 11/2+

4 ) 1.26 – B(E2; 13/2+
3 → 11/2+

4 ) 0.72 –

B(M1; 7/2+
2 → 5/2+

2 ) 0.02 – B(E2; 15/2+
3 → 13/2+

3 ) 0.56 –

B(M1; 13/2+
3 → 11/2+

4 ) 0.06 – B(M1; 15/2+
3 → 13/2+

3 ) 0.05 –

band3 → band1 B(E2; 5/2+
2 → 3/2+

1 ) 0.02 – B(E2; 7/2+
2 → 3/2+

1 ) 0.03 –

B(M1; 5/2+
2 → 3/2+

1 ) 0.03 –

band4 → band4 B(E2; 5/2+
3 → 1/2+

1 ) 0.50 – B(E2; 3/2+
2 → 1/2+

1 ) 0.51 –

B(E2; 7/2+
3 → 3/2+

2 ) 0.75 – B(E2; 5/2+
3 → 3/2+

2 ) 0.10 –

B(E2; 9/2+
4 → 5/2+

3 ) 0.76 – B(E2; 7/2+
3 → 5/2+

3 ) 0.04 –

B(E2; 11/2+
5 → 7/2+

3 ) 1.05 – B(E2; 9/2+
4 → 7/2+

3 ) 0.02 –

B(M1; 5/2+
3 → 3/2+

2 ) 0.15 – B(E2; 11/2+
5 → 9/2+

4 ) 0.01 –

B(M1; 9/2+
4 → 7/2+

3 ) 0.15 –

band5 → band5 B(E2; 11/2+
6 → 7/2+

5 ) 0.10 – B(E2; 9/2+
5 → 7/2+

5 ) 0.05 –

B(E2; 13/2+
7 → 9/2+

5 ) 0.25 – B(E2; 11/2+
6 → 9/2+

5 ) 0.06 –

B(E2; 15/2+
7 → 11/2+

6 ) 0.53 – B(E2; 15/2+
7 → 13/2+

7 ) 0.03 –

B(E2; 17/2+
7 → 13/2+

7 ) 1.00 – B(E2; 17/2+
7 → 15/2+

7 ) 0.05 –

B(M1; 9/2+
5 → 7/2+

5 ) 0.13 – B(M1; 15/2+
7 → 13/2+

7 ) 0.29 –

B(M1; 11/2+
6 → 9/2+

5 ) 0.21 – B(M1; 17/2+
7 → 15/2+

7 ) 0.30 –

B(M1; 13/2+
7 → 11/2+

6 ) 0.26 –

The theoretical and experimental kinematic moments of
inertia of the ground state band are 40 ∼ 50 h̄2 MeV−1 with
the discrepancy between them less than 3 h̄2 MeV−1, and both
increase gradually when moving to high spin. J (1) of the
excitation bands are close to those of the ground state band
except for a lower lying band 4. Moreover, J (1) of band 3
exhibits a staggering behavior but the phase of our prediction

is opposite with the data. The dynamic moment of inertia J (2)

is a very sensitive quantity as it describes the variation of
J (1). The calculated J (2) are in rather good agreement with
the data, and both increase more rapidly than the J (1) with
increasing angular momentum. The description of moments
of inertia for the ground state band before band crossing using
our microscopic CQC model is similar to that by the cranked
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TABLE IV. The calculated intraband and interband E2 (in units of e2b2) and M1 (in units of μ2
N ) transition rates for low-lying positive-parity

bands in 157Gd.

Th. Exp. Th. Exp.

band1 → band1 B(E2; 9/2+
1 → 5/2+

1 ) 0.49 – B(E2; 7/2+
1 → 5/2+

1 ) 1.63 –

B(E2; 11/2+
1 → 7/2+

1 ) 0.84 – B(E2; 9/2+
1 → 7/2+

1 ) 1.33 –

B(E2; 13/2+
1 → 9/2+

1 ) 1.08 – B(E2; 11/2+
1 → 9/2+

1 ) 1.01 –

B(E2; 15/2+
1 → 11/2+

1 ) 1.26 – B(E2; 13/2+
1 → 11/2+

1 ) 0.75 –

B(M1; 7/2+
1 → 5/2+

1 ) 0.07 – B(E2; 15/2+
1 → 13/2+

1 ) 0.59 –

B(M1; 9/2+
1 → 7/2+

1 ) 0.11 – B(M1; 13/2+
1 → 11/2+

1 ) 0.18 –

B(M1; 11/2+
1 → 9/2+

1 ) 0.13 – B(M1; 15/2+
1 → 13/2+

1 ) 0.16 –

band2→ band2 B(E2; 5/2+
2 → 1/2+

1 ) 0.78 – B(E2; 3/2+
1 → 1/2+

1 ) 0.79 –

B(E2; 7/2+
2 → 3/2+

1 ) 1.01 – B(E2; 5/2+
2 → 3/2+

1 ) 0.13 –

B(E2; 9/2+
2 → 5/2+

2 ) 1.11 – B(E2; 7/2+
2 → 5/2+

2 ) 0.08 –

B(E2; 11/2+
3 → 7/2+

2 ) 1.04 – B(E2; 9/2+
2 → 7/2+

2 ) 0.03 –

B(E2; 13/2+
2 → 9/2+

2 ) 1.30 – B(E2; 11/2+
3 → 9/2+

2 ) 0.02 –

B(M1; 9/2+
2 → 7/2+

2 ) 0.14 – B(M1; 13/2+
2 → 11/2+

3 ) 0.15 –

band2 → band1 B(E2; 13/2+
2 → 11/2+

1 ) 0.01 –

band3 → band3 B(E2; 5/2+
3 → 1/2+

2 ) 0.92 – B(E2; 3/2+
2 → 1/2+

2 ) 0.92 –

B(E2; 7/2+
3 → 3/2+

2 ) 1.15 – B(E2; 5/2+
3 → 3/2+

2 ) 0.26 –

B(E2; 9/2+
3 → 5/2+

3 ) 1.34 – B(E2; 7/2+
3 → 5/2+

3 ) 0.13 –

B(E2; 11/2+
2 → 7/2+

3 ) 1.09 – B(E2; 9/2+
3 → 7/2+

3 ) 0.08 –

B(M1; 9/2+
3 → 7/2+

3 ) 0.02 – B(E2; 11/2+
2 → 9/2+

3 ) 0.06 –

band3 → band2 B(E2; 7/2+
3 → 3/2+

1 ) 0.02 – B(E2; 11/2+
2 → 7/2+

2 ) 0.32 –

band4 → band4 B(E2; 5/2+
5 → 1/2+

3 ) 0.20 – B(E2; 3/2+
4 → 1/2+

3 ) 0.20 –

B(E2; 7/2+
5 → 3/2+

4 ) 0.14 – B(E2; 5/2+
5 → 3/2+

4 ) 0.04 –

B(E2; 9/2+
6 → 5/2+

5 ) 0.16 – B(E2; 7/2+
5 → 5/2+

5 ) 0.07 –

B(E2; 11/2+
6 → 7/2+

5 ) 0.05 – B(E2; 9/2+
6 → 7/2+

5 ) 0.10 –

B(M1; 3/2+
4 → 1/2+

3 ) 0.26 – B(E2; 11/2+
6 → 9/2+

6 ) 0.32 –

B(M1; 5/2+
5 → 3/2+

4 ) 0.70 – B(M1; 11/2+
6 → 9/2+

6 ) 0.70 –

B(M1; 7/2+
5 → 5/2+

5 ) 0.62 –

band4 → band2 B(E2; 11/2+
6 → 9/2+

2 ) 0.05 – B(E2; 9/2+
6 → 5/2+

2 ) 0.04 –

relativistic Hartree-Bogoliubov [6] or cranked nonrelativistic
Hartree-Fock-Bogoliubov [46].

In Fig. 4, the sequences of the negative-parity levels of
159Tb built on the states Jπ = 5/2−

1 and Jπ = 7/2−
2 form

�J = 1 rotational bands and both are originated from the
1h11/2 proton configuration. Bands 1 and 2 are almost not
changed by including the γ band of the core. In Fig. 4(b),
we also plot the calculated lowest excited states based on
the γ band of the core (open circles). There are no strong
cascaded electromagnetic transitions between the states, and
therefore they are not denoted as a band. The measured states
Jπ = (1/2−) at 0.855 MeV and Jπ = (5/2−) at 0.891 MeV
are possible candidates for the γ phonon excitation states. The
calculated moments of inertia J (1) and J (2) are all in good
agreement with the data. The moments of inertia of the two
bands are rather different at low spin but agree better at high
spin. This may be because the Coriolis coupling of band 1 is
larger than that of band 2 at low spin and becomes similar for
high spin states [2].

Figure 5 displays the low-lying negative-parity bands and
corresponding moments of inertia for the odd-neutron nucleus

157Gd. The lowest three bands have been reproduced quite
well by CQC model without and with the γ band of the
core. Bands 1, 2, and 3 predominately correspond to the
strongly mixed configurations of 2f7/2 and 1h9/2, a rather
pure 1h11/2 configuration, and a rather pure 1h9/2 config-
uration, respectively. Similar as the band 3 in Fig. 3, the
band 4 here built on Jπ = 1/2−

1 is shifted by ∼0.25 MeV
when the γ band of the core is included and lower than
the data. It is also noted that the calculated band 4 presents
a staggering possibly due to a Coriolis coupling that is too
strong, and this could be solved by adding a magnetic dipole
particle-core interaction term to the present model [31]. In
Fig. 5(b), band 5 is a γ phonon excitation band built on
Jπ = 7/2−

5 at 1.313 MeV, close to the calculated γ band
head, 1.152 MeV, of the core 156Gd. Moreover, the dominated
configurations of band 5 are similar as those of band 1.
The CQC model can reproduce the moments of inertia for
the ground-state band of 157Gd very well. The quasiparticle
excitation bands 2 and 3 share similar moments of inertia with
those of band 1. The signature splitting of calculated band
4 results in staggered moments of inertia, while band 5 has
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TABLE V. The probabilities of dominated configurations of
selected states in ground state band of 159Tb.

J π j ⊗ R A − 1 A + 1

9/2+ 2d5/2 ⊗ 2+
1 0.26 0.07

2d5/2 ⊗ 6+
1 0.40 0.07

11/2+ 2d5/2 ⊗ 4+
1 0.34 0.06

2d5/2 ⊗ 6+
1 0.18 0.06

2d5/2 ⊗ 8+
1 0.15 0.02

13/2+ 2d5/2 ⊗ 4+
1 0.26 0.07

2d5/2 ⊗ 8+
1 0.37 0.06

15/2+ 2d5/2 ⊗ 6+
1 0.37 0.07

2d5/2 ⊗ 8+
1 0.14 0.05

2d5/2 ⊗ 10+
1 0.15 0.02

17/2+ 2d5/2 ⊗ 6+
1 0.25 0.07

2d5/2 ⊗ 10+
1 0.36 0.06

a decreasing J (1) and an increasing J (2) as functions of
spin.

For the positive-parity bands of 157Gd in Fig. 6, the calcu-
lated band 1, originated from the 1i13/2 neutron configuration,
is in good agreement with the data for both excitation energies
and J (1). When the γ band of the core is included, band
3 built on Jπ = 1/2+

2 in Fig. 6(a) is lowered by ∼0.3 MeV
and denoted as band 2 in Fig. 6(b) since they have the same
dominant single-particle configurations. Then the theoretical
results reproduce the data for the excitation energies and the
trend of J (1) of band 2. Band 3 in Fig. 6(b) corresponds to
band 2 in Fig. 6(a), and is almost unchanged by including γ
band. Band 4 is a γ phonon excitation band and possesses
similar single-particle configurations and moments of inertia
as those of band 1.

Tables I, II, III, and IV collect the results for intraband
and interband electric quadrupole E2 and magnetic dipole
M1 transition rates of 159Tb and 157Gd. The theoretical results
are calculated from the microscopic CQC model with both the
ground state and γ bands of the core. For the E2 transition, the
bare charge of a proton is used. For the M1 transition, three g
factors are necessary: gc for the core; and gs and gl for the spin
and orbital parts of single particle, respectively. In the present
work, gc = Z/A is used for the well-deformed even-mass core
and gl = 1(0) for the single proton (neutron). The spin g factor
gs is quenched by 30% with respect to the value of the free
nucleon in this mass region to simulate the spin polarization
effect. This polarization effect can be described in terms of
the coupling to excitations of the even core produced by
spin-dependent fields, which are associated with the presence
of unsaturated spins [1]. The theoretical results are in very
good agreement with the data for intraband E2 transitions of
the ground state band in 159Tb and 157Gd. The model also
reproduces the systematic trend of the M1 transitions but
fails in the description of the staggering behavior (cf. Fig. 7).
This can be understood from the wave functions in Table V,
where the dominant configurations for some selected states
of the ground-state band in 159Tb are listed as examples. All
the states predominately correspond to the 2d5/2 single-particle

configuration. Jπ = 11/2+ and 13/2+ have larger overlap
and consequently larger M1 matrix element according to
Eqs. (10)–(13) and (21) than that between Jπ = 11/2+ and
9/2+. This leads to a stronger B(M1; 13/2+ → 11/2+) than
B(M1; 11/2+ → 9/2+). Similar results are also found in the
states Jπ = 13/2+, 15/2+, and 17/2+.

There are no available experimental data for the intraband
and interband transitions of the excitation bands. The theo-
retical results for intraband E2 transitions of the excitation
bands have similar trends and quantitates as those of the
ground-state bands except for the positive-parity γ phonon
excitation band (band 4) in 157Gd, while the intraband B(M1)
are rather different since they are sensitive to the dominant
single-particle configurations of the bands. For the interband
transitions, we only list relatively larger transitions and they are
generally much smaller than those of the intraband transitions.
However, the interband transitions for the positive-parity band
4 to band 2 and negative-parity band 2 to band 1 in 159Tb are
rather large because the connected two bands share similar
single-particle configurations.

Figure 7 displays the core and single-particle contributions
to the intraband B(E2; J → J − 1), B(E2; J → J − 2), and
B(M1; J → J − 1) in the ground-state bands of 159Tb and
157Gd. It is found that the B(E2) transitions are domi-
nated by the core component and present monotonically
increasing B(E2; J → J − 2) and monotonically decreasing
B(E2; J → J − 1) as functions of spin. This is because
the core has the majority of the charged particles and they
are strongly correlated with the deformation. For the M1
transitions, both the core and single-particle components
contribute to the B(M1) because the �J = 1 states have
a rather large overlap with the dominant configurations (cf.
Table V), and consequently, large reduced matrix elements for
both the single particle and core according to Eqs. (10)–(13),
(20), (21). Moreover, the reduced matrix elements of the two
components have the same phase, and therefore leads to an
enhancement of the total reduced matrix elements and B(M1).

IV. SUMMARY AND OUTLOOK

In summary, we have developed a microscopic CQC model
for calculating spectroscopic properties of odd-mass nuclei.
The dynamics of our CQC Hamiltonian are determined by
microscopic input energies, quadrupole matrix elements, and
pairing gaps corresponding to the collective excitation states
of the even-mass core and spherical single-particle states of the
odd nucleon. These are calculated from a quadrupole collective
Hamiltonian for collective motion of the core combined with
a constrained triaxial relativistic Hartree-Bogoliubov model
with a relativistic density functional PC-PK1 in the particle-
hole channel, and a separable pairing force in the particle-
particle channel. In the present version of the model, only
the Fermi surface λ and coupling strength χ are specifically
adjusted to the experimental data. The model is tested in
a series of illustrative calculations of low-lying spectra for
the axially deformed odd-proton nucleus 159Tb and the odd-
neutron nucleus 157Gd. It can reproduce the excitation energies,
kinematic and dynamic moments of inertia, B(E2), as well
as the systematic trend of B(M1) very well. The γ phonon
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FIG. 7. The core and single-particle contributions to the intraband B(E2; J → J − 1), B(E2; J → J − 2), and B(M1; J → J − 1) in the
ground-state bands of 159Tb (left panels) and 157Gd (right panels). In 157Gd, the single neutron does not contribute to the E2 transitions.

excitation bands and the interband E2 and M1 transition rates
are also predicted. It is also found that the electric quadrupole
transitions are dominated by the core component, while both
the core and single-particle components contribute to the
magnetic dipole transitions.

In this study, the core quasiparticle coupling is described
by a quadrupole interaction with a free parameter χ , and we
also find that this parameter is not so easy to be determined

microscopically in the present theoretical framework (cf.
Appendix). This could be modified by using the integral of
the intrinsic quasiparticle states (as functions of deformation
parameters) calculated from covariant EDF and the wave
functions of the core in the collective space as in Ref. [37].
The method does not involve any free parameter and can also
be easily extended to include the octupole interaction based on
our microscopic quadrupole-octupole collective Hamiltonian

FIG. 8. (left panel) Quasiparticle energies relevant for the band heads of the low-lying bands as functions of χ calculated by CQC model
with the Fermi surface choosing as the average value of RHB calculation and (right panel) single quasiparticle energies as functions of axially
deformed parameter β calculated by RHB.
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model [49,50]. Moreover, the description of B(M1) could be
improved by including the polarization effect of the time-
reversal breaking using the method recently introduced by
Rohoziński [51].
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APPENDIX: EVOLUTION OF QUASIPARTICLE
ENERGIES IN CQC MODEL

In this appendix, we take 159Tb as an example to show the
evolution of the quasiparticle energies relevant for the band
heads of the low-lying bands [eigen energies of Hqp in Eq. (2)]
as functions of χ calculated by CQC model and compare to
the single quasiparticle energies as functions of β calculated
by RHB in Fig. 8. The patterns of these two panels are rather
similar, while the details are somewhat different, especially for
the lowest three levels. This may be because the present CQC
model is not self-consistent and does not include higher order
multipole interactions. This implies that the two parameters λ
and χ are not so easy to be determined microscopically in the
present framework of CQC model.
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Rev. C 69, 034338 (2004).
[34] Ch. Droste, S. G. Rohoziński, L. Próchniak, K. Zając, W. Urban,

J. Srebrny, and T. Morek, Eur. Phys. J. A 22, 179 (2004).
[35] M. Meyer, J. Daniére, J. Letessier, and P. Quentin, Nucl. Phys.

A 316, 93 (1979).
[36] J. Libert, M. Meyer, and P. Quentin, Phys. Rev. C 25, 586 (1982).
[37] D. E. Medjadi, P. Quentin, M. Meyer, and J. Liber, Phys. Lett.

B 181, 185 (1986).
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