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Temperature effects on nuclear pseudospin symmetry in the Dirac-Hartree-Bogoliubov formalism
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We present finite-temperature Dirac-Hartree-Bogoliubov (FTDHB) calculations for the tin isotope chain
to study the dependence of pseudospin on the nuclear temperature. In the FTDHB calculation, the density
dependence of the self-consistent relativistic mean fields, the pairing, and the vapor phase that takes into account
the unbound nucleon states are considered self-consistently. The mean-field potentials obtained in the FTDHB
calculations are fit by Woods-Saxon (WS) potentials to examine how the WS parameters are related to the
energy splitting of the pseudospin pairs as the temperature increases. We find that the nuclear potential surface
diffuseness is the main driver for the pseudospin splittings and that it increases as the temperature grows. We
conclude that pseudospin symmetry is better realized when the nuclear temperature increases. The results confirm
the findings of previous works using relativistic mean field theory at T = 0, namely that the correlation between
the pseudospin splitting and the parameters of the Woods-Saxon potentials implies that pseudospin symmetry is a
dynamical symmetry in nuclei. We show that the dynamical nature of the pseudospin symmetry remains when the
temperature is considered in a realistic calculation of the tin isotopes, such as that of the Dirac-Hartree-Bogoliubov
formalism.
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I. INTRODUCTION

Since the seminal article published by Ginocchio [1],
pseudospin symmetry has been extensively studied in rela-
tivistic mean field (RMF) and relativistic Hartree-Fock (RHF)
theories, with the intention of understanding the origin of
pseudospin symmetry and its symmetry breaking.

The evidence for pseudospin symmetry comes from nuclear
energy spectra with quasidegeneracy between pairs of single-
particle states with quantum numbers (n,l,j = l + 1/2) and
(n − 1,l + 2,j = l + 3/2) in a spherical basis where, n, l, and
j are the radial, orbital, and total angular momentum quantum
numbers, respectively, of the upper component of the Dirac
spinor. Pseudospin symmetry was recognized as a relativistic
symmetry when Ginocchio point out the pseudospin doublets
can be written as (ñ = n − 1,l̃ = l + 1,j̃ = l̃ ± 1/2), where
the quantum numbers ñ, l̃, and j̃ are the quantum numbers of
the lower component of the Dirac spinor [1,2]. Pseudospin
symmetry is exact when the doublets with j = l̃ ± s̃ are
degenerate.

In RMF theory, the Dirac equation with attractive scalar,
VS(r), and repulsive vector, VV (r), potentials displays ex-
act pseudospin symmetry when �(r) = VS(r) + VV (r) = 0
or more generally when �′(r) = d�(r)/dr = 0 [3,4]. For
finite nuclei, the �(r) field plays the role of the nuclear
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binding potential in a relativistic theory. Thus, the bound
states cannot exist for �(r) = 0 when we are considering
spherically symmetric potentials that vanish at large distances
[1]. However, exact pseudospin symmetry is possible when
�(r) = VV (r) − VS(r) is a spherical relativistic harmonic
oscillator potential because it does not tend to zero at large
distances [5–7]. Recently, it has been shown that this behavior
is shared by general radial potentials that tend to infinity
at large distances [8]. In this case, �(r) acts as a binding
potential in the second-order differential equation of the lower
component of Dirac spinor, because it acts as an effective
mass that goes to infinity. Thus, in this case the pseudospin
symmetry is exact and there are still bound states.

For realistic nuclei with nuclear mean fields which vanish
at large distances, the cancellation between scalar and vector
potentials gives a relatively small binding potential of about
� ≈ −60 MeV at the center and thus, pseudospin symmetry
cannot be exact. The purpose the studies performed in most
works on pseudospin symmetry is to understand its origin and
its symmetry breaking [9,10].

The Dirac equation has been solved for different potentials
and systems to study how the pseudospin doublets become
degenerate or almost degenerate. Usually, the pseudospin split-
ting depends on the shape of the potentials that are used to solve
the Dirac equation. In previous works [11,12], the Woods-
Saxon potential was used because the conditions �(r) = 0 and
�′(r) = 0 can be met approximately by varying the parameters
of this potential. The pseudospin splitting depends on the

2469-9985/2017/96(5)/054306(11) 054306-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.96.054306


R. LISBOA, P. ALBERTO, B. V. CARLSON, AND M. MALHEIRO PHYSICAL REVIEW C 96, 054306 (2017)

depth of |�0|, its surface diffuseness, and its radius. Then, the
authors reduced the Dirac equation into two Schrödinger-like
equations for the lower (and upper) spinor component, each
being a sum of different terms: kinetic, pseudospin orbit (and
spin), a Darwin term, and potential terms with �(r) and �(r)
potentials. By taking the expectation values of these terms, one
obtains an energy decomposition for each single-particle level,
allowing the study of the nonperturbative nature of pseudospin
symmetry. The pseudospin-orbit term has the denominator
E − �(r) and thus becomes infinite when E = �(r), but the
singularity is canceled by kinetic and � terms originating in
the quasidegeneracy [12]. In fact, a cancellation exists between
the large pseudospin-orbit potential and other terms, showing
the dynamic character of the pseudospin symmetry and its
nonperturbative nature [9–12].

Before this understanding of the nonperturbative nature
of the pseudospin symmetry, the condition �′(r) = 0, which
appears in the pseudospin-orbital term, was interpreted as
favoring the restoration of pseudospin symmetry due its
competition with the centrifugal barrier [13]. For exotic nuclei
with highly diffuse potentials, �′(r) ≈ 0 may be a good
approximation and then the pseudospin symmetry will be
good [14]. In this case, to study exotic nuclei, it is necessary
to use a relativistic continuum Hartree-Bogoliubov (RCHB)
theory that properly considers the pairing correlations and the
coupling to the continuum via the Bogoliubov transformation
in a microscopic and self-consistent way [14]. This approach
is also useful when studying exotic nuclei with unusual N/Z
ratios, where the neutron (or proton) Fermi surface is close
to the particle continuum. The contribution of the continuum
and/or resonances is then important [15]. In Ref. [16], the
pseudospin symmetry of the resonant states in 208Pb was
calculated by solving the Dirac equation with Woods-Saxon-
like vector and scalar potentials using the coupling-constant
method. It was found that the diffusivity of the potentials plays
a significant role in the energy splitting and the width of the
resonant pseudospin partners. In Ref. [17], the pseudospin
symmetry in single-particle resonant states in nuclei was also
shown to be exactly conserved under the same condition as
for the pseudospin symmetry in bound states, i.e., �(r) = 0 or
�′(r) = 0.

It is well accepted that RCHB theory can be used to study
pairing correlations due to the short-range part of the nucleon-
nucleon interaction in open shell nuclei, as well as to describe
the exotic nuclei. However, the calculations of finite nuclei can
be better performed when the pairing correlations, the nucleon,
and meson mean fields are all calculated self-consistently and
this is not done for the pairing field in RCHB calculations,
where the pairing correlation is introduced in a nonrelativistic
way as a Skyrme-type δ force or finite-range Gogny force [14].
In Ref. [18], the self-consistent Dirac-Hartree-Bogoliubov
(DHB) approach was introduced to self-consistently include
pairing energy and gaps in calculations for spherical and
deformed nuclei. As an extension, we have applied the DHB
approach to hot nuclei including finite-temperature effects to
study spherical and deformed nuclei and to analyze how the
binding energy, the neutron and charge radii, the deformation,
and in particular the pairing gap change with temperature
[19]. We introduce in our finite temperature DHB (FTDHB)

calculation a vapor subtraction procedure to take into account
the contribution of the resonant nucleon states and to remove
long-range Coulomb repulsion between the hot nucleus and
the gas as well as the contribution of the external nucleon gas
[20–22]. Quite recently, we found that for small temperatures
the vapor subtraction procedure is not very relevant to the
change of the pairing fields with increasing temperature
because the critical superfluidity and superconducting phase
transitions occur at T ∼ 1 MeV. The effects of the vapor phase
that takes into account the unbound nucleon states become
important only at temperatures T � 4 MeV, allowing the
study of nuclear properties of finite nuclei from zero to high
temperatures [23].

As in RCHB theory, the advantage of FTDHB to study
pseudospin symmetry is that the particle levels for the bound
states in the canonical basis are the same as those coming from
solving the Dirac equation with scalar and vector potentials
from RMF [14]. The form of the radial equations for the lower
and upper components of the Dirac equation remain the same
in the canonical basis even after the pairing interaction has
been taken into account [14]. Furthermore, another advantage
of FTDHB calculations lies in the fact that it considers the
proper isospin dependence of the spin-orbit term, as well as the
isospin and energy dependence of the pseudospin symmetry
[14]. In non-self-consistent RMF calculations, the isospin
asymmetry of the nuclear pseudospin comes mainly from
the vector-isovector Vρ potential and its effect on different
terms of the Schrödinger-like equation contributing to the
pseudospin splittings cancel each other to a certain extent [24].
In Ref. [25], a density-dependent RHF (DDRHF) theory for
nuclear systems was introduced without dropping the Fock
terms. Thus, the coupling was taken to be a function of the
baryonic density, as well as considering the pion-nucleon
coupling, which is effective only through exchange terms. The
contributions of the σ , ω, and ρ mesons in this DDRHF are
much smaller than their corresponding ones in RMF [25].
The Fock terms change the effective mass that contains the
scalar part of the nucleon self-energy as well the vector
potential. These effects could play some role on the symmetry
of pseudospin, which depends on �(r) = VS(r) + VV (r). The
same authors show that the Fock terms bring significant
contributions to the pseudospin orbital potential, but these
contributions are canceled by other exchange terms due to
the nonlocality of the exchange potentials [26]. As a result,
the pseudospin symmetry is preserved even considering the
Fock terms. On the other hand, the density dependence of the
self-consistent relativistic mean fields and pairing fields, as
well as the vapor phase that considers the unbound nucleon
states, allows us to analyze in a realistic way the effect of
temperature on the quasidegeneracy of pseudospin partners.

In this work, we use FTDHB calculations to study the
temperature dependence of mean-field potentials and its effects
on pseudospin symmetry. The attractive scalar, VS(r), and
repulsive vector VV (r), potentials obtained in our calculations
have a shape very similar to a Woods-Saxon one. We fit the
central potential �c mean field, as well as the total potential for
neutrons and protons with a Woods-Saxon shape, for each tin
isotope in order to better assess how temperature changes the
Woods-Saxon parameters: the depth of potential, the radius R,
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and the surface diffuseness a. In RMF theory at temperature
zero, there is a correlation between the pseudospin-orbit
term and the pseudospin energy splitting when the radius,
diffusivity, and the depth of potential are varied [11,12,24].
We will show that the magnitude of the pseudospin doublets
splitting decreases with increasing temperature and that the
behavior of the parameters of the Woods-Saxon potential for
T �= 0 obeys the same systematics as for T = 0.

We use the tin nuclei as a function of the number of nucleons
from A = 100 to 170 and temperatures varying from T = 0 up
to T = 8 MeV. These tin isotopes allow us to apply our study
to the stable and unstable nuclei from proton drip line to the
neutron drip line. The pseudospin symmetry was investigated
before in these exotic nuclei using a RCHB calculation but at
T = 0 [13]. For T �= 0, these nuclei were also used to study
the evolution of the pairing gaps and critical temperature along
isotopic and isotonic chains of semimagic nuclei in FTDHB
[23] and FTRHFB [27] calculations.

The paper is organized as follows. In Sec. II, we present
briefly the formalism of the finite temperature Dirac-Hartree-
Bogoliubov model. In Sec. III, we present and discuss the
results of the calculations, and in Sec. IV, we draw our
conclusions.

II. THE FORMALISM

We use the self-consistent Dirac-Hartree-Bogoliubov
(DHB) formalism of Ref. [18], but we consider explicitly
the self-consistent temperature dependence of the relativistic
pairing fields, as well as the vapor phase, to take into account
the unbound nucleon states. This finite-temperature DHB
(FTDHB) formalism was developed in an earlier work [23]
and includes the Coulomb and meson mean fields, as well as
pairing correlations, to calculate the properties of hot nuclei
self-consistently. As discussed before, the Fock terms are
neglected, although the most important effects of the Fock
terms, due to exchange of the short-range σ , ω, and ρ mesons,
can be taken into account by using adjusted Hartree terms. The
Hamiltonian form is given by(

ε + μt − ht (�x) �̄
†
t (�x)

�̄t (�x) ε − μt + ht (�x)

)( Ut (�x)
γ0Vt (�x)

)
= 0,

t = p,n, (1)

where, in the diagonal terms, ε denotes the quasiparticle
energies, μt represents the chemical potential to be used as
a Lagrange multiplier to fix the average number of protons
(t = p) and neutrons (t = n), and ht stands for the single-
particle Hamiltonian of the nucleon. The nondiagonal terms,

�t and its conjugate �
†
t , are the pairing fields, which account

for correlated pairs of time-reversed single-particle states, i.e.,
the paired particle-particle states. The components Ut (�x) and
Vt (�x) represent the Dirac spinors corresponding to the normal
and time-reversed components, respectively. We write each of
the four-component spinors as

Utα(�x) =
(

GU,tα(�x)
i FU,tα(�x)

)
and γ0Vtα(�x) =

(
GV,tα(�x)
i FV,tα(�x)

)
.

(2)

The Dirac Hamiltonian is

ht (�x) = −i �α · �∇ + βM∗(�x) + Vt (�x) , (3)

where the effective mass M∗ contains the scalar part of the
nucleon self-energy from the Dirac field and Vt is the vector
potential. These are written as

M∗(�x) = M − gσ σ (�x), (4)

Vt (�x) = gω ω0(�x) + gρ

2
2mt ρ

00(�x)

+ e

(
1

2
+ mt

)
A0(�x) . (5)

The constant M is the nucleon mass, while gσ , gω, gρ , and e
are the corresponding coupling constants for the mesons and
the photon. The isospin projections are mt = 1/2 for protons
and mt = −1/2 for neutrons. The fields ω0 and A0 are the
timelike components of the four-vector ω and photon fields,
while ρ00 is the third component of the timelike component of
the isovector-vector ρ meson,

ω0(�x) = gω

∫
d3z d0

ω(�x − �z)ρB(�z) ,

ρ00(�x) = gρ

2

∫
d3z d0

ρ(�x − �z)ρ3(�z) ,

A0(�x) = e

∫
d3z d0

γ (�x − �z)ρc(�z) ,

σ (�x) = gσ

∫
d3z dσ (�x − �z)ρs(�z)

=
∫

d3z d0
σ (�x − �z)[gσρs(�z) − g3 σ (�x)2 − g4 σ (�x)3],

(6)

where the propagators are

d0
j (�x − �z) = 1

4π |�x − �z|

×
{

1, for photons,
exp

(−mj |�x − �z|), for mesons.
(7)

The Hartree contributions to the self-energy can be written in
terms of the normal densities,

ρs(�x,T ) = 2
∑

εtα<0,t

[U†
tαγ0Utαn(εtα,T ) + V†

tαγ0Vtαn(−εtα,T )],

ρB(�x,T ) = 2
∑

εtα<0,t

[U†
tαUtαn(εtα,T ) + V†

tαVtαn(−εtα,T )],

ρ3(�x,T ) = 2
∑

εtα<0,t

2mt [U†
tαUtαn(εtα,T ) + V†

tαVtαn(−εtα,T )],

ρc(�x,T ) = 2
∑

εtα<0,t

(mt + 1/2) [U†
tαUtαn(εtα,T )

+V†
tαVtαn(−εtα,T )]. (8)
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The Hamiltonian form of the pairing field is

�̄
†
t (�x) = γ0�t (�x)γ0

= cpair

[
g2

σ

m2
σ

γ0 κt (�x,T ) γ0

−
(

g2
ω

m2
ω

+ (gρ/2)2

m2
ρ

)
γ0γ

μ κt (�x,T ) γμγ0

]
, (9)

where we neglect its Coulomb and nonlinear σ -meson con-
tributions. We approximate the contributions of the other
mesons using the zero-range limit of the meson propagators.
The zero-range approximation greatly simplifies the numerical
calculations but must be calibrated phenomenologically. Thus,
an overall constant cpair has been introduced in the expression
for the pairing field to compensate for deficiencies of the
interaction parameters and of the numerical calculation [18].
In Ref. [23], we emphasize that this is not a weakness of
our calculations alone, but of any Hartree-(Fock)-Bogoliubov
calculation using a limited space of states and an effective
interaction, even those using a finite-range one. We studied
the deficiencies of RMF meson-exchange interactions for the
description of pairing in nuclear matter and nuclei in detail in
Ref. [28], where we examined the strong correlation between
the position of the NN virtual state in the vacuum and the
magnitude of the pairing field in nuclear matter. Our conclusion
was that RMF interactions do not describe pairing correctly
because they do not describe low-energy NN scattering
correctly. The use of RMF interactions in the particle-particle
channel can be corrected by introducing a cutoff, multiplying
by a constant factor, or both [18]. Furthermore, to take into
account correctly the density-dependent competition between
scalar and vector interactions that occurs in both the mean
field and the pairing, we use a fully relativistic interaction in
the pairing channel [29,30].

The anomalous density κt (�x,T ) is given by

κt (�x,T ) = 1

2

∑
εtγ <0

[Utγ (�x)V tγ (�x) + γ0BV∗
tγ (�x)UT

tγ (�x)B†]
× [n(εtγ ,T ) − n(−εtγ ,T )], (10)

where B = γ5 C and C is the charge conjugation matrix that
provides the time-reversed Dirac structure of the wave vectors.

For both normal and anomalous densities, one sees that the
temperature enters in our calculation only through the Fermi
occupation factors

n(εγ ,T ) = 1

1 + exp(εγ /T )
, (11)

where εγ represent the quasiparticle energy. Thus, the temper-
ature dependence of a solution of the FTDHB equation comes
from the quasiparticle normal and anomalous densities. When
T → 0, the Fermi occupation factors are n(εγ ,T ) = 1 and
n(−εγ ,T ) = 0 and we recover the usual nuclear densities of
a finite nucleus. The quasiparticle energies that enter each
Fermi occupation factor have opposite signs. Thus, as T
increases, there is a reduction of the anomalous density due
to the difference between the two contributions to the Fermi

occupation factor, as we see in Eq. (10). As a consequence,
the pairing energy and gap tend to zero as the temperature
increases [23].

Specifically, for axially symmetric potentials, the scalar
and vector potential are independent of the azimuthal angle
such that VS,V = VS,V (r⊥,z). We have that VS,V (r⊥,z) → 0
for r⊥ → ∞ or z → ±∞ and r⊥VS,V (r⊥,z) → 0 for r⊥ → 0
[31]. Furthermore, the rotational symmetry is broken when
we chose this axial symmetry, but the densities are invariant
with respect to a rotation around the symmetry axis. As a
consequence the projection of the total angular momentum
along the symmetry axis �α , as well as the parity π and the
isospin projection t , are still good quantum numbers. Because
of this and the time-reversed Dirac structure, the two equal
and opposite values of angular momentum projection ±�α

are degenerate in energy.
The Dirac spinors in Eqs. (2) take the forms

Utα(�x) = 1√
2π

⎛
⎜⎜⎜⎝

G+
U,tα(r⊥,z) ei(�α−1/2)ϕ

G−
U,tα(r⊥,z) ei(�α+1/2)ϕ

i F+
U,tα(r⊥,z) ei(�α−1/2)ϕ

i F−
U,tα(r⊥,z) ei(�α+1/2)ϕ

⎞
⎟⎟⎟⎠ (12)

and

γ0Vtα(�x) = 1√
2π

⎛
⎜⎜⎜⎝

G+
V,tα(r⊥,z) ei(�α−1/2)ϕ

G−
V,tα(r⊥,z) ei(�α+1/2)ϕ

i F+
V,tα(r⊥,z) ei(�α−1/2)ϕ

i F−
V,tα(r⊥,z) ei(�α+1/2)ϕ

⎞
⎟⎟⎟⎠ . (13)

Thus, the radial wave functions G±
U,V (r⊥,z) and F±

U,V (r⊥,z)
and the meson fields are expanded in terms of the eigenfunc-
tions of a deformed axially symmetric harmonic oscillator:

Vosc(z,r⊥) = 1
2M

(
ω2

zz
2 + ω2

⊥r2
⊥
)
, (14)

where the oscillator frequencies h̄ωz and h̄ω⊥ are written in
terms of a deformation parameter β0, as

h̄ωz = h̄ω0e
−
√

5/(4π)β0 and h̄ω⊥ = h̄ω0e
+ 1

2

√
5/(4π)β0 .

(15)

The (z,r⊥) dependence of eigenfunctions in large and small
components of the Dirac spinors are divided by oscillator
length,

bz =
√

h̄/Mωz and b⊥ =
√

h̄/Mω⊥ , (16)

and because of volume conservation it is guaranteed
bzb

2
⊥ = b3

0. The parameter b0 = √
h̄/Mω0 stands for the

oscillator length corresponding to the oscillator frequency
h̄ω0 of the spherical case. In this way, the spherical and
deformed basis are determined by oscillator frequency h̄ω0

and deformation β0. Thus, the method can be applied to both
spherical and axially deformed nuclei.

Inserting these expansions of eigenfunctions into the Dirac-
Gorkov equation (1), we can reduce the equation to the
diagonalization problem of a symmetric matrix and calculate
the Hartree densities of Eq. (8) and the components of the
anomalous density of Eq. (9). The fields of the massive mesons
are obtained by solving the Klein-Gordon equations using a
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similar expansion with the same deformation parameter β0 but
a smaller oscillator length of bB = b0/

√
2. The Coulomb field

is calculated directly in configuration space.
This method is a direct generalization of the one described

in Refs. [18,23,32–35] where more details can be found.

III. RESULTS

In this section, we present FTDHB calculations for hot
nuclei to investigate the effect of temperature in the mean field
potentials and its consequences for the pseudospin symmetry.
To study the effect of temperature in the mean field potentials,
we examine the tin isotopes from A = 100 to A = 170. We
use the nonlinear Walecka model with the NL3 interaction
because it allows us a comparison with our calculation at
temperature zero [36]. The study of nuclear systems has
been made recently using new types of parametrizations such
as density-dependent meson-nucleon couplings (DD-ME1)
[37] as well as point-coupling interaction (PC-PK1) [38].
These interactions have been used to study, for instance, the
paring interaction at finite temperature [27]. The results are
consistent with those obtained by us at temperatures of about

1–2 MeV, where the pairing interaction is important, and also
for hot nuclei at temperatures above 2 MeV [23,39,40]. In
our calculations, the expansion of harmonic oscillator basis is
truncated at a finite number of major shells, with the quantum
number of the last included shell set by NF = 14 in the case of
the fermions and by NB = 24 for the bosons. These bases are
sufficient to achieve convergence in our numerical calculation
and reproduce experimental and earlier theoretical results of
the literature at both low and high temperatures. In all cases, the
oscillator frequencies h̄ω0 = h̄ωz = h̄ω⊥ = 41A−1/3 MeV,
corresponding to an undeformed basis, were used. A value of
the overall constant cpair = 0.55 was introduced in the pairing
interaction for neutrons and protons, Eq. (9), which due to the
self-consistency, results in a null pairing field, as expected for
the closed-shell nuclei we are studying. This means we are
studying the spherical tin isotopes from A = 100 to A = 170.
Among them, the nuclei 100Sn, 132Sn, and 176Sn have pairing
gap and energy zero, so that pairing has no effect on pseudospin
symmetry over the entire range of temperatures considered.
For open-shell and deformed nuclei, the nuclear pairing energy
and gap vanishes above the relatively low temperatures of
T = 0.5–1.2 MeV [23,27].
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FIG. 1. Nuclear potentials as a function of the radial distance for the tin isotope chain. In the top panels, the meson potentials for (a)
neutrons and (b) protons with the Coulomb potential are displayed for 100Sn (full lines) and 150Sn (dashed lines). In the bottom panels, the
potentials (c) Vn(r) for neutrons and (d) Vp(r) for protons are shown from A = 100 to A = 170.
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In Fig. 1(a), we show the potentials Vρ(r), �c(r) =
Vσ (r) + Vω(r), and Vn(r) = �c(r) − Vρ(r), as a function of
the radial distance for 100Sn and 150Sn at T = 0. The full lines

represent the nucleus 100Sn, for which we see that the Vρ(r)
potential (empty squares) is very small, while its sum with
�c(r) (empty circles) produces a shallow potential Vn(r) (full
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FIG. 2. Nuclear potentials of the nucleus 100Sn as a function of the radial distance with temperatures varying from T = 0 to T = 8 MeV.
The left column represents our FTDHB calculations for (a) �c(r), (c) Vn(r), and (e) Vp(r). The right column shows our fit with a Woods-Saxon
shape of the (b) �c(r), (d) Vn(r), and (f) Vp(r), together with the Woods-Saxon parameters depth V0 (in MeV), radius R (in fm), and surface
diffuseness a (in fm).
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circles) for neutrons. The same behavior can be seen for 150Sn,
represented by the dashed lines, but now Vρ(r) is large and, as
a consequence, Vn(r) is more affected by it. In Fig. 1(b), the
Vρ(r) potential has the opposite sign, the repulsive Coulomb
potential Vcoul(r) has a long range, and their sum shifts
the potential Vp(r) = �c(r) + Vρ(r) + Vcoul(r) for protons.
Because of the small Vρ(r) potential in comparison to Vcoul(r)
for 100Sn, the large difference between Vp(r) and �c(r) at the
nuclear center is due practically to Vcoul(r) alone. For 150Sn, the
contribution of Vρ(r) is significant in comparison to Vcoul(r),
and as a consequence there is a cancellation between the two
that produces a difference of the same order of magnitude
between Vp(r) and �c(r). In the DHB calculation, the nuclear
potentials for protons and neutrons for the case N = Z (100Sn)
are not the same. The Coulomb potential changes the proton
energy levels and, because of that, in the self-consistent DHB
calculation the neutron energy levels are also changed in such
a way that there is a net Vρ potential [24].

In Fig. 1(c), we show the potential Vn(r) for neutrons, and
in Fig. 1(d), the potential Vp(r) for protons as a function of
radial distance for the tin isotope chain from A = 100 to
A = 170. These results, obtained in a FTDHB self-consistent
calculation, show that the mean-field potentials have the shape
of a Woods-Saxon potential. In Refs. [11,12], RMF studies at
T = 0 were performed to investigate the correlation between
the pseudospin splitting and the parameters of the Wood-Saxon
potential: its depth (�0), surface diffuseness (a), and radius
(R). In Ref. [24], this was done for a single isotope chain. The
neutron Vn(r) and proton Vp(r) mean-field potentials in a tin
isotope chain were parameterized by a Woods-Saxon form as
functions of A. For the tin isotopes as A increases, the central
potential |�0| decreases and the surface diffuseness increases,
effects which both favor the pseudospin symmetry. However,
the radius increases with A, which can partially offset those
effects [11]. Since the values |�0|R2 are roughly constant for
neutrons, the correlation between these two values, mentioned
above, implies that the effects of increasing R and decreasing
|�0| in the neutron central potential, when A increases,
balance each other. Thus, the dominant effect comes from
the increasing value of a, slightly favoring the pseudospin
symmetry [24]. However, for protons, the value |�0|R2 is not
constant, because both |�0| and the radius R increase as A
increases for the tin isotopes Hence, the changes in |�0| and
R disfavor the pseudospin symmetry in this case. The isospin
asymmetry in pseudospin symmetry is due to the isovector
Vρ potential, which is repulsive for neutrons and attractive for
protons and makes the vector potential VV bigger for neutrons
than for protons. As a consequence, |�0| becomes smaller for
neutrons than for protons [11,24].

In order to study the same effect at finite temperature, we
will fit the self-consistent potentials �c(r), Vn(r), and Vp(r) to
a Woods-Saxon shape for T �= 0. In the left column of Fig. 2,
we show our FTDHB calculations of the (a) �c(r), (c) Vn(r),
and (e) Vp(r) potentials as a function of the radial distance for
the nucleus 100Sn, in equilibrium with the external gas, as the
temperature varies from T = 0 to T = 8 MeV. At T = 0, the
�c(r) [in Fig. 2(a)] and Vn(r) [in Fig. 2(c)] potentials vanish at
the surface. When the temperature is increased, these potentials
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FIG. 3. The Woods-Saxon potential parameters for the (a) depth
|�0,c| in (MeV), (b) radius Rc (in fm), and (c) diffusivity ac (in fm)
vs temperature for tin isotope chain.
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FIG. 4. The Woods-Saxon parameters (a) |�c|R2
c and (b) diffusivity ac divided by their respective values at T = 0 vs temperature for the

tin isotope chain.

no longer go to zero at large radii because of the contribution
of the gas consisting of nucleons that evaporate for T �= 0. We
show the potential Vp(r) [in Fig. 2(e)] for protons in 100Sn
over the same range of the temperatures. The proton potential
vanishes at a larger radius than the neutron one because of the
long-range effect of the Coulomb potential. In our calculations,
we use the Bonche, Levit, and Vautherin procedure to take
into account the evaporated nucleons that become important
at temperatures above about 3–4 MeV [20,21]. Note that
beyond about T � 8 MeV, the nuclear structure is almost
completely dissolved since the stability of a hot nucleus
depends on maintaining the balance between surface and
Coulomb contributions, as discussed in Refs. [20–23].

To study the effect of temperature on pseudospin symmetry
and its possible causes, and in view of the systematics
uncovered in Ref. [24] referred to above, we study the
change in the shape of the self-consistent mean fields with
temperature, which appears as changes with temperature of the
Woods-Saxon parameters of the fitted potentials, namely their
depth (V0), radius (R), and diffusivity (a). We show in the right
column of Fig. 2 our fit with a Woods-Saxon shape of the (b)
�c(r), (d) Vn(r), and (f) Vp(r) potentials of the nucleus 100Sn,
together with the values of the corresponding Wood-Saxon

parameters, for temperatures varying from T = 0 to T = 8
MeV. The fit is good for temperatures T � 8 MeV and the
Bonche, Levit, and Vautherin procedure can be considered
adequate for our calculations in this temperature range. In the
right column of Fig. 2, we can read the Woods-Saxon param-
eters in the legend of each subfigure. We observe that, as the
temperature grows, the depths of the potentials decrease while
their radii and surface diffuseness parameters increase. The
depth of the potentials decreases about ∼10% between T = 0
and T = 8 MeV as the radii increase in about the same ratio of
∼10%. However, the surface diffuseness increases at least 50%
or more over the same range of temperatures. The same studies
were performed for 132Sn and 150Sn with similar results.

One can conclude from these figures that when the
temperature increases the central depth �0 decreases and the
radius and the surface diffuseness increase. To see this more
clearly, in Fig. 3 we show the Woods-Saxon parameters for
the tin isotopes as the temperature grows up to the limit
T = 8 MeV. In Fig. 3(a), the value of |�0,c| decreases as
the temperature increases. In Fig. 3(b), we show that the
radius Rc also increases with temperature. However, as we
see in Fig. 3(c), the surface diffuseness increases quickly
with increasing temperature. When we fix a value of the

TABLE I. Pseudospin energy splitting in MeV of the pseudospin partners of 100Sn for neutrons (�En) and protons (�Ep) at several values
of the temperature T in MeV.

T 2s1/2 1d3/2 �En 2p3/2 1f5/2 �En 2s1/2 1d3/2 �Ep 2p3/2 1f5/2 �Ep

0 34.38 38.74 4.36 20.94 24.23 3.29 19.25 23.74 4.49 6.44 9.64 3.20
1.0 34.38 38.60 4.22 20.97 24.18 3.21 19.28 23.63 4.36 6.49 9.62 3.13
2.0 34.24 37.80 3.56 21.01 23.81 2.79 19.32 23.03 3.71 6.69 9.45 2.75
3.0 33.87 37.06 3.19 20.93 23.46 2.52 19.17 22.50 3.33 6.82 9.30 2.48
4.0 33.45 36.38 2.93 20.87 23.14 2.27 18.95 22.01 3.06 6.96 9.18 2.22
5.0 33.00 35.62 2.62 20.88 22.81 1.93 18.73 21.47 2.74 7.19 9.07 1.88
6.0 32.43 34.70 2.27 20.90 22.45 1.55 18.47 20.83 2.37 7.50 9.00 1.50
7.0 31.69 33.56 1.87 20.87 22.03 1.15 18.12 20.07 1.95 7.85 8.95 1.10
8.0 30.74 32.10 1.36 20.76 21.42 0.67 17.68 19.10 1.42 8.25 8.85 0.60
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TABLE II. Pseudospin energy splitting for neutrons (�En) in MeV for pseudospin partners of 150Sn for several values of T in MeV.

T 2s1/2 1d3/2 �En 2p3/2 1f5/2 �En 2d5/2 1g7/2 �En 2f7/2 1h9/2 �En

0 32.91 35.78 2.87 21.93 24.66 2.73 11.79 13.29 1.50 3.11 2.52 −0.59
1.0 32.83 35.73 2.90 21.87 24.67 2.79 11.77 13.34 1.57 3.12 2.59 −0.53
2.0 32.62 35.57 2.94 21.79 24.71 2.91 11.85 13.54 1.69 3.32 2.90 −0.42
3.0 32.31 35.20 2.89 21.74 24.57 2.83 12.06 13.66 1.59 3.73 3.27 −0.46
4.0 31.87 34.63 2.75 21.69 24.31 2.62 12.37 13.77 1.40 4.31 3.77 −0.55
5.0 31.29 33.81 2.52 21.60 23.91 2.31 12.73 13.87 1.14 5.04 4.37 −0.67
6.0 30.53 32.73 2.20 21.45 23.37 1.92 13.13 13.95 0.82 5.91 5.07 −0.83
7.0 29.51 31.32 1.81 21.17 22.64 1.47 13.54 14.00 0.47 6.93 5.91 −1.02
8.0 28.17 29.48 1.31 20.72 21.66 0.94 13.95 13.97 0.03 8.16 6.87 −1.30

temperature, the value of |�0,c| decreases as A increases, while
both the radius Rc and surface diffuseness ac increase as A
increases. In fact, these results are expected due to the known
A1/3 dependence of the nuclear radius. Our results agree with
calculations of the RMF theory at T = 0 [11,12].

This opposing tendency of |�c| and R produces values
of |�c|R2

c that are roughly constant for each isotope from
T = 0 to T = 8 MeV. In Fig. 4, we show the product |�c|R2

c

over |�c,0|R2
c,0 at T = 0 for tin isotopes as the temperature

increases. The ratio is almost constant and changes very little
below T = 8 MeV. In Fig. 4(b), we show that diffuseness
ac over ac,0 at T = 0 also increases with temperature, but
this change is very large up to T = 8 MeV in comparison
to that seen in Fig. 4(a). Summarizing, as T increases, the
central depth |�0| decreases and the radius R increases, but
both effects balance each other, since the values of |�0|R2

are roughly constant. Thus, when T increases, the dominant
effect comes from the increasing diffuseness a, which favors
the pseudospin symmetry as found in Ref. [24].

In Table I, we show the pseudospin partners of the neutrons
and protons of 100Sn. The magnitude of the neutron pseudospin
energy splitting (�En in MeV) decreases with increasing
temperature. We also see that the pseudospin splitting also
decreases for protons (�Ep in MeV). However, for protons, the
pseudospin splitting is larger than for neutrons, at least for the
deep doublet [2s1/2 − 1d3/2] of the symmetric nucleus 100Sn.

In Table II, we show the neutron pseudospin partners of
150Sn. The magnitude of the pseudospin splitting increases
up to T = 2 MeV and then begins to decrease with the
temperature for the deeper doublets. The splitting of the
doublet [2f7/2 − 1h9/2] has the opposite sign and its magnitude

decreases up to T = 2 MeV and then starts to increase with
temperature. In Table III, we show the proton pseudospin
partners of 150Sn. The magnitude of the pseudospin splitting of
the doublets [2p3/2 − 1f5/2] and [2d5/2 − 1g7/2] increases up
to T = 2 MeV and then starts to decrease. The splitting of the
doublets [2s1/2 − 1d3/2] and [2f7/2 − 1h9/2] decreases with
temperature already from T = 0. The doublet [2d5/2 − 1g7/2]
is not populated at temperature T = 0 and [2f7/2 − 1h9/2] is
populated only when T � 2 MeV. The nonoccupied states at
T = 0 are due to the temperature effect when we consider the
Fermi occupation factor. If we analyze each pseudospin partner
of Tables II and III, we see that the energy splitting is smaller
for neutrons in comparison to protons, as expected from the
isospin asymmetry of the pseudospin symmetry [11,24].

In Fig. 5(a), we show several neutron pseudospin doublets
of the nucleus 150Sn. The magnitude of the energy splitting
increases with temperature up to T = 2 MeV and then begins
to decrease, except for the doublet [3s1/2 − 2d3/2], which
decreases monotonically. The energy splittings of the two
doublets [2f7/2 − 1h9/2] and [3p3/2 − 2f5/2] decreases with
temperature up to T = 2 MeV. In Fig. 5(b). we show several
proton pseudospin doublets of the nucleus 150Sn. As we see
there, the magnitude of the energy splitting also increases for
the deeper levels up to T = 2 MeV and unoccupied states exist
below this temperature for the upper levels. This behavior
below T = 2 MeV is not consistently observed for other
isotopes. For example, as we see in the zoom inside Figs. 4(a)
and 4(b), respectively, the product |�c,0| R2

c,0 decreases less
than 1% while the surface diffuseness ac increases almost
5% for 100Sn (black line). These effects could corroborate
a decrease in the pseudospin splitting from T = 0 MeV up

TABLE III. Pseudospin energy splitting for protons (�Ep) for the pseudospin partners of 150Sn for several values of T .

T 2s1/2 1d3/2 �Ep 2p3/2 1f5/2 �Ep 2d5/2 1g7/2 �Ep 2f7/2 1h9/2 �Ep

0 33.10 36.57 3.47 22.29 25.61 3.31
1.0 33.13 36.60 3.47 22.32 25.69 3.37 11.87 14.35 2.48
2.0 33.14 36.51 3.37 22.39 25.85 3.46 12.02 14.70 2.69 2.25 3.69 1.43
3.0 33.00 36.25 3.24 22.46 25.81 3.35 12.32 14.92 2.60 2.80 4.16 1.37
4.0 32.77 35.84 3.07 22.57 25.71 3.14 12.77 15.18 2.41 3.59 4.79 1.20
5.0 32.45 35.29 2.83 22.71 25.55 2.84 13.35 15.49 2.13 4.61 5.58 0.97
6.0 32.01 34.52 2.51 22.82 25.29 2.47 14.02 15.80 1.79 5.82 6.49 0.67
7.0 31.32 33.44 2.12 22.82 24.84 2.03 14.70 16.07 1.37 7.20 7.50 0.30
8.0 30.29 31.92 1.62 22.62 24.09 1.47 15.36 16.19 0.83 8.78 8.55 −0.23
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FIG. 5. Energy splitting for several pseudospin doublets of 150Sn for (a) neutrons and (b) protons for temperatures varying from T = 0 up
to T = 8 MeV.

for all levels of 100Sn, as we see in Table I. However, these
variations are in general small and sometimes irregular for the
temperatures below T = 2 MeV and thus do not allow one
to establish a clear dependence between the parameters of the
Wood-Saxon potential and the pseudospin splittings. This is
not the case for T > 2 MeV, because the surface diffuseness
increases more than product |�c,0| R2

c,0 as the temperature
increases, and the energy splitting of the pseudospin doublets
becomes small. The exceptions are the energy splittings of the
two doublets [2f7/2 − 1h9/2] and [3p3/2 − 2f5/2] for neutrons.
The former becomes less degenerate above T = 2 MeV, while
the latter becomes less degenerate above T = 4 MeV, as we
see in Fig. 5(a).

The increase of diffusivity with temperature determines the
growth of the ratio ac/ac,0, which is larger than the changes
induced by the temperature in |�c|R2

c /|�c,0|R2
c,0, favoring the

pseudospin symmetry.

IV. CONCLUSION

In this work, we have studied the effects of temperature
on the energy splitting of several pseudospin doublets of the
spherical tin isotopes. We used the finite-temperature Dirac-
Hartree-Bogoliubov (FTDHB) formalism to obtain the mean
field and Coulomb potentials in a self-consistently calculation
[23]. This formalism allows us to take into account the pairing
and deformation beyond the mean field and Coulomb poten-
tials. In our calculations, we observe that the mean-field poten-
tials have the shape of Woods-Saxon potentials for the temper-
ature range from T = 0 to T = 8 MeV. By fitting the potentials
to Wood-Saxon potentials, we were able to investigate the
correlation between the pseudospin splittings and the param-
eters of the Wood-Saxon potential: the depth (�0), surface
diffuseness (a), and radius (R). We studied the tin nuclei from
A = 100 to A = 170 as a function of temperature between
T = 0 and T = 8 MeV. For each nuclei, we obtained the values
of the parameters of the Wood-Saxon potential and analyzed
their variation with increasing temperature. We found that for

100Sn the depth of the potential decreases while the radius and
surface diffuseness increases with temperature. The depth of
the potential decreases on the order of ∼10% while the radius
increases in the same ratio between T = 0 and T = 8 MeV.
However, the diffusivity increases by at least ∼50% in the same
temperature range. The other tin isotopes show similar results.
From the calculation of the energy splittings for the neutron
and proton pseudospin partners of the tin isotopes at several
values of the temperature, we see that in general the pseudospin
energy splittings decrease with temperature. This confirms the
systematics already found in Ref. [24] for the tin isotopes at
T = 0, in which the change in diffusivity was the main driver
for the variation in pseudospin energy splittings, which favors
pseudospin symmetry. The decrease of the energy difference
between pseudopsin doublets with the increase of the tem-
perature seems also to be valid for deformed nuclei at large
temperatures. In Ref. [23], we show that 168Er becomes spher-
ical and the splitting decreases for temperature T � 4 MeV.

We can thus restate, now including the effects of tempera-
ture that, in general, there is a correlation between the shape
of the nuclear mean fields, described here by Wood-Saxon
parameters, and the onset of pseudospin symmetry on nuclei.
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