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Perturbation theory of nuclear matter with a microscopic effective interaction
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An updated and improved version of the effective interaction based on the Argonne-Urbana nuclear
Hamiltonian, derived using the formalism of correlated basis functions and the cluster expansion technique,
is employed to obtain a number of properties of cold nuclear matter at arbitrary neutron excess within the
formalism of many-body perturbation theory. The numerical results, including the ground-state energy per
nucleon, the symmetry energy, the pressure, the compressibility, and the single-particle spectrum, are discussed
in the context of the available empirical information, obtained from measured nuclear properties and heavy-ion
collisions.
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I. INTRODUCTION

Nuclear matter can be thought of as a giant nucleus
consisting of Z protons and A-Z neutrons, in the A,Z →
∞ limit, interacting through nuclear forces only. Besides
being a necessary intermediate step toward the description
of atomic nuclei, theoretical studies of such a system, which
greatly benefit from the simplifications granted by translation
invariance, provide the basis for the development of accurate
models of matter in the neutron star interior.

The ultimate goal of nuclear matter theory, clearly stated
over 40 years ago in the seminal paper of Bethe [1], is the
ab initio determination of its properties from a microscopic
description of the underlying dynamics. Unfortunately, how-
ever, the use of perturbation theory to achieve this objective is
severely hampered by the very nature of strong interactions.
The observation that the central charge density of nuclei,
extracted from the measured electron scattering cross sections,
is nearly independent of the mass number, A, for A � 16,
is in fact a clear indication that nuclear forces are strongly
repulsive at short range. As a consequence, the matrix elements
of the nucleon-nucleon potential between eigenstates of the
noninteracting system turn out to be large, and can not be
treated as perturbations.

The two main avenues to overcome the above problem are
based either on the replacement of the bare nucleon-nucleon
potential with an effective interaction, derived taking into
account the contribution of ladder diagrams to all orders [1,2],
or on the use of a basis of correlated states, embodying nonper-
turbative interaction effects [3,4]. In recent years, it has been
suggested that effective interactions suitable for perturbative
calculations can also be obtained combining potentials derived
within chiral perturbation theory and renormalization group
evolution to low momentum. However, the applications of this
approach appear to be confined to a rather narrow density
region [5–7].

In the early 2000s, the authors of Refs. [8,9] exploited
the formalism based on correlated states to derive a well-
behaved effective interaction and consistent current operators,
suitable to carry out perturbative calculations of the nuclear
matter response to weak interactions, from a microscopic
nuclear Hamiltonian. In Refs. [10–12], this approach has been

extended and improved to take into account the effects of three-
nucleon forces, which are known to play an important role
at supranuclear densities. The resulting effective interactions
have been used to perform calculations of a variety of nuclear
matter properties of astrophysical interest, including the shear
viscosity and thermal conductivity coefficients [10,13] and the
neutrino mean-free path [11,12]. The potential of the approach
based on perturbation theory and effective interactions ob-
tained from correlated functions has been recently confirmed
by systematic studies of the Fermi hard-sphere system [14,15].

In this paper, we report the results of perturbative nuclear
matter calculations carried out using an improved effective
interaction, allowing a consistent treatment of systems with
arbitrary neutron excess. The main features of the nuclear
Hamiltonian and the derivation of the effective interaction are
outlined in Sec. II, while Sec. III is devoted to the discussion
of numerical results, including the ground-state energy, the
symmetry energy, the pressure, the compressibility, and the
proton and neutron spectra and effective masses. Finally, in
Sec. IV we summarize our findings, and lay down the prospects
for future applications of our approach.

II. THEORETICAL FRAMEWORK

In this section, we discuss the phenomenological model
of nuclear dynamics employed in our work, and describe
the procedure leading to the determination of the effective
interaction.

A. Nuclear Hamiltonian

Within nonrelativistic nuclear many-body theory (NMBT),
atomic nuclei, as well as infinite nuclear matter, are described
in terms of pointlike nucleons of mass m, whose dynamics are
dictated by the Hamiltonian (throughout the paper, we adopt
the system of natural units, in which h̄ = c = 1)

H =
∑

i

− ∇2
i

2m
+

∑
i<j

vij +
∑

i<j<k

Vijk. (1)

The complexity of nuclear forces clearly manifests itself in
the deuteron. The fact that a two-nucleon bound state is only
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observed with total spin and isospin S = 1 and T = 0 signals
a strong spin-isospin dependence of the interaction, while
the nonvanishing electric quadrupole moment reflects a non-
spherically-symmetric charge-density distribution, implying
in turn the presence of noncentral forces. The nucleon-nucleon
(NN) potential vij is modeled in such a way as to reproduce
the measured properties of the two-nucleon system, in both
bound and scattering states, and reduces to the Yukawa
one-pion-exchange potential at large distances.

Coordinate-space NN potentials are usually written in the
form

vij =
∑

p

vp(rij )Op
ij , (2)

where rij = |ri − rj | is the distance between the interacting
particles, and the sum includes up to eighteen terms. The most
prominent contributions are those associated with the operators

O
p�6
ij = [1,(σ i · σ j ),Sij ] ⊗ [1,(τ i · τ j )], (3)

where σ i and τ i are Pauli matrices acting in spin and isospin
space, respectively, while the operator

Sij = 3

r2
ij

(σ i · rij )(σ j · rij ) − (σ i · σ j ), (4)

reminiscent of the potential describing the interaction between
two magnetic dipoles, accounts for the occurrence of non-
spherically-symmetric forces.

The potential models obtained including the six operators
of Eqs. (3)–(4) explain deuteron properties and the S-wave
scattering phase shifts up to pion production threshold. In
order to describe the P wave, one has to include two additional
components involving the momentum-dependent operators

O
p=7,8
ij = (� · S) ⊗ [1,(τ i · τ j )], (5)

where � denotes the angular momentum of the relative motion
of the interacting particles.

The operators corresponding to p = 7, . . . ,14 are associ-
ated with the nonstatic components of the NN interaction,
while those corresponding to p = 15, . . . ,18 account for small
violations of charge symmetry. All these terms are included
in the state-of-the-art Argonne v18 (AV18) potential [16],
providing a fit of the scattering data collected in the Nijmegen
database, the low-energy nucleon-nucleon scattering parame-
ters, and deuteron properties with a reduced χ square χ2 � 1.

The results reported in this paper have been obtained using
the so-called Argonne v′

6 (AV6P) interaction, which is not
simply a truncated version of the full AV18 potential, obtained
neglecting the contributions with p > 6 in Eq. (2), but rather
its reprojection on the basis of the six spin-isospin operators
of Eqs. (3)–(4) [17].

The inclusion of the additional three-nucleon (NNN) term,
Vijk , is needed to explain the binding energies of the three-
nucleon systems and the saturation properties of isospin-
symmetric nuclear matter (SNM). The derivation of Vijk

was first discussed in the pioneering work of Fujita and
Miyazawa [18]. They argued that its main component orig-
inates from two-pion-exchange processes in which a NN
interaction leads to the excitation of one of the participating

nucleons to a � resonance, which then decays in the aftermath
of the interaction with a third nucleon. Commonly used
phenomenological models of the NNN force, such as the
Urbana IX (UIX) potential adopted in this work [19], are
written in the form

Vijk = V 2π
ijk + V N

ijk, (6)

where V 2π
ijk is the attractive Fujita-Miyazawa term, while V N

ijk

is a purely phenomenological repulsive term. The parameters
entering the definition of the above potential are adjusted in
such a way as to reproduce the ground-state energy of the
three-nucleon systems and the equilibrium density of SNM,
when used in conjunction with the AV18 NN interaction.

It has to be emphasized that, because the two- and
three-nucleon systems are solved exactly and the equilibrium
properties of SNM can be computed with great accuracy, the
procedure adopted to obtain the Argonne-Urbana Hamiltonian
allows us to largely decouple the uncertainties unavoidably
involved in calculations of the properties of nuclei with A > 3
from those associated with the modeling of nuclear dynamics.

As a final remark, we note that local NN potentials derived
within the alternate framework of chiral perturbation theory
are also written as in Eq. (2) [20,21]. Because local versions
of the chiral NNN potentials [22] have the same spin-isospin
structure of the UIX force, the scheme described in this paper
can be readily applied using chiral nuclear Hamiltonians.

B. CBF effective interaction

The formalism of correlated basis functions (CBFs) is
based on the variational approach to the many-body problem
with strong forces, first proposed by Jastrow in the 1950s
[23]. Within this scheme, the trial ground state of the nuclear
Hamiltonian is written in the form

|�0〉 ≡ F |�0〉
〈�0|F†F |�0〉1/2

, (7)

where |�0〉 is a Slater determinant built from single-particle
states |φα〉, with {α} being the set of quantum numbers of the
states belonging to the Fermi sea. In the case of uniform matter
at density ρ = νk3

F /(6π2), where kF and ν denote the Fermi
momentum and the degeneracy of momentum eigenstates,
respectively, |φα〉 consists of a plane wave, with momentum
kα such that |kα| � kF , and the Pauli spinors associated with
spin and isospin degrees of freedom.

The operator F , describing the effects of correlations
among the nucleons, is written as a product of two-body
operators, whose structure mirrors the one of the AV6P
potential. The resulting expression is

F ≡ S
∏
i<j

Fij , (8)

with

Fij =
6∑

p=1

f p(rij )Op
ij . (9)
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Note that the symmetrization operator S is needed to fulfill the
requirement of antisymmetry of |�0〉 under particle exchange,
since, in general, [Op

ij ,O
q
jk] �= 0.

The radial dependence of the correlation functions f p(rij )
is determined from functional minimization of the expectation
value of the Hamiltonian in the correlated ground state

EV = 〈�0|H |�0〉. (10)

The short-distance behavior is largely shaped by the strongly
repulsive core of the NN potential, resulting in a drastic
suppression of the probability to find two nucleons at relative
distance rij � 1 fm, while at longer distance the noncentral,
or tensor, components of interaction become prominent.

The calculation of the variational energy of Eq. (10)
involves severe difficulties. It can be efficiently carried out
expanding the right-hand side in a series, whose terms describe
the contributions of subsystems, or clusters, involving an
increasing number of correlated particles [3]. The terms of
the cluster expansion are represented by diagrams, which
can be classified according to their topological structures.
Selected classes of diagrams can then be summed up to all
orders solving a set of coupled nonlinear integral equations,
referred to as Fermi hypernetted chain/single-operator chain
(FHNC/SOC) equations [4,24], to obtain an accurate estimate
of the ground-state energy.

Accurate calculations of the expectation value of the nuclear
Hamiltonian in the correlated ground state have been also
carried out using the variational Monte Carlo (VMC) method
[25]. Since VMC works in the complete spin-isospin space,
which grows exponentially with A, this approach is currently
limited to nuclei with A � 12 by the available computational
resources. However, the computational effort can be drastically
reduced performing a cluster expansion similar to the one
employed to derive the FHNC/SOC equations. This scheme,
known as cluster variational Monte Carlo (CVMC) [26,27],
has been recently exploited to calculate the ground-state
properties of nuclei as large as 16O and 40Ca using realistic
phenomenological two- and three-nucleon potentials [28].

Under the assumption that the correlation structure of the
ground and excited states of the system are the same, the
operator F obtained from the variational calculation of EV

can be used to generate correlated excited states from Eq. (7)
through the replacement |�0〉 → |�n〉, with |�n〉 being any
eigenstate of the noninteracting Fermi gas. The resulting
correlated states span a complete, although nonorthogonal,
set, that can be used to carry out perturbative calculations
within the scheme developed in Ref. [29]. This approach,
known as CBF perturbation theory, has been successfully
applied to study a variety of fundamental nuclear matter
properties, including the linear response functions [30,31] and
the two-point Green’s function [32,33].

In CBF perturbation theory, one has to evaluate matrix
elements of the bare nuclear Hamiltonian, the effects of
correlations being taken into account by the transformation of
the basis states describing the noninteracting system. However,
the same result can in principle be obtained transforming the
Hamiltonian, and using the Fermi gas basis. This procedure
leads to the appearance of an effective Hamiltonian suitable for

use in standard perturbation theory, thus avoiding the nontrivial
difficulties arising from the use of a nonorthogonal basis [34].

The CBF effective interaction is defined through the matrix
element of the bare Hamiltonian in the correlated ground state,
according to

〈�0|H |�0〉 = TF + 〈�0|
∑
i<j

veff
ij |�0〉, (11)

where TF denotes the energy of the noninteracting Fermi gas,
and the effective potential is written in terms of the same
spin-isospin operators appearing in Eq. (2) as

veff
ij =

∑
p

veff,p(rij )Op
ij . (12)

From the above equations, it is apparent that veff
ij embodies the

effect of correlations. As a consequence, it is well behaved
at short distances, and can in principle be used to carry out
perturbative calculations of any properties of nuclear matter.

The authors of Ref. [9] first proposed to obtain the effective
interaction performing a cluster expansion of the left-hand side
of Eq. (11) and keeping the two-body cluster contribution only.
While leading to a very simple and transparent expression for
veff

ij , however, this scheme was seriously limited by its inability
to take into account the NNN potential Vijk . In Ref. [10] the
effects of interactions involving more than two nucleons have
been included through a density-dependent modification of the
NN potential at intermediate range [35].

A groundbreaking improvement has been achieved by the
authors of Refs. [11,12], who explicitly took into account
three-nucleon cluster contributions to the ground-state energy.
This procedure allows to describe the effects of three-nucleon
interactions at fully microscopic level using the UIX potential.

Note that the correlation functions f p(rij ) entering the
definition of veff

ij are not the same as those obtained from
the minimization of the variational energy of Eq. (10). They
are adjusted so that the ground-state energy computed at
first order in veff

ij , that is, in the Hartree-Fock approximation,
reproduces the value of EV resulting from the full FHNC/SOC
calculation. In Refs. [11] and [12], this procedure was applied,
independently, to SNM and pure neutron matter (PNM). The
effective interaction employed in this work, on the other hand,
simultaneously describes the density dependence of the energy
per nucleon of both SNM and PNM. This feature is essential
for astrophysical applications, because it allows us to evaluate
the properties of nuclear matter at fixed baryon density and
large neutron excess, which is believed to make up a large
region of the neutron star interior.

The radial dependence of the spherically symmetric compo-
nent of the potential describing the interaction of two nucleons
coupled with total spin and isospin S = 1 and T = 0 is
illustrated in Fig. 1. The solid and dashed lines correspond
to the CBF effective interaction at ρ = ρ0 and to the bare
V6P potential, respectively. It clearly appears that correlations
significantly affect both the short- and intermediate-range
behavior.
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FIG. 1. Radial dependence of the spherically symmetric compo-
nent of the bare AV6P potential (dashed line) and the CBF effective
interaction (solid line) in the spin-isospin channel corresponding to
S = 1 and T = 0. The effective interaction has been computed setting
ρ = ρ0.

III. NUCLEAR MATTER PROPERTIES

In the following, we will consider nuclear matter at baryon
density

ρ =
∑

λ

ρλ = ρ
∑

λ

xλ, (13)

where λ = 1,2,3,4 labels spin-up protons, spin-down protons,
spin-up neutrons, and spin-down neutrons, respectively, the
corresponding densities being ρλ = xλρ. In SNM x1 = x2 =
x3 = x4 = 1/4, while in PNM x1 = x2 = 0 and x3 = x4 =
1/2.

A. Ground-state energy

At first order in the CBF effective interaction, the energy
per baryon can be written in the form

E

A
= 3

5

∑
λ

xλ

k2
F,λ

2m
+ ρ

2

∑
λμ

xλxμ

∫
d3r

× [
veff,d

λμ (r) − veff,e
λμ (r)�(kF,λr)�(kF,μr)

]
, (14)

with the direct and exchange matrix elements of veff
ij between

spin-isospin states |λμ〉, given by

veff,d
λμ (rij ) =

∑
p

vp(rij )〈λμ|Op
ij |λμ〉, (15)

veff,e
λμ (rij ) =

∑
p

vp(rij )〈λμ|Op
ij |μλ〉. (16)

In Eq. (14), kF,λ = (6π2ρλ)1/3 denotes the Fermi momentum
of the particles of type λ, while the function �(kF,λr), referred
to as Slater function, is trivially related to the density matrix

(a)

(b)

FIG. 2. Density dependence of the energy per nucleon of
(a) PNM and (b) SNM. The dashed lines show the results obtained us-
ing Eqs. (14)–(17) and the CBF effective interaction. The variational
FHNC/SOC results are represented by the shaded regions, illustrating
the uncertainty associated with the treatment of the kinetic energy [3],
while the open circles of (a) correspond to the PNM results obtained
using the AFDMC technique.

in the absence of interactions, defined as

ρλ�(kF,λr) ≡ 1

V

∑
k

eik·rnλ(k), (17)

where nλ(k) = θ (kF,λ − k) is the zero-temperature Fermi
distribution and V is the normalization volume. For the sake
of completeness, the explicit expressions of the matrices veff,d

λμ

and veff,e
λμ are given in Appendix A.

The solid lines of Fig. 2 illustrate the density dependence
of the energy per nucleon of PNM [Fig. 2(a)] and SNM
[Fig. 2(b)], obtained from Eqs. (14)–(17) with the CBF
effective interaction. The shaded regions show the FHNC/SOC
results obtained from the bare Hamiltonian, with the associated
theoretical uncertainty arising from the treatment of the kinetic
energy [3]. For comparison, the results of a calculation carried
out using the auxiliary field diffusion Monte Carlo (AFDMC)
technique [36] are also displayed. It clearly appears that the
FHNC/SOC variational estimates, exploited as baseline for
the determination of the CBF effective interaction, provide
very accurate upper bounds to the ground-state energy of
PNM over the whole density range. Note that the simplified
AV6P + UIX Hamiltonian yields the correct equilibrium
density of SNM, ρ0 ≈ 0.16 fm−3, although the corresponding
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FIG. 3. Energy per nucleon of nuclear matter, computed as a
function of baryon density and proton fraction using Eqs. (14)–(17)
and the CBF effective interaction.

binding energy, ∼11 MeV, is below the empirical value of
16 MeV. However, it must be kept in mind that, because the
kinetic and interaction energies largely cancel one another,
a ∼5 MeV discrepancy in the ground-state energy translates
into a ∼15% underestimate of the interaction energy. This
is consistent with the results of variational calculations of
SNM performed with the full AV18 + UIX Hamiltonian
[37], yielding E0/A = −11.85 MeV. The same Hamiltonian
has been also found to underestimate the binding energy of
both 16O and 40Ca, by 2.83(3) MeV/A and 3.63(10) MeV/A,
respectively [28].

Equations (14)–(17) have been also used to compute the
energy per nucleon of unpolarized matter, corresponding to
x1 = x2 and x3 = x4, at fixed baryon density ρ and proton
density ρp = xpρ, with xp = 2x1, in the range 0 � xp � 0.5.
The results of these calculations are displayed in Fig. 3.

B. Symmetry energy

Consider again unpolarized matter with proton and neutron
densities ρp = xpρ and ρn = (1 − xp)ρ, respectively. The
ground-state energy per nucleon can be expanded in series of
powers of the quantity δ = 1 − 2xp = (ρn − ρp)/ρ, providing
a measure of neutron excess. The resulting expression reads
(see, e.g., Ref. [38])

1

A
E0(ρ,δ) = 1

A
E0(ρ,0) + Esym(ρ)δ2 + O(δ4), (18)

where the symmetry energy

Esym(ρ) =
{

∂2[E0(ρ,δ)/A]

∂δ2

}
δ=0

(19)

≈ 1

A
E0(ρ,1) − 1

A
E0(ρ,0)

can be interpreted as the energy required to convert SNM
into PNM. The density dependence of Esym(ρ), that can be
obtained expanding around the equilibrium density of SNM,

FIG. 4. Density dependence of the symmetry energy of nuclear
matter. The regions labeled ASY-EOS, Sn+Sn and IAS represent the
results reported in Refs. [40], [41], and [42], respectively, while the
symbols correspond to the analyses of Refs. [39] (cross with error
bar), [43] (diamond), and [44] (square). The results of the present
work are displayed by the dashed line.

ρ0, is conveniently characterized by the quantity

L = 3ρ0

(
dEsym

dρ

)
ρ=ρ0

. (20)

Empirical information on Esym(ρ0) and L has been ex-
tracted from data collected by laboratory experiments and
astrophysical observations [39]. The values resulting from our
calculations, Esym(ρ0) = 30.9 MeV and L = 67.9 MeV, turn
out to be compatible with those obtained from a survey of
28 analyses, carried out by the authors of Ref. [39], yielding
Esym(ρ0) = 31.6 ± 2.66 and L = 58.9 ± 16 MeV.

The density dependence of the symmetry energy has been
recently discussed in Ref. [40], whose authors combined the
results of isospin-dependent flow measurements carried out by
the ASY-EOS Collaboration at GSI with those obtained from
analyses of low-energy heavy-ion collisions [41] and nuclear
structure studies [42–44].

Figure 4 shows a comparison between Esym(ρ) resulting
from our calculations and the empirical information reported
in Refs. [39–44]. It is apparent that the theoretical results are
compatible with experiments at most densities.

As a final note, it has to be pointed out that our approach,
allowing a straightforward calculation of the ground-state
energy of nuclear matter as a function of both baryon density
and neutron excess, is ideally suited to test the validity of the
approximation of Eq. (18). The results of Fig. 5 clearly show
that the quadratic approximation describes the xp dependence
of the ground-state energy at ρ = ρ0, obtained from Eqs. (14)–
(17), to remarkable accuracy. The deviation of the diamonds
from the solid line turns out to be less than 3% over the whole
xp range.
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FIG. 5. Ground-state energy per nucleon of nuclear matter at
baryon density ρ = ρ0 and proton fraction 0 � xp � 0.5. The
diamonds represent the results obtained using Eqs. (14)–(17) and
the CBF effective interaction, while the solid line corresponds to the
quadratic approximation of Eq. (18).

C. Pressure

The pressure of nuclear matter, which plays a critical role in
determining mass and radius of the equilibrium configurations
of neutron stars, is simply related to the ground-state energy
through

P = −
(

∂E0

∂V

)
A

= ρ2 ∂(E0/A)

∂ρ
, (21)

where the derivative is taken keeping the number of nucleons
constant.

The dashed line of Fig. 6 illustrates the density dependence
of the pressure of SNM obtained from our approach. For
comparison, the shaded area shows the region consistent with
the experimental flow data discussed in Ref. [45], providing a
constraint on P (ρ) at ρ � 2ρ0. It is apparent that, while being
within the allowed boundary at 2ρ0 � ρ � 3ρ0, the calculated
pressure exhibits a slope suggesting that a discrepancy may
occur at higher density. However, it has to be kept in mind
that, being based on a nonrelativistic formalism, our approach
is bound to predict a violation of causality, signaled by a value
of the speed of sound in matter, defined as

vs =
√

∂P

∂(E0/V )
, (22)

exceeding the speed of light in the high-density limit.
At equilibrium density, vs is trivially related to the com-

pressibility modulus

K0 = 1

9

(
∂P

∂ρ

)
ρ=ρ0

, (23)

which can be determined from measurements of the com-
pressional modes in nuclei. Using the SNM results reported
in this paper, we obtain the value K0 ≈ 200 MeV, to be

FIG. 6. The dashed line illustrates the density dependence of
the pressure of SNM obtained from the approach described in this
paper. The shaded area corresponds to the region consistent with the
experimental flow data reported in Ref. [45].

compared to the results of the analyses of Refs. [46,47],
yielding K0 = 240 ± 20 MeV.

D. Single-particle spectrum and effective mass

The conceptual framework for the identification of single-
particle properties in interacting many-body systems is laid
down in Landau’s theory of Fermi liquids [48], based on
the assumption that there is a one-to-one correspondence
between the elementary excitations of a Fermi liquid, dubbed
quasiparticles, and those of the noninteracting Fermi gas.

The energy of a quasiparticle of type λ on the Fermi surface
can be obtained by adding a particle of momentum k = kF,λ to
the system, without altering its volume. In the Aλ = xλA →
∞ limit, this process leads to the expression

eλ(kF,λ) =
(

∂E0

∂Aλ

)
V,Aμ �=λ

(24)

=
{

∂[ρ(E0/A)]

∂ρλ

}
V,ρμ �=λ

.

Note that the above equation, establishing a relation between
the Fermi energy and the ground-state energy, is a straight-
forward generalization of the Hugenholtz-Van Hove (HVH)
theorem [49]—one of the few exact results of the theory of
interacting many-body systems—to the multicomponent case.

The single-particle spectrum at fixed ρ, eλ(k), can be
obtained following a process described by the authors of
Ref. [50]. Within this scheme, the energy of a quasiparticle
(quasihole) of momentum k > kF,λ (k < kF,λ) is obtained
moving a small fraction ελ of particles from a thin spherical
shell at kF,λ (k) in momentum space to a thin spherical shell
at k (kF,λ). Up to terms linear in ελ, the resulting expression is

eλ(k) = e(kF,λ) ± 1

ελ

[
E(ελ,k)

A
− E0

A

]
, (25)
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FIG. 7. Momentum dependence of the single-nucleon energies,
evaluated at ρ = ρ0 within the Hartee-Fock approximation of
Eq. (27). The solid and dashed lines correspond to PNM and SNM,
respectively, whereas the dot-dashed and dotted lines represent the
proton and neutron spectra in matter with proton fraction xp = 0.1.
For comparison, the diamonds illustrate the results of a calculation of
the single-particle spectrum of SNM at equilibrium density, carried
out within the FHNC/SOC approach [51].

where the plus (minus) sign applies to the case k > kF,λ

(k < kF,λ). In the above equation, E0/A is the ground-state
energy per nucleon, while E(ελ,k)/A is the energy obtained
modifying the Fermi gas density matrix according to

�(kF,λr) → �(kF,λr) ± ελ
[ sin(kr)

kr
− sin(kF,λr)

kF,λr

]
, (26)

where, once again, the plus (minus) sign corresponds to k >
kF,λ (k < kF,λ).

The above procedure, originally developed within the
context of the variational FHNC/SOC approach, can be
employed just as well to carry out perturbative calculations.
At first order in the effective interaction, it reduces to using the
modified density matrix of Eq. (26) in Eq. (14), which in turn
leads to recover the expression of the single-particle energy in
Hartree-Fock approximation

eHF
λ (k) = k2

2m
+ ρ

∑
μ

xμ

∫
d3r

× [
veff,d

λμ (r) − veff,e
λμ (r)j0(kr)�(kF,μr)

]
, (27)

with j0(x) = sin x/x.
Figure 7 shows the momentum dependence of the Hartee-

Fock spectra of protons and neutrons in nuclear matter,
evaluated at ρ = ρ0 and xp = 0 (PNM), 0.1, and 0.5 (SNM).
Note that the proton spectrum at xp = 0.1 is appreciably below
the one corresponding to SNM. This feature, implying that
neutron excess makes the mean field experienced by a proton
more attractive, is likely to be ascribed to the noncentral
component of the nuclear interaction. For comparison, the
diamonds illustrate the single-particle spectrum of SNM at
equilibrium density, obtained by the author or Ref. [51]

FIG. 8. Density dependence of the ratio m�(kF )/m for neutrons,
computed using the Hartree-Fock spectra of Eq. (27). The solid and
dashed lines correspond to PNM and SNM, respectively, while the
dot-dashed and dotted lines represent the results obtained setting
xp = 0.1 and 0.3, respectively.

using the FHNC/SOC approach and a nuclear Hamiltonian
comprising the Argonne v14 NN potential and the UVII NNN
potential.

The single-particle energy is often parametrized in terms of
the effective mass, defined by the equation

1

m�
λ(k)

= 1

m

deλ(k)

dk
. (28)

The density dependence of the neutron effective mass at
k = kF , obtained from the Hartree-Fock spectra of Eq. (27), is
illustrated in Fig. 8 for different values of the proton fraction.
The solid and dot-dashed lines correspond to PNM and SNM,
while the dotted and dot-dashed lines have been obtained
setting xp = 0.1 and 0.3, respectively. The difference between
the proton and neutron effective masses in non-isospin-
symmetric matter, is illustrated in Fig. 9, corresponding to
proton fraction xp = 0.1.

For density-independent interactions, the Hartree-Fock
spectrum (27) and the ground-state energy per nucleon of
Eq. (14) fulfill the requirement dictated by the HVH theorem
by construction. On the other hand, it has long been recognized
that large deviations from Eq. (24) occur when the potential
depends on ρ, as in the case of both the G matrix [52] and the
CBF effective interaction. In order to restore consistency with
the HVH theorem, the Hartee-Fock result must be corrected,
by adding a rearrangement term involving the derivative of veff

with respect to the density ρλ. The resulting expression is

eλ(kF,λ) = eHF
λ (kF,λ) + 1

2

∑
μν

ρμρν

∫
d3r

[(
∂veff,d

μν (r)

∂ρλ

)

−
(

∂veff,e
μν (r)

∂ρλ

)
�(kF,μr)�(kF,νr)

]
. (29)
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FIG. 9. Density dependence of the proton (p) and neutron (n)
effective mass at the Fermi surface, computed setting the proton
fraction to xp = 0.1.

Figure 10 shows the energy of a neutron carrying momentum
k = kF in PNM [Fig. 10(a)] and SNM [Fig. 10(b)], computed
using Eqs. (27) (dashed lines) and (29) (diamonds). For
comparison, the results obtained by differentiation of ρE0/A,
as prescribed by the HVH theorem, are represented by the solid
lines. It clearly appears that the Hartree-Fock approximation is
only consistent at subnuclear densities. However, the inclusion
of the rearrangement term, whose size increases from ∼5 MeV
to ∼80 MeV in the density range 1 � ρ/ρ0 � 3, brings the
Fermi energies into perfect agreement with the predictions of
Eq. (24). It has to be noted that this agreement is made possible
by the simultaneous fit to SNM and PNM energies.

The impact of the rearrangement correction on the momen-
tum dependence of the single-nucleon energy in nuclear matter
has been thoroughly discussed in the context of G-matrix
perturbation theory [52,53]. The authors of Ref. [54] argued
that in the vicinity of the Fermi surface, that is, at k ≈ kF,λ,
the spectrum can be obtained from the simple approximate
expression [compare to Eq. (29)]

eλ(k) ≈ eHF
λ (k) + 1

2

∑
μν

ρμρν

∫
d3r

[(
∂veff,d

μν (r)

∂ρλ

)

−
(

∂veff,e
μν (r)

∂ρλ

)
�(kF,μr)�(kF,νr)

]
. (30)

From the definition of Eq. (28), it follows that according to the
above prescription the ratio m�(kF,λ)/m, which plays a driving
role in a number of processes of astrophysical interest, is not
affected by the rearrangement term.

IV. SUMMARY AND OUTLOOK

An improved version of the effective interaction derived
in Refs. [10–12], obtained from a microscopic nuclear
Hamiltonian using the CBF formalism and the cluster expan-
sion technique, has been employed to perform perturbative

(a)

(b)

FIG. 10. Neutron energy at k = kF in (a) PNM and (b) SNM.
The solid lines have been obtained by differentiating the ground-state
energy per nucleon according to Eq. (24). Dashed lines and diamonds
correspond to the results of calculations performed within the Hartree-
Fock approximation of Eq. (27) and including the rerrangement term
according to Eq. (29), respectively.

calculations of several properties of nuclear matter at arbitrary
neutron excess.

It has to be kept in mind that the CBF effective interaction is
not defined in operator form, but only in terms of its expectation
value in the Fermi gas ground state. Therefore, the validity of
the assumption that perturbative calculations involving matrix
elements of veff

ij between Fermi gas states provide accurate
estimates of quantities other than the ground-state energy can
not be taken for granted, and must be ultimately assessed at
numerical level. A step in this direction has been made by
the authors of Refs. [14,15], who employed a CBF effective
interaction to carry out calculations of several properties of
the Fermi hard-sphere system, ranging from the self-energy to
the transport coefficients. The agreement between the results
of these studies and the predictions of low-density expansions
appears to be quite encouraging.

The CBF effective interaction is well behaved and embodies
all the distinctive features of the bare interaction, as well as
screening effects arising from the presence of the repulsive
core. In addition, unlike the Skyrme-like interactions derived
using a conceptually similar procedure [55,56], it allows us to
describe nucleon-nucleon scattering in the nuclear medium,
whose understanding is needed to study nonequilibrium
properties relevant to astrophysical processes.
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While admittedly failing to precisely reproduce the empir-
ical value of the ground-state energy of SNM, mainly because
of deficiencies of the bare Hamiltonian, our approach predicts
the correct equilibrium density, as well as reasonable values of
both the symmetry energy and the compressibility. Moreover,
it is perfectly suited to describe spin-polarized matter.

In the future, the accuracy of the CBF effective interaction
approach may be improved using the coordinate-space nu-
clear Hamiltonians recently derived within chiral perturbation
theory [20–22,57–60]. However, we believe that, in view
of the broad range of possible astrophysical applications,
most notably studies of neutron star structure and dynamics
and supernova explosions, the availability of a theoretical
framework allowing for a consistent treatment of a broad
range of nuclear matter properties within a unified model
of nuclear dynamics will prove critically important. In this
context, a ∼15% error in the ground-state expectation value
of the potential energy of SNM at saturation density appears
to be an acceptable price to pay.

As a final remark, it has to be pointed out that, as long as
thermal effects do not lead to modifications of the underlying
strong interaction dynamics, the formalism described in this
paper can be readily generalized to treat nuclear matter at
nonzero temperature, by replacing the T = 0 Fermi distribu-
tion appearing in the right-hand side of Eq. (17) with the cor-
responding distribution at T > 0. In principle, even in the
absence of thermal modifications of the bare Hamiltonian, the
CBF effective interaction may be affected by finite temperature
effects, since the Fermi distribution enters the Euler-Lagrange
equations determining the shape of the correlation functions.
However, the results of explicit calculations show that thermal
modification of the f p(rij ) are negligible, typically a fraction
of a percent, up to T ∼ 20 MeV [61].

Preliminary results of the extension of the CBF effective
interaction approach to the treatment of hot nuclear matter,
which are a subject for future research, have been employed
by the authors of Ref. [62] to study the neutrino luminosity
and gravitational wave emission of protoneutron stars during
the Kelvin-Helmoltz evolutionary phase.
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APPENDIX: MATRIX ELEMENTS OF THE EFFECTIVE
INTERACTION IN SPIN-ISOSPIN SPACE

In this Appendix, we provide the explicit expressions of the
quantities needed for the calculation of the matrix elements

of the effective interaction in spin-isospin space. They can be
conveniently rewritten in the form

veff,d
λμ (rij ) =

∑
p

vp(rij )Ap
λμ(cos θ ),

veff,e
λμ (rij ) =

∑
p

vp(rij )Bp
λμ(cos θ ),

where

Ap(cos θ ) = 〈λμ|Op
ij |λμ〉,

Bp(cos θ ) = 〈λμ|Op
ij |μλ〉,

cos θ = (rij · ẑ)/|rij | and the operators O
p
ij , with p = 1, . . . ,6,

are given by Eqs. (3) and (4).
The matrices Ap(cos θ ) and Bp(cos θ ) read

A1 =

⎛
⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎠, A2 =

⎛
⎜⎝

1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

⎞
⎟⎠,

A3 =

⎛
⎜⎝

1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

⎞
⎟⎠,

A4 =

⎛
⎜⎝

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1

⎞
⎟⎠,

A5 = A2 (3 cos2 θ − 1),

A6 = A4 (3 cos2 θ − 1),

and

B1 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, B2 =

⎛
⎜⎝

1 0 2 0
0 1 0 2
2 0 1 0
0 2 0 1

⎞
⎟⎠,

B3 =

⎛
⎜⎝

1 2 0 0
2 1 0 0
0 0 1 2
0 0 2 1

⎞
⎟⎠, B4 =

⎛
⎜⎝

1 2 2 4
2 1 4 2
2 4 1 2
4 2 2 1

⎞
⎟⎠,

B5 =

⎛
⎜⎝

1 −1 0 0
−1 1 0 0

0 0 1 −1
0 0 −1 1

⎞
⎟⎠(3 cos2 θ − 1),

B6 =

⎛
⎜⎝

1 −1 2 −2
−1 1 −2 2

2 −2 1 −1
−2 2 −1 1

⎞
⎟⎠(3 cos2 θ − 1).
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